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Abstract

We show that the p-norm condition number of the s-variate triangular Bernstein basis for polynomials of degree n
grows at most as O(ns2n) for �xed s and increasing n. This is essentially the same growth as has already been established
in the univariate case. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In computing with polynomials it is desirable to use a basis which is well conditioned so that small
relative changes in the coe�cients lead to small relative changes in the polynomial and vice versa.
To measure such conditioning we use a number �n; s;p called the p-norm condition number of the
basis. For this number we use the Lp norm to measure the size of functions and the corresponding
‘p norm for vectors for some p with 16p6∞.
We consider here the p-norm condition number for the s-variate triangular Bernstein basis of de-

gree n. This basis has gained increasing popularity mainly through work in computer aided geometric
design [7] and it is important to know the size of its condition number.
There are good estimates for the p-norm condition number in the univariate case, in particular the

exact values are known for p= 2 (see [3,4]) and for p=∞ (see [8]). Recently, precise estimates
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for the case p = 1 have also been given in [10], and there are improved results for univariate
B-splines, see [11]. In all these cases the condition number grows like 2n, where n is the degree of
the polynomial or the piecewise polynomial.
The multivariate polynomial case for p=∞ was considered in [9]. Here an upper bound for the

condition number was given. For space dimension s this bound grows like (s+ 1)n for �xed s, but
it was shown to be independent of the space dimension for s¿n.
In this paper we determine the exact condition number in the multivariate 2-norm case and

use this to give reasonably sharp estimates for any p-norm with 16p6∞. For polynomials of
degree n we obtain essentially the characteristic 2n behavior in any �xed space dimension and
for any p.
The content of this paper is as follows. In Section 2 we recall the de�nition of the p-norm

condition number and state some facts about the multivariate Bernstein basis. Most of these facts
are well known and we only include short proofs. In Section 3 we study the 2-norm case. The
condition number can then be computed exactly from the eigenvalues of the Gram matrix of the
Bernstein basis. We show that the condition number for �xed s grows like 2n+s=2=(n + s)1=4 as n
increases. Some Lp inequalities in Section 4 are used to give upper and lower bounds for the
condition number for 16p6∞ in Section 5. We end the paper with an appendix on the connection
between Bernstein- and Legendre polynomials on simplices.
We use standard multi-index notation. Thus for tuples j = (j1; : : : ; js) and x = (x1; : : : ; xs) we let

| j|= j1 + · · ·+ js, j! = j1!j2! · · · js!, and xj = x j11 x j22 : : : x jss .
Unless otherwise stated the indices in a sum will be nonnegative. Thus if we sum in the order

js; js−1; : : : ; j1 then

∑
|( j1 ;:::; js)|6n

=
n∑

j1=0

n−j1∑
j2=0

n−j1−j2∑
j3=0

· · ·
n−j1−···−js−1∑

js=0

:

The convex hull of m points C1; : : : ; Cm is denoted conv(C1; : : : ; Cm), and we let ‖ c ‖p and ‖ f ‖Lp(
)
be the usual p-norms of vectors and functions de�ned on a set 
, respectively.

2. The Bernstein basis

For the vector space

Pn; s :=Pn(R s) =


p(x) =

∑
| j|6n

cjx j : cj ∈ R



of polynomials of total degree at most n in s variables x = (x1; : : : ; xs) we consider the Bernstein
basis (

n!
�!
��
)
|�|=n

:

Here � = (�1; : : : ; �s+1) denotes the barycentric coordinate with respect to a nondegenerate simplex
� = conv(C1; : : : Cs+1) in R s i.e., the tuple � = �(x) corresponding to a point x ∈ R s is uniquely
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given by
s+1∑
i=1

�iCi = x;
s+1∑
i=1

�i = 1:

For 16p6∞ we de�ne the p-norm condition number of the Bernstein basis by

�n; s;p

((
n!
�!
��
))

:= sup
c 6=0

‖∑|�|=n c�(n!=�!)�
� ‖Lp(�)

‖ c ‖p sup
c 6=0

‖ c ‖p
‖∑|�|=n c�(n!=�!)�

� ‖Lp(�) : (2.1)

