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i .  I N T R O D U C T I O N  

Let f : I c R --* R be a convex function on the interval I of real numbers and a, b E I with a < b. 

The inequality 

( _ ~ . _ )  1 lab f (a )+f (b )  (1.1) f a b < ~ - a  f (x)  cl.T < 2 

is well  known  in t h e  l i t e r a tu re  as  H e r m i t e - H a d a m a r d ' s  inequa l i ty  for convex funct ions  [1]. 

T h e  a im  of  th i s  p a p e r  is to  es tab l i sh  some resul ts  connec ted  wi th  t he  r ight  p a r t  of  (1.1) as  well 

as  to  a p p l y  t h e m  for some e l e m e n t a r y  inequal i t ies  for real  numbers  and  in numer ica l  in tegra t ion .  

For  severa l  recent  resul t s  concerning  H e r m i t e - H a d a m a r d ' s  inequa l i ty  (1.1), see [2-6] where  

fu r the r  references are  l is ted.  

2 .  M A I N  R E S U L T S  

We begin with the following lemma. 

LEMMA 2.1.  Le t  f : I ° C_ R -~ R be a differentiable mapping on I °, a,b E I ° with a < b. If  
f E L[a, b], then the following equa / i ty  holcls: 

f(a)'i- f(b) 1 ~a b b - a  fol 2 b - a f (x)  dx = T (1 - 2t) f ( ta  + (1 - t)b) dt. (2.1) 
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PROOF. It SUffiCes to note that 

~0 
1 

I ---- (1 -- 2t)f ' ( ta + (1 -- t)b) dt 

_- f(ta+a (_l-t)b)g (1_201 x + 2  fo  1 f ( t a + ( 1 - t ) b ) d t  
o a - b  

/(a) +f(b) 2 1 [ b  
= b - a  - b - a  b - a  J,~ f ( x )dx .  

REMARK 2.1. On using the  change of the  variable x = ta + (1 - t)b, t E [0, 1], equali ty (2.1) can 
be wri t ten  as 

f (a)  + f(b) I f a  b 1 lab( a 2 b  ) 2 b - a f (x )  dx = b - a  x - f ' (x )  dx. (2.2) 

Some applications of ident i ty  (2.2) connected with Hermite-Hadamard's integral inequali ty for 
convex functions have been presented in [7]. Here we shall offer some more, which are very 
interesting. 

THEOREM 2.2. Le t  f : I ° C_ R --* R be a differentiable mapping on I °, a, b E I ° with a < b. I f  
If'l is convex on [a, b], then the following inequality holds: 

[ f ( a ) + f ( b )  1 lab I 2 b - a f (x )  dx < 
(b - a) ( l / ' (a) l  + l/ '(b)l) (2.3) 

PROOF. Using L e m m a  2.1, it follows that 

l y(a) + l(b) 
2 

1 f ( x )  dx = (1 - 2t)fCta + (1 - t)b) dt 
b a 2 Jo 

b - a  ~ 1 
< 2 l1 - 2tl If'(ta + (1  - t )b)l  dt 

b -  a fol  < 2 ' I1 - 2tl [tl.f'(a)l + (1 - t)lY'(b)l] dt 

= (b - a) (If(a)12 + If(b)l) jo[1 I1 - 2tl t dt 

= (b - a)  ( I / ' ( a ) l  + I f ' (b) t )  
8 

where we have used the  fact t ha t  

/o /o I r /11 1 l[1-2t[(1-t)dt= 11-2tltdt= ( 1 - 2 t l t d t +  ( 2 t - 1 ) t d t =  i .  
J0 2 

Another  similar result is embodied in the following theorem. 

