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The xanthophyll cycle pool size controls the kinetics of
non-photochemical quenching in Arabidopsis thaliana
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Abstract Arabidopsis plants overexpressing b-carotene hydrox-
ylase 1 accumulate over double the amount of zeaxanthin present
in wild-type plants. The final amplitude of non-photochemical
quenching (NPQ) was found to be the same in these plants,
but the kinetics were different. The formation and relaxation
of NPQ consistently correlated with the de-epoxidation state
of the xanthophyll cycle pool and not the amount of zeaxanthin.
These data indicate that zeaxanthin and violaxanthin antagonis-
tically regulate the switch between the light harvesting and
photoprotective modes of the light harvesting system and show
that control of the xanthophyll cycle pool size is necessary to
optimize the kinetics of NPQ.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The reversible enzymatic interconversion between the

carotenoids violaxanthin and zeaxanthin (the xanthophyll cy-

cle) regulates the induction of photoprotective non-photo-

chemical quenching (NPQ) in the thylakoid membranes of

plants, the main component of which is the DpH-dependent,

rapidly-reversible qE [1]. Xanthophyll cycle carotenoids are

bound to the LHCII proteins [2–5], mostly at the peripheral

V1 site [6,7]. There are two theories to explain the mechanism

of action of these carotenoids in qE. Firstly, it has been pro-

posed that zeaxanthin, but not violaxanthin, is a direct

quencher of chlorophyll excited states [8]. Secondly, these

carotenoids were suggested to allosterically regulate a quench-

ing process that is intrinsic to LHCII [9,10]. Although there is

experimental evidence in support of both theories, it has not
Abbreviations: DES, de-epoxidation state of the xanthophyll cycle
pool; DTT, dithiotheitol; LHCII, the main light harvesting complex of
photosystem II; NPQ, Non-photochemical quenching; DpH, pH
difference across the thylakoid membrane; qE, the DpH-component
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been possible to conclusively prove that either one explains

the role of the xanthophyll cycle in vivo.

The first evidence used to support the allosteric model was

the phenomenon of ‘‘light activation’’ of qE – pre-illumination

of leaves to convert violaxanthin into zeaxanthin shifted the

DpH requirement for qE but had little effect on the maximum

qE capacity [11]. Light activation was also recognised in ki-

netic effects: the rate of qE formation was faster in the presence

of zeaxanthin but the rate of dark relaxation was slower

[12,13]. These kinetic effects on qE were consistent with the

observation that the rate of quenching of isolated LHCII

was accelerated by addition of zeaxanthin but slowed down

by violaxanthin [14,15]. It was therefore suggested that viola-

xanthin and zeaxanthin work antagonistically and competi-

tively, the former as a qE inhibitor and the latter as a qE

promoter [9,10]. In order to further test this hypothesis it is

necessary to determine whether these effects arise from changes

in zeaxanthin concentration or from the change in ratio of zea-

xanthin to violaxanthin, expressed as the de-epoxidation state

(DES). Here we have used Arabidopsis plants in which the

expression of the enzyme b-carotene hydroxylase 1 has been

increased; these plants accumulate 2–3 times the level of viola-

xanthin with little perturbation of the content of other pig-

ments [16,17]. Comparing these plants to wild-type plants we

show that NPQ kinetics depend upon DES. Furthermore,

the data point to a new explanation of why the size of the xan-

thophyll cycle pool is subject to fine control according to exter-

nal environmental signals.
2. Materials and methods

Arabidopsis thaliana, cv C24 (wt) and b-carotene hydroxylase 1 over-
expressing lines (sChyB) derived from it [16] were grown for 8–9 weeks
in Conviron plant growth rooms with an 8-h photoperiod at a light
intensity of 100 lmol photons m�2 s�1 and a day/night temperature
of 22/18 �C. The composition of carotenoids was determined by HPLC
for leaf disks rapidly frozen in liquid N2 [17]. To completely inhibit
violaxanthin de-epoxidation, leaves were vacuum infiltrated with a
5 mM dithiothreitol (DTT) solution. Chlorophyll fluorescence kinetic
analyses of whole leaves was carried out using a Walz PAM-100 fluo-
rimeter at an actinic light intensity of 1000 lmol photons m�2 s�1, with
light saturation pulses applied as indicated in the figures. NPQ data
analysis used a SigmaPlot software curve-fitting procedure (SPSS, Chi-
cago, IL).
3. Results