The function de�ned on the simplex � by (x1; : : : ; xs)→ (�1; : : : ; �s), maps � onto the unit simplex

�s := conv(e1; : : : ; es; 0); (2.2)

where the ei ; 16i6s denote the unit vectors in R s. Moreover, the Bernstein basis on � is mapped
to the Bernstein basis on �s. Denoting these functions by (Bnj ) it follows that

�n; s;p :=�n; s;p((n!�
�=�!)) = �n; s;p((Bnj ))

and it is enough to study the condition number problem on the unit simplex �s.
In the rest of this section we recall some elementary facts about Bernstein basis functions on the

unit simplex. The functions Bnj can be written in the form

Bnj1 ;:::; js(x1; : : : ; xs)

=
n!

j1! · · · js!(n− j1 − · · · − js)!x
j1
1 · · · x jss (1− x1 − · · · − xs)n−j1−···−js ;

or more compactly using multi-index notation

Bnj (x) =
[
n
j

]
xj(1− |x|)n−| j| j¿0 | j|6n; (2.3)

where j = (j1; : : : ; js), x= (x1; : : : ; xs), and[
n
j

]
=

n!
j!(n− | j|)!

is a multinomial coe�cient.
The following well-known elementary properties of the Bernstein basis will be useful.

Lemma 1. We have
(1) Bnj (x)¿ 0 for | j|6n and all x ∈ �s.
(2)

∑
| j|6n B

n
j (x) = 1 for all x ∈ R s.

(3)
∫
�s
xrBnj (x) dx=

( j + r)!n!
j!(n+ s+ |r|)! ; |r|6n:

(4)
n!

(n− |r|)!x
r =

∑
| j|6n

j!
( j − r)!B

n
j (x); |r|6n:

Proof. Statement (1) follows immediately from Eq. (2.3) since

�s =

{
(x1; : : : ; xs) : xj¿0 all j and

∑
j

xj61

}
;
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while (2) is a special case of (4). For (3) it is well known (see [2, p. 140]) that∫
�s
Bnj (x) dx =

n!
(n+ s)!

; | j|6n:

Combining this with∫
�s
xrBnj (x) dx=

(r + j)!
j!

n!
(n+ |r|)!

∫
�s
Bn+|r|r+j (x) dx;

we obtain (3). To prove (4) we use generating functions. Di�erentiating the relation

(1− |x|+ t · x)n :=
n∑
i=0

(
n
i

)
(1− |x|)n−i(t · x)i =

n∑
| j|6n

t jBnj (x); t; x ∈ R s

r times with respect to t and then setting t = (1; : : : ; 1) we obtain (4).

3. The L2 case

In this section we give an exact formula and asymptotic estimates for the L2 condition number

�n; s;2 = sup
(cj)6=0

‖∑| j|6n cjB
n
j ‖L2(�s)

‖ (cj) ‖2 sup
(cj)6=0

‖ (cj) ‖2
‖∑| j|6n cjB

n
j ‖L2(�s)

: (3.1)

To start, we observe that

�n; s;2 = sup
c 6=0

√
cTGc

‖ c ‖2

/
inf
c 6=0

√
cTGc

‖ c ‖2 =

√
�max
�min

;

where �max and �min are the largest and smallest eigenvalue of the Gram matrix G of the Bernstein
basis

G = (〈Bni ; Bnj 〉)|i|; | j|6n =
(∫

�s
Bni (x)B

n
j (x) dx

)
|i|;| j|6n

: (3.2)

This is a matrix of order ( n+ss ) and for both rows and columns we use the linear ordering of
s-tuples i; j given by i¿ j if and only if the �rst nonzero component of i − j is positive. As
an example, for n = s = 2 the lower indexes of the basis functions will be taken in the order
(0; 0); (0; 1); (0; 2); (1; 0); (1; 1); (2; 0).
The eigenvalues of the Gram matrix can be determined explicitly.