THEOREM 2.3. Le t  f : I ° C_ R --, R be a differentiable mapping  on l °, a, b 6 1 ° with a < b, and  
let p > 1. I f  the new mapping [ftlP/(P--1) /.9 convex on [a, hi, then the £ollowing inequality holds: 

2 b - a  f ( x )  d,T < 2 ( p + i ) 1 / p  2 . (2.4) 
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PROOF. Using Lemma 2.1 and HSlder's integral inequality, we find 

f(a) q- f(b) 1 / b  b - a fol 
- f ( x )  d x  < - [1 - 2 t [  [I'(ta + ( 1  - t ) b ) [  d t  ( 2 . 5 )  

b a - 2 

1 1/p 1 1/q 
b - a  ( fo  1 1 - 2 t "  dt) ( fo  I] ' ( ta+(1- t )b)Iq  dr) , <- 2 

where 1/p + 1/q = 1. 
Using the convexity of If'l q, we have 

]01 [f'(ta + (1 - t)b)l q dt < [t[f'(a)[ q + (1 - t)lf(b)I q] dt = ]f'(a)lq + [f'(b)lq 
- 2 

(2.6) 

Further,  since 

It - 2 t l  p dt = (1 - 2t) p dt + - 1) p dt = 2 (1 - 2t) p dt = _ _ 1  (2.7) 
JO JO p+ 1' 

a combination of (2.5)-(2.7) immediately gives the required inequality (2.4). 

3 .  A P P L I C A T I O N S  T O  S P E C I A L  M E A N S  

In the literature, the following means for positive real numbers a ,  f~, a ~ / 3  are well known: 

+ /3  ari thmetic mean, A(a,f~) = 2 ' 

G(~,/3) = v f ~ ,  geometric mean, 

f ~ - a  
L(a, /3)  = In/3 - In a '  logarithmic mean, 

1 ( f ~ )  1/(~-~) 
I (a , /3)  = e ~-~ , identric mean, 

[ ~ ,+ ,  _ ~ . + 1 1  ' "  
generalized log-mean, p ~  - 1 , 0 .  

There  are several results connecting these means, e.g., see [8] for some new relations; however, 
very few results are known for arbitrary real numbers. For this, it is clear tha t  we can extend 

some of the above means as follows: 

a + ~  
A(a,/3) = 2 ' a, /3 e R, 

- -  f ~ - - O ~  

L(a,/3) = I n  I~'l - In lal' ~' z • R\{0} ,  

r z - + l  - a"+l  11/. 
L,(~, f~)  = L(~Vi)~-- ; )J  ' h E N ,  n > l ,  a , / 3 e R ,  a < f ~ .  

Now we shall use the results of Section 2 to prove the following new inequalities connecting 
the above means for arbitrary real numbers. 

PROPOSITION 3.1. Let a, b E R, a < b and n E N, n > 2. Then, the following inequa//ty holds: 

IA(a",b ~) - L,(a,b)l < nCb~ 4 a) A (lal n-i, Ibl"-l). 
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PROOF. The proof is immediate from Theorem 2.2 applied for f ( x )  = x n, x E R. 
PROPOSITION 3.2. Let a, b E R, a < b, and n E N, n > 2. Then, for all p > 1, the following 
inequality holds: 

n ( b - a )  [AOa[(n_l)p/(p_l) [b[(n_l)p/(p_l))](p-l)/p " 
[A(an, b n) - Ln(a,b)[ < 2(~ '1)-~/"  

PROOF. The proof is immediate from Theorem 2.3 applied for f ( x )  = x n, x e R. 

PROPOSITION 3.3. Let a, b E R, a < b, and 0 • [a, b]. Then, the £ollowing inequa/ity holds: 

A(a-l,b -1) L-l(a,b) < ( b - a ) A o a r 2 , [ b [ - 2 )  

PROOF. The proof is obvious from Theorem 2.2 applied for f ( x )  = 1/x, x E [a, b]. 