As observed previously [16,17], the leaves of dark-adapted

sChyB plants have nearly three times the content of violaxanthin
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Kinetics of de-epoxidation in wt (filled circles and line) and
sChyB, (open circles and dashed line) leaves at 1000 lmol pho-
tons m�2 s�1. (A) violaxanthin; (B) zeaxanthin; (C) antheraxanthin;
(D) DES (Zx + 0.5Ax)/(Vx + Zx + Ax)%; A, B, and C values expressed
as mmoles carotenoid per mole chlorophyll a. Data are means of three
independent experiments ± S.E.M.
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Fig. 2. Fluorescence induction curves (A) and NPQ (B) in wt (solid
line and filled symbols) and sChyB (dashed line and open symbols)
leaves at 1000 lmol photons m�2 s�1 actinic light. Control leaves
(circles) leaves infiltrated with DTT (triangles). Arrows indicate actinic
light on and off.
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compared to the wild-type (wt) plants (Fig. 1A). Upon illumina-

tion, violaxanthin was de-epoxidised to antheraxanthin and zea-
xanthin (Figs. 1A–C). During the first 300 s zeaxanthin

accumulated rapidly in both wt and sChyB, after this point the

wt zeaxanthin level saturated while in sChyB it continued to in-

crease, slowing down only after about 15 min. The final levels of

zeaxanthin and antheraxanthin were about three times larger in

the sChyB plants compared to wt. Although the initial rate of

zeaxanthin formation was apparently the same in wt and sChyB,

the larger xanthophyll cycle pool size in the latter affected the

rates of change in their DES (Fig. 1D). Thus, during the first

150 s of illumination the DES was significantly less in the sChyB

plants compared to the wt (approx. 20% compared to 30%)

(Fig. 1D), but after 15 min of illumination the DES was larger

in the sChyB plants (approx. 50% compared to 40%). No further

changes in DES were observed at longer illumination times (data

not shown).

The kinetics of induction of NPQ in dark-adapted leaves of

sChyB plants were different than in those of the wt (Figs. 2A

and B). In both cases there was a similar initial fast phase of

qE formation, reflecting the capacity for qE formation driven

by DpH formation but without de-epoxidation. This is fol-

lowed by a second slower phase of NPQ formation which is

associated with zeaxanthin accumulation. This phase was

much slower in the sChyB plants than in the wt: at around

100–200 s there was approx. 30% less NPQ in the sChyB plants

compared to the wt. The final amplitude of NPQ obtained was

not significantly different, even if the illumination period was

extended (data not shown), as previously reported [16,17]. This
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was observed over a range of actinic light intensities from 50 to

2000 lmol photons m�2 s�1 (data not shown).

Following a dark interval to relax the qE-component of

NPQ, pre-illumination results in a greatly accelerated induc-

tion of NPQ, apparently the same, in both plant types. The

relaxation of qE following both illumination periods was

slower in the sChyB plants compared to the wt. Although

many other features of photosynthetic activity are different

when comparing a dark-adapted leaf with a pre-illuminated

one it is unlikely that such effects could be responsible for

the differences between the wt and sChyB plants. When viola-

xanthin de-epoxidation was inhibited by DTT [18], the kinetics

of induction and relaxation of qE were identical in the wt and

sChyB plants (Fig. 2B), showing that the differences in qE for-

mation kinetics in Fig. 2A were due only to differences in de-

epoxidation kinetics.

Experiments were carried out to determine the effects of the

de-epoxidation state and zeaxanthin concentration on the

kinetics of the formation and relaxation of NPQ. Leaves from

wt and sChyB plants were pre-illuminated with saturating light

for varying periods to induce different extents of violaxanthin

de-epoxidation. It was found that as the pre-illumination per-

iod was lengthened, the subsequent rate of NPQ formation in-

creased for both wt and sChyB plants (Fig. 3A). However,

differences in the relative rate of NPQ formation were found;

in sChyB (dashed lines) it was considerably slower relative to

wt (black lines) in dark-adapted leaves (0 s pre-illumination),
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Fig. 3. Kinetics of NPQ formation (A) and relaxation (B) following
different periods of pre-illumination. Light intensity, 1000 lmol pho-
tons m�2 s�1. Periods of pre-illumination circles (0 s), inverted trian-
gles (60 s), squares (150 s), triangles (300 s), stars (900 s), as marked on
the figure, wt, filled symbols, sChyB open symbols with solid and
dashed lines respectively as the best fits. Data means of three
independent experiments ± S.E.M.
t1/2 = 136 s compared to 56 s respectively, and those pre-illu-

minated for 60 s (t1/2 31 s and 23 s) or 150 s (18 s and 11 s).

However, after longer pre-illumination times the t1/2 values
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Fig. 4. Rate of NPQ formation (B and C) and relaxation (A and D)
versus zeaxanthin content per chlorophyll a (A and B) and DES (C and
D)wt, black circles and line; sChyB, white circles and dashed line. Data
are mean of three independent experiments ± S.E.M.
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for sChyB and wt were 7 s and 8 s (300 s) and 6 s and 7 s

(900 s), respectively.

The kinetics of relaxation also depended on the length of the

pre-illumination period; this time, as the pre-illumination per-

iod increased, the relaxation of NPQ became slower. Again wt

and sChyB plants behaved differently (Fig. 3B). With pre-illu-

mination of 60 or 150 s there were faster relaxation times in

sChyB plants with t1/2 values 18 s and 32 s compared to 23 s

and 35 s in wt. However, for pre-illumination times of 600

and 900 s the relaxation became slower in sChyB compared

to wt, with values of 108 s and 153 s in the former and 54 s

and 72 s in the latter.