Theorem 2. The Gram matrix (3:2) of the s-variate triangular Bernstein basis of degree n has the
eigenvalues

�m =
(n− |m|+ 1) · · · (n− 1)n

(n+ 1)(n+ 2) · · · (n+ |m|+ s) ; |m|6n: (3.3)

Proof. We consider polynomials Qm (to be determined) of the special form

Qm(x) =
∑

|r|6|m|
qm; rxr; m ∈ Z s with m¿0; and |m|6n; (3.4)
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where

qm;m = 1; and qm; r = 0 for |r|= |m| and r 6= m: (3.5)

Note that Qm is a polynomial of degree |m|. Let dm=(dm; i) be the degree n vector of BB-coe�cients
of Qm so that

Qm(x) =
∑
|i|6n

dm; iBni (x); |m|6n:

We will determine for �xed m the coe�cients qm; r so that dm is an eigenvector of G . The idea
is to express both dm and Gdm in terms of the qm; r and use the eigenvalue=eigenvector relation
Gdm = �mdm to determine both �m and Qm. Consider �rst the vector dm. Inserting (4) of Lemma 1
into (3.4) we can express each dm; i in the form

dm; i =
∑

|r|6|m|
qm; r

(n− |r|)!i!
n!(i − r)! =

∑
|r|6|m|

qm; r
∑
j6r

�r; j i j (3.6)

for some constants �r; i independent of i, in particular �r; r = (n − |r|)!=n!. Similarly, using (3) of
Lemma 1 we can express the ith component of Gdm in the form

(Gdm)i = 〈Bni ; Qm〉=
∑

|r|6|m|
qm; r〈Bni ; xr〉

=
∑

|r|6|m|
qm; r

(i + r)!n!
i!(n+ s+ |r|)! =

∑
|r|6|m|

qm; r
∑
j6r

�r; j i j ; (3.7)

where the �r; j are independent of i, in particular �r; r = n!=(n+ s+ |r|)!. We will need the value of
the following ratio:

�r; r
�r; r

=
(n!)2

(n+ s+ |r|)!(n− |r|)! ; |r|6|m|: (3.8)

Switching the order of summation in (3.6) and (3.7) we have Gdm = �mdm if and only if∑
| j|6|m|

∑
r¿j

|r|6|m|

qm; r[�r; j − �m�r; j]i j = 0; |i|6n:

We see that this holds for all such i if and only if∑
r¿j

|r|6|m|

qm; r[�r; j − �m�r; j] = 0; | j|6|m|: (3.9)

Since qm;m = 1 we obtain the value �m = (�m;m=�m;m) by choosing j =m in this equation, and (3.3)
follows by letting r=m in (3.8). The coe�cients qm; r can now be determined in a triangular fashion
from (3.9). We already know qm; r for |r|= |m| from (3.5) and if qm; r has been determined for r¿j
with r 6= j then we determine qm; j from (3.9). It su�ces to make sure that the coe�cient �j; j−�m�j; j
in front of qm; j does not vanish. This follows since from (3.8)

�j; j
�j; j

6= �m;m
�m;m

= �m for | j|¡ |m|:
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In the appendix we will point out that the eigenpolynomials Qm(x) de�ned by (3.4) can be identi�ed
as Legendre polynomials with respect to the simplex �s (cf. [1]). This result was already shown by
Deriennic [5], who obtains the polynomials Qm(x) as eigenfunctions of the L2-projection operator
with respect to the Bernstein–B�ezier basis, see also [3]. However our approach seems to be more
direct in view of our actual goal of determining the L2 condition number and therefore we have
present it here.
Using the explicit formulae for the eigenvalues of the Gram matrix we �nd the exact formula for

the 2-norm condition number. The following theorem generalizes the univariate result proved in [4]
to the multivariate case.

Theorem 3. For any n; s¿1 the L2 condition number �n; s;2 of the triangular s-dimensional Bernstein–
B�ezier basis of degree n is given by

�n; s;2 =

√(
2n+ s
n

)
: (3.10)

Moreover; we have the lower and upper bounds

exp
{−s(s− 1)

8n

}
2n+s=2

(�(n+ s+ 1=2))1=4 6 �n; s;2

6
2n+s=2

(�(n+ s))1=4 exp
{−s(s− 1)
8(n+ s)

}
: (3.11)

Proof. The largest and smallest eigenvalue of the Gram matrix are given by

�max =
n!