PROPOSITION 3.4. Let a, b E R, a < b, and 0 ~ [a, b]. Then, t'or p > 1, the/'ollowing inequa//ty 
holds: 

]A(a_lb_l)-~-l(a,b)[ ~ (b-a)[AOai_2p/(p_l),ibF2p/(p_l))](p-l)/p" 
- ¥1T/. 

PROOF. The proof is obvious from Theorem 2.3 applied for f ( x )  = 1/x, x E [a, b]. 

4.  A P P L I C A T I O N S  T O  T R A P E Z O I D A L  F O R M U L A  

Let d be a division of the interval [a, b], i.e., d : a = x0 < xl < . . .  < xn-1 < xn = b, and 
consider the trapezoidal formula 

n - - 1  

T( f ,d )  = Z / (x i )  + .f(Xi+l)(xi+ 1 - -  Xi). 
2 

i = 0  

It is well known that  if the mapping f : [a, b] --+ R is twice differentiable on (a, b) and M = 
maxtE(a,b ) [f'l(x)] < oo, then 

a b f ( x )  dx = T ( f ,  d) + E ( f ,  d), (4.1) 

where the approximation error E( f ,  d) of the integral f :  f ( x ) d x  by the trapezoidal formula 
T ( f  , d) satisfies 

M n - 1  
]E(f,d)l < -~  E ( x i + l  - x,) 3. (4.2) 

i = 0  

It is clear that  if the mapping f is not twice differentiable or the second derivative is not 
bounded on (a, b), then (4.2) cannot be applied. In recent papers [9-11], Dragomir and Wang 
have shown that  the remainder term E ( f ,  d) can be estimated in terms of the first derivative only. 
These estimates have a wider range of applications. Here, we shall propose some new estimates 
of the remainder term E ( f ,  d) which supplement, in a sense, those established in [9-11]. 

PROPOSITION 4.1. Let f be a differentiable mapping on I °, a, b E I ° with a < b. I f[f '[  is convex 
on [a,b], then in (4.1), for every division d of [a,b] ,the following holds: 

l n - 1  

]E(f,d)l _< ~ ~--:.(xi+l - xi) 2 (I/'(x~)[ + [/'(xi+l)l) 
i = 0  

< max{lf'(a)l, lf'(b)l} ~"~.(x,+1 - x,) 2. 
- 4 

i-----0 
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PROOF. Applying Theorem 2.2 on the subinterval [27i, 27i+1] (i = O,. . . ,  rt -- 1) of the division d, 
w e ge t  

I / ~ ' + '  dx (X,+l - x,) 2 (If'(27,)l + If ' (x,+l)l)  f(27i) 4- f(274-1'-1) (27i-I-1 -- 27i) -- f(27) < 
2 I~x, - 8 

Summing over i from 0 to n - 1 and taking into account that  If'l is convex, we deduce, by the 
triangle inequality, tha t  

T ( f ,  d) - ~a b f(27) d27 
n-1 

~-- 8 Z ( 2 7 " { - 1 -  27i)2 (I.f/(27i)[ 4- [ft(27i.{_l)[ ) 
i----0 

n--1 
< m a x { I f ' ( a ) [ '  [ f ' ( b ) [ }  ~ - ~ ( 2 7 , + 1  - 27,)2. 
- 4 

i----0 

PROPOSITION 4.2. Let f be a differentiable mapping on I °, a, b q I ° with a < b, and let p > 1. 
I f  lf 'l p/(v-1) is convex on [a,b], then in (4.1) for every division d of [a,b], the following holds: 

1 Z (xi't'l _ z i )  2 [f,(z~)lp/(v_l) ..f,(x~+l)lp/(p_l) ' (p--1)/p 
IE(f,d)l _< 2(p+ 1)1/p i--o 

rt--1 
< max{If'(a)l, I f @ l }  ~-'~(27,+1 - 27~)2. 
-- 2 (p  4- 1) 1/v i=0 

PROOF. The  proof uses Theorem 2.3 and is similar to that  of Proposition 4.1. 
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