These kinetics were compared to the measured de-epoxida-

tion states and the zeaxanthin concentrations obtained after

different pre-illumination periods. When plotted against zea-

xanthin concentration, distinct relationships were observed

for wt and sChyB in both formation (Fig. 4B) and relaxation

kinetics (Fig. 4A). It took approximately twice as much

zeaxanthin in sChyB to achieve a given half-time as in wt.

However when the kinetics were plotted against de-epoxida-

tion state, a single relationship was found (Figs. 4C and D).
4. Discussion

The amplitude of NPQ has been correlated with the light-

dependent de-epoxidation of violaxanthin under a variety of

conditions and in different plant species [1]. Here, by compar-

ing plants with different xanthophyll cycle pool size but identi-

cal qE capacity, we have been able to show that formation and

relaxation of qE is controlled not by the concentration of zea-

xanthin, but by the extent of de-epoxidation of the pool.

The formation of NPQ upon illumination of dark-adapted

leaves was slower in the sChyB plants than in the wt despite

the appearance of a higher content of zeaxanthin and anther-

axanthin. The gradual increase in DES matched the increase in

NPQ amplitude in both plant types. Thus, the difference in

NPQ formation was explained by the fact that the change

in DES is slower because the pool size is larger. It was thus

demonstrated that the extent of the rapidly-reversible qE-com-

ponent of NPQ is determined by the DES, not by the concen-

tration of zeaxanthin.

We have also documented how the rates of formation and

relaxation of NPQ were altered by pre-illumination: the longer

the pre-illumination, the faster the formation and the slower

the relaxation. By comparing the responses in sChyB and wt

plants, we have shown that rates of the transitions between

the quenched and unquenched states depend not upon the zea-

xanthin concentration but the DES, implying competition be-

tween zeaxanthin and violaxanthin in their effects on qE.

Previously, using the in vitro quenching of LHCII as a model

for in vivo qE, antagonistic effects of violaxanthin and zeaxan-

thin on the rate of quenching were described [14,15]. Consis-

tent with this, we now suggest that violaxanthin similarly

inhibits the DpH-dependent formation of qE, while zeaxanthin

promotes it, with the reverse effects on the rate of relaxation.

In both cases, a high DES is associated with stabilization of

the quenched state. The transition into the quenched state of

isolated LHCII involves a conformational change [19], also

found in vivo upon qE formation [20], which brings about en-

ergy transfer from chlorophyll to the S1 state of Lutein 1 [20].

The control of the rate of the transition into and out of this
state by the DES is consistent with the proposed role of the

xanthophyll cycle carotenoids as allosteric regulators of qE

[9,10]. The data could also be accommodated within a model

in which the only role of zeaxanthin is as the direct quencher

[8], either bound to PsbS [21], LHCII [22] or to a minor anten-

na complex [23,24]. However, important new features would

need to be invoked: there must be competition between viola-

xanthin and zeaxanthin for the quenching site; and the rate of

binding and release from this site must be rate limiting for qE

formation and relaxation respectively. Further experiments are

needed to verify these aspects.

The demonstration that the extent and kinetics of NPQ are

controlled by the DES gives a new insight into the factors

which determine the size of xanthophyll cycle pool. Plants ex-

posed to excess light increase the size of the xanthophyll cycle

pool [25–27], a response assumed to increase stress tolerance.

Indeed, sChyB plants have a greater tolerance to photo-oxida-

tive stress compared to wt plants as a result of the increased

antioxidant activity from zeaxanthin [16,17]. However, such

a beneficial effect of a larger xanthophyll cycle pool in sChyB

plants left unexplained why the pool was not constitutively lar-

ger in the wild-type plants, since an altered expression of only

one gene was involved. The data shown here provide an expla-

nation: a large xanthophyll cycle pool retards both the kinetics

of formation and relaxation of qE. The former effect may pre-

dispose the plants to greater photoinhibition following sudden

increases in light intensity, whilst the latter could result in pho-

tosynthetic yield losses upon transition from high to low light

intensity [28]. Thus regulation of the xanthophyll cycle pool

has to balance the positive effect of increased antioxidant activ-

ity from a high zeaxanthin concentration with the negative ef-

fect of compromised qE dynamics. In high light grown plants,

this negative effect is presumably ameliorated by other features

of the acclimation of the thylakoid membrane that control qE:

an increase in PsbS concentration [29], a change in antenna

composition [30] and alteration in grana stacking [31].

Together these allow rapid qE kinetics while also affording

increased antioxidant protection of thylakoid lipids by the

larger xanthophyll cycle pool size. In contrast, in low light

grown plants, these features of the thylakoid membrane are

optimized for efficient light utilization, a state which is conse-

quently incompatible with a large xanthophyll cycle pool size.
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