(n+ s)!
; �min =

(n!)2

(2n+ s)!

which represent the cases |m|= 0 and |m|= n in (3.3). But then

�n; s;2 =

√
�max
�min

=

√
(2n+ s)!
n!(n+ s)!

=

√(
2n+ s
n

)
;

which proves (3.10).
Consider next the asymptotic estimate. We have

(
2n+ s
n

)
= 2−s

(
2n+ 2s
n+ s

) s−1∏
�=1

2n+ 2�
2n+ s+ �

(3.12)

and the binomial coe�cient is bounded below and above by Wallis’ inequality

22n+2s√
�(n+ s+ 1=2)

6
(
2n+ 2s
n+ s

)
6

22n+2s√
�(n+ s) : (3.13)
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For the product term we use the inequality 1 + x6ex, valid for all x to obtain

s−1∏
�=1

2n+ s+ �
2n+ 2�

6
s−1∏
�=1

(
1 +

s− �
2n

)

6
s−1∏
�=1

exp
{
s− �
2n

}
= exp

{
s(s− 1)
4n

}

and with x� = (s− �)=(2(n+ s))
s−1∏
�=1

2n+ 2�
2n+ s+ �

=
s−1∏
�=1

1− 2x�
1− x�

6
s−1∏
�=1

(1− x�)6
s−1∏
�=1

exp{−x�}= exp
{
− s(s− 1)
4(n+ s)

}
:

Combining these inequalities we �nd

exp
{−s(s− 1)

4n

}
6

s−1∏
�=1

2n+ 2�
2n+ s+ �

6exp
{−s(s− 1)
4(n+ s)

}
; (3.14)

and inserting (3.13) and (3.14) in (3.12) result in the following bounds:

exp
{
−s(s− 1)

4n

}
22n+s√

�(n+ s+ 1=2)
6
(
2n+ s
n

)

6
22n+s√
�(n+ s)

exp
{
− s(s− 1)
4(n+ s)

}
:

Inequalities (3.11) now follow by taking square roots.

In [9] it was shown that �n; s;∞ could be bounded independently of s for s¿n. Formula (3.10)
shows that such a bound does not hold for p= 2.
It is interesting to determine the extremal coe�cients in (3.1) more explicitly. The �rst sup

is, appart from scaling, uniquely attained for the eigenpolynomial Q0(x) = 1 corresponding to the
eigenvalue �max. The corresponding extremal coe�cients are given by ci = 1 for all i. The second
sup is more complicated. For any m ∈ Z s with m¿0 and |m|= n the vectors cm = (cm; j)| j|6n given
by

cm; j =


 (−1)

| j|
(
m
j

)
if j6m;

0 otherwise
(3.15)

are a collection of ( n+s−1s−1 ) linearly independent extremal vectors for the second sup in (3.1). The
corresponding extremal polynomials are the classical [1] Legendre polynomials on �s of degree
|m|= n, see the appendix for details.
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4. Some p-norm inequalities

In this section we give Lp inequalities which will be used to relate the condition numbers for
di�erent p.
We start with some inequalities bounding the size of vectors and functions in di�erent p-norms.

Lemma 4. For a vector c ∈ Rm we have the following inequality:
‖ c ‖p 6 ‖ c ‖q 6m1=q−1=p ‖ c ‖p; 16q6p6∞: (4.1)

Suppose for some bounded subset 
⊂R s and a function f ∈ L1(
) we can bound the L∞ norm
in terms of the L1 norm

‖ f ‖L∞(
) 6 ‖ f ‖L1(
) (4.2)

for some ¿ 0. Then the following inequalities hold:

1
1=q−1=p

‖ f ‖Lp(
) 6 ‖ f ‖Lq(
) 6vol(
)1=q−1=p ‖ f ‖Lp(
); 16q6p6∞: (4.3)

Proof. The leftmost inequality of (4.1) follows from Jensens inequality, while the rightmost one is
a standard application of Holders inequality. In the proof of (4.3) we use ‖ f ‖p as an abbreviation
for ‖ f ‖Lp(
) for any 16p6∞. Let

T1 : L1(
)→ L∞(
); T2 : L∞(
)→ L∞(
); T3 : Lq(
)→ L∞(
)

all be de�ned as the identity operator between the indicated spaces. By the Riesz–Thorin interpolation
Theorem, see [6, p. 32], and (4.2) we obtain

‖ f ‖∞
‖ f ‖q 6 ‖ T3 ‖6 ‖ T1 ‖1=q‖ T2 ‖1−1=q 61=q:

Hence the leftmost inequality in (4.3) follows for p =∞ and any q. We extend this inequality to
any p¿q by the string of inequalities

‖ f ‖pp =
∫

|f|p−q|f|q6 ‖ f ‖p−q∞ ‖ f ‖qq 6(1=q ‖ f ‖q)p−q ‖ f ‖qq =p=q−1 ‖ f ‖pq :
Taking pth roots completes the proof of the leftmost inequality. For the rightmost inequality we
have by the Holder

‖ f ‖qq =
∫

|f|q6
(∫

(|f|q)p=q
)q=p (∫

1
)1−q=p

:

We now take qth roots.

To estimate the constant  in (4.2) in the polynomial case on �s we need a version of Markov’s
inequality.

Lemma 5. For positive integers n; s and f ∈ Pn(R s) we have

‖ 3f ‖L∞(�s) 64n
2√s ‖ f ‖L∞(�s); (4.4)
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where

‖ 3f ‖L∞(�s) = max16i6s

∥∥∥∥@f@xi
∥∥∥∥
L∞(�s)

:

Proof. By [13]∥∥∥∥∥∥
(

s∑
i=1

(
@f
@xi

)2)1=2∥∥∥∥∥∥
L∞(�s)

6
4n2

w
‖ f ‖L∞(�s);

where w is the minimal distance between two parallel supporting hyperplanes containing �s between
them. Since for each x ∈ �s we have

‖ 3f(x) ‖∞ 6 ‖ 3f(x) ‖2 =
(

s∑
i=1

(
@f(x)
@xi

)2)1=2
;

we obtain the result if we can show that w = 1=
√
s. To compute w it is su�cient to consider s+ 1

hyperplanes H1; : : : ; Hs where each Hi contains the facet

�is = conv(e1; : : : ; ei−1; ei+1; : : : ; es+1);

where es+1 = 0. The parallel supporting hyperplane Ki containing �s between Hi and Ki must pass
through ei and the distance between Hi and Ki is given by

inf
x∈�is

∥∥∥∥∥∥∥∥∥
ei −

s+1∑
j=1
j 6=i

xjej

∥∥∥∥∥∥∥∥∥
2

:

Now

x ∈ �is ⇔
s+1∑
j=1
j 6=i

xj = 1; xj¿0

and the inf for 16i6s is equal to one and is obtained for x located at the origin. If i= s+ 1 then
the inf is equal to 1=

√
s and is obtained for x = (1=s; : : : ; 1=s).

We can now give an estimate for the constant  in Lemma 4 when 
 is the unit simplex in R s

and f is a polynomial of degree n. For a similar result in the univariate case see [12].

Lemma 6. For n¿s1=4=2 and any f ∈ Pn(R s) we have

‖ f ‖L∞(�s) 6s!Ksn
2s ‖ f ‖L1(�s); (4.5)

where

Ks = e−1=2(s+ 1)8 ss s=2: (4.6)
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Proof. Let � = (�1; : : : ; �s) ∈ �s be a point where f attains its norm, i.e.,
‖ f ‖L∞(�s) =|f(�)|:

We de�ne �s+1 so that
∑ s+1

j=1 �j=1, and as usual we set es+1=0, the zero vector. Clearly, �i¿1=(s+1)
for some i with 16i6s+ 1, and for this i and any �¿ 0 we consider the simplex

�(i)s; �(�) = {� + �(� − ei) : � ∈ �s}: (4.7)

We note that �(i)s; �(�)⊂�s provided 0¡�6�i.
Fix x ∈ �(i)s; �(�). By the chain rule and the Markov inequality we have

|f(�)| − |f(x)|6 |f(�)− f(x)|
6 ‖ 3f ‖L∞(�s)‖ � − x ‖1
6M |f(�)| ‖ � − x ‖1;

where M = 4n2
√
s is the constant in the Markov inequality (4.4). Rearranging this inequality and

integrating we �nd

‖ f ‖L∞(�s)

∫
�(i)s; �(�)

(1−M ‖ � − x ‖1) dx6
∫
�(i)s; �(�)

|f(x)| dx:

Since �i¿1=(s+ 1) and �(i)s; �(�)⊂�s provided 0¡�6�i it follows that

‖ f ‖L∞(�s) 6 min
0¡�61=(s+1)

max
16i6s+1

1
gi(�)

‖ f ‖L1(�s); (4.8)

where

gi(�) =
∫
�(i)s; �(�)

(1−M ‖ � − x ‖1) dx= �s
∫
�s
(1− �M ‖ � − ei ‖1) d�: (4.9)

To evaluate these integrals we observe that∫
�s
1 d� =

1
s!
;

∫
�s
�j d� =

1
(s+ 1)!

; j = 1; : : : ; s;

so that for 16i6s

gi(�) = �s
∫
�s


1− �M


1− 2�i + s∑

j=1

�j




 d�

= �s
(
1
s!

− �M
(
1
s!

− 2
(s+ 1)!

+
s

(s+ 1)!

))

=
�s

s!

(
1− �M 2s− 1

s+ 1

)
:

For �¿ 0 the function gi has a unique maximum at � = �∗ given by

�∗ =
s

M (2s− 1)
with corresponding value

1
gi(�∗)

=
(
2s− 1
s

)s
(s+ 1)!M s; i = 1; : : : ; s: (4.10)
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For i = s+ 1 we �nd

gs+1(�) = �s
∫
�s


1− �M s∑

j=1

�j


 d�

=
�s

s!

(
1− �M s

s+ 1

)

and we see that gs+1(�∗)¿gi(�∗) for i=1; : : : ; s. The condition n¿s1=4=2 implies that �∗61=(s+1)
and we have shown that for n¿s1=4=2 the solution of the min–max problem (4.8) is given by the
value in (4.10). Since ((2s− 1)=s) s6e−1=22 s and M = 4n2

√
s we obtain the estimate in (4.5).

5. Estimates for general Lp-norms

Consider the condition number of the Bernstein basis on the unit simplex �s

�n; s;p = sup
(cj)6=0

‖∑| j|6n cjB
n
j ‖Lp(�s)

‖ (cj) ‖p sup
(cj)6=0

‖ (cj) ‖p
‖∑| j|6n cjB

n
j ‖Lp(�s)

: (5.1)

The �rst factor can be computed exactly for any p.

Lemma 7. For 16p6∞

sup
(cj)6=0

‖∑| j|6n cjB
n
j ‖Lp(�s)

‖ (cj) ‖p =
(
v
m

)1=p
; (5.2)

where

m= dim(Pn(R s)) =
(
n+ s
s

)
; and v= vol(�s) =

1
s!
:

Proof. Using Lemma 1 and the Holder inequality with 1=p+ 1=q= 1 we obtain∥∥∥∥∥∥
∑
| j|6n

cjBnj

∥∥∥∥∥∥
p

Lp(�s)

=
∫
�s

∣∣∣∣∣∣
∑
j

cjBnj (x)
1=pBnj (x)

1=q

∣∣∣∣∣∣
p

dx

6
∫
�s


∑

j

|cj |pBnj (x)



∑

j

Bnj (x)



p=q

dx

=
v
m

‖ (cj) ‖pp :
Taking pth roots we obtain (5.2) with an inequality. However, we obtain equality by the choice
c∗j = 1 for all j. Indeed, since

∑
| j|6n c

∗
j B

n
j = 1 we then have

‖∑| j|6n c
∗
j B

n
j ‖Lp(�s)

‖ (c∗j ) ‖p
=
v1=p

m1=p
:
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Theorem 8. For n; s¿1 and 16q6p6∞
1

(Ksn2s)1=q−1=p
�n; s; q6�n; s;p6

(
n+ s
s

)1=q−1=p
�n; s; q; (5.3)

where Ks given by (4:6) only depends on s.

Proof. By Lemma 7 we have for any coe�cients c = (cj) 6= 0 and f =∑ cjBnj

‖ f ‖p
‖ c ‖p =

(
m
v

)1=q−1=p ‖ f ‖q
‖ c ‖q : (5.4)

From the bounds in Lemma 4 it follows that

1
(m)1=q−1=p

‖ c ‖q
‖ f ‖q6

‖ c ‖p
‖ f ‖p6

(
v
m

)1=q−1=p ‖ c ‖q
‖ f ‖q ;

where = s!Ksn2s = Ksn2s=v is the constant in (4.6). Taking the supremum in this inequality and in
(5.4) it is an easy matter to complete the proof.

This estimate shows that the condition numbers �n; s;p(�s) di�er with respect to p only by a
rational factor in n. More precisely, we have

Corollary 9. For n; s¿1 and 16p6∞ we have the estimates

K1n−s[1=p−1=2]6
�n; s;p
�n; s;2

6K2n2s[1=p−1=2]; 16p62;

K3n−2s[1=2−1=p]6
�n; s;p
�n; s;2

6K4ns[1=2−1=p]; 26p6∞;

where the constants K1; : : : ; K4 only depend on s.

Proof. By (5.3) we obtain

1(
n+ s
s

)1=p−1=26�n; s;p�n; s;2
6(Ksn2s)1=p−1=2; 16p62;

1
(Ksn2s)1=2−1=p

6
�n; s;p
�n; s;2

6
(
n+ s
s

)1=2−1=p
; 26p6∞:

For the binomial coe�cient we have the upper bound(
n+ s
s

)
=
ns(1 + 1=n)(1 + 2=n) · · · (1 + s=n)

s!
6(s+ 1)ns

and the lower bound ns=s!. The result follows.

If one looks at the assertion of this corollary one sees that there is still some gap to close. In
the univariate case there exists sharper (pointwise) Markov inequalities so one might hope that one
could replace 2s by s in the factors involving K2n2s and K3n−2s in Corollary 9.
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The exact behavior of �n; s;p is known in the univariate case. Indeed, in [10] it is shown that

�n;1; p2−nn1=2p → const:; n→ ∞; 16p6∞;
which means that

�n;1; p
�n;1;2

= O(n(1=2)(1=p−1=2)); 16p6∞:

Thus, we have a positive exponent for p¡ 2 and a negative one for p¿ 2. But this is not the case
in those estimates of Corollary 9 which involve the constants K1 and K4.
In the multivariate case we only know the exact behavior for p= 2. From Theorem 3 we have

�n; s;22−nn1=4 → consts:; n→ ∞
for any �xed space dimension s. However, to guess the exact behavior with respect to the dimension s
in the general multivariate case seems di�cult. It looks like one needs to �nd the extremal polynomial
in the second sup of (5.1) for p= 1 and ∞, or have at least have some idea of it.

Appendix. Triangular Legendre polynomials

We start by recalling the de�nition and some properties of these polynomials. For further properties
see [1]. For m=(m1; : : : ; ms) ∈ Z s with m¿0 we de�ne the Legendre polynomial Pm on the standard
simplex �s by

Pm1 ;:::; ms(x1; : : : ; xs) = @
m1
x1 · · · @msxs

[
xm11
m1!

· · · x
ms
s

ms!
(x1 + · · ·+ xs − 1)m1+···+ms

]
;

or more compactly

Pm(x) = Dm
(
xm

m!
(|x| − 1)|m|

)
: (A.1)

Clearly Pm is a polynomial of degree |m|. Indeed, by the multinomial expansion we obtain the
explicit representation

Pm(x) =
∑

|i|6|m|
(−1)|m|−|i|

(
m + i
i

)[ |m|
i

]
xi ; (A.2)

where [ |m|i ] = |m|!=(i!(|m| − |i|!)) is a multinomial coe�cient and(
m + i
i

)
=
(
m1 + i1
i1

)(
m2 + i2
i2

)
· · ·
(
ms + is
is

)
;

is a product of binomial coe�cients. Consider next orthogonality properties of the Legendre poly-
nomials with respect to the inner product

〈f; g〉=
∫
�s
f(x)g(x) dx:

Repeated integration by parts shows that for any f ∈ C(�s)
〈Pm; f〉= (−1)|m|

〈
xm

m!
(|x| − 1)|m|; Dmf

〉
(A.3)
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and it follows that Pm is orthogonal to all polynomials of degree ¡ |m|
〈Pm; f〉= 0 for all f ∈ Pk(R s); |k|¡ |m|: (A.4)

In particular, we have 〈Pm; Pk〉=0 for |k| 6= |m|, while (A.3) and (A.2) show that 〈Pm; Pk〉 6= 0 for
|k|= |m|. Thus (Pm) is a sequence of almost orthogonal polynomials.
The degree |m| BB-form of Pm is quite simple. Indeed, using Leibniz’ rule in each variable

separately we have

Pm(x) = |m|!Dm
(
xm

m!
(|x| − 1)|m|

|m|!

)
= |m|!

∑
k6m

(
m
k

)
xk

k!
(|x| − 1)|m|−|k|

(|m| − |k|)! :

It follows that for any m¿0 the BB-form of the Legendre polynomial is given by

Pm(x) =
∑
j6m

(−1)|m|−| j|
(
m
j

)
B|m|
j (x): (A.5)

The triangular nature of this relation means that it can be inverted so that we can express the
Bernstein basis in terms of the Legendre polynomials, showing that the Legendre polynomials are
linearly independent.
The Legendre polynomials are eigenpolynomials for the Gram matrix.

Proposition 10. For the Gram matrix G given by (3:2) we have

Gcm = �mcm; |m|6n; (A.6)

where �m is given by (3:3) and cm = (cm; j) is the degree n BB-coe�cients of the Legendre polyno-
mials Pm given by (A:1); i.e.;

Pm(x) =
∑
| j|6n

cm; jBnj (x): (A.7)

Proof. Let Qm be the eigenpolynomials of degree |m| constructed in the proof of Theorem 2. Since
G is symmetric, it follows that

〈Qm; Qk〉= dTmGdk = �kdTmdk = �mdTmdk;
and since the eigenvalues �m and �k are distinct for |k| 6= |m| we see that (Qm) is a sequence of
almost orthogonal polynomials in the sense that

〈Qm; Qk〉= 0; for |m| 6= |k|: (A.8)

Since the (Qm) are linearly independent we can write each Pm in the form

Pm(x) =
∑

|k|6|m|
bm;kQk(x) (A.9)

and observe by (A.4) and (A.8) that for each �¡ |m|
0 = 〈Pm; Qr〉=

∑
|k|=�

bm;k〈Qk; Qr〉; for |r|= �:
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By taking suitable linear combinations of the Qr; |r|= |k| we see that this implies that
bm;k = 0 for |k|¡ |m|:

It follows that

Pm(x) =
∑

|k|=|m|
bm;kQk(x)

for some numbers (bm;k). But then the BB-coe�cients of Pm are a linear combination of the
BB-coe�cients of Qk for |k| = |m|, and these BB-coe�cients are eigenvectors of G correspond-
ing to the same eigenvalue. It follows that the degree n BB-coe�cient cm of Pm is an eigenvector
of G corresponding to �m.
The linear independence of these eigenvectors follows since both the Legendre polynomials and

the Bernstein basis polynomials are bases for the space of polynomials in question.

To summarize: We have shown that for each m with |m|= n the Legendre polynomial Pm given
by (A.1) is an extremal polynomial for the second sup in (3.1). This case is represented by the
smallest eigenvalue of G and the corresponding ( n+s−1s−1 ) eigenvectors cm are given by (3.15) which
agrees with |m|= n in (A.7) in view of (A.5). The remaining eigenvectors for |m|¡n in (A.7) can
be determined by degree raising in (A.5).
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