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The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has created the need for better therapeutic
options. In this study, five natural xanthones were extracted and purified from the fruit hull of Garcinia
mangostana and their antimicrobial properties were investigated. α-Mangostin was identified as the most potent
among them against Gram-positive pathogens (MIC=0.78–1.56 μg/mL) which included two MRSA isolates. α‐
Mangostin also exhibited rapid in vitro bactericidal activity (3-log reduction within 5 min). In a multistep (20 pas-
sage) resistance selection studyusing aMRSA isolated from the eye, no resistance againstα-mangostin in the strains
tested was observed. Biophysical studies using fluorescence probes for membrane potential and permeability,
calcein encapsulated large unilamellar vesicles and scanning electronmicroscopy showed thatα‐mangostin rapidly
disrupted the integrity of the cytoplasmic membrane leading to loss of intracellular components in a
concentration-dependent manner. Molecular dynamic simulations revealed that isoprenyl groups were important
to reduce the free energy for the burial of the hydrophobic phenyl ring of α-mangostin into the lipid bilayer of
themembrane resulting inmembrane breakdown and increased permeability. Thus, we suggest that direct interac-
tions of α-mangostin with the bacterial membrane are responsible for the rapid concentration-dependent mem-
brane disruption and bactericidal action.

© 2012 Elsevier B.V. All rights reserved.
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Fig. 1. Five natural xanthones extracted from hull of G. mangostana. Chemical structure
of five natural xanthones extracted from hull of G. mangostana.
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1. Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) is an emergent
form of S. aureus, which confers resistance to β-lactam antibiotics [1].
MRSA is a predominant source of infections associated with the blood,
skin and soft-tissue presenting in US emergency rooms [2,3]. The re-
duced antibiotic susceptibility of MRSA against the non-β-lactam anti-
microbial agents such as mupirocin, clindamycin, vancomycin and
daptomycin has also been reported [4–6]. Resistance to antibiotics is
widely associated with the failure of treatment, longer hospital stays
and greater health care costs [7]. These very current issues have created
an urgent need for improved antimicrobial agents againstmultidrug re-
sistant pathogens such as MRSA [8].

Mangosteen (Garcinia mangostana) is a tropical evergreen fruit tree
from South East Asia, India and Sri Lanka with a long history of use as a
source for traditional medicine for the treatment of chronic diarrhea,
infected wounds, skin infections and dysentery [9]. The major bioactive
secondary metabolites of mangosteen are xanthone derivatives. These
xanthone derivatives have displayed potent pharmacological activities
including antibacterial, antifungal, antioxidant, anti-tumoral, anti-
inflammatory and anti-allergy properties [9,10]. α-Mangostin, the major
extracted derivative has demonstrated active antimicrobial activities
against Gram-positive bacteria including S. aureus and MRSA [11–16]. In
addition, Kaomongkolgit et al. have reported thatα-mangostin hadno cy-
totoxic effects on human gingival fibroblasts up to 4000 μg/mL [17].

Antibacterial action ofα-mangostinwasfirst studied byNguyen and
Marquis. They reported that the antimicrobial action of α-mangostin
was from targeting cytoplasmic enzymes [18]. However, the action of
enzyme targeted antimicrobials would be expected to require consider-
able time [19], which seems in contrast to the reported rapid bactericid-
al action of α-mangostin [18]. The rapid antimicrobial action is
suggestive of the antimicrobial action of the natural antimicrobial pep-
tides or peptidomimetics which act on bacterial membrane [20–22].
Therefore, we hypothesized that the bacterial membrane is the primary
target ofα-mangostin and the results of our studies provide support for
this suggestion. The aim of this study was to provide a detailed analysis
of the antibacterial action of α-mangostin against Gram-positive bacte-
ria using a combination of biophysical, biochemical and computational
studies. Understanding the antibacterial action of α-mangostin could
provide critical information for rational design ofmore potent xanthone
based antimicrobials.

2. Materials and methods

2.1. Extraction, isolation and characterization

The five xanthones (Fig. 1), 1,5,8-trihydroxy-3-methoxy-2-(3-
methyl-2-butenyl)xanthone (SZ-1), γ-mangostin (SZ-2), garcinone E
(SZ-3), α-mangostin (SZ-4) and mangostenone D (SZ-5), were isolated
and the details of the isolation and the structure of these compounds
have been reported previously [23,24]. Briefly, the oven-dried andmilled
fruit hull (5 kg) ofG.mangostana (imported fromThailand)was extracted
with 95% ethanol (3×8 L) at room temperature, for 3 days each. After
evaporation of the solvent in vacuum, the pooled crude ethanolic extract
was suspended in H2O (2 L) which appeared as brown syrup, which was
then partitionedwith EtOAc (3×2 L) to obtain an EtOAc-soluble fraction.
The EtOAc‐soluble extract was subjected to chromatography over a silica
gel column eluted with a mixture of petroleum ether (PE) and acetone
with increasing polarity (ratio of PE/acetone from 10:1 to 1:1). SZ-4 was
obtained as a yellow solid from the solution (ratio of petroleum ether/
acetone 8:1) and recrystallized with PE–acetone. SZ-2 was obtained as a
yellow powder from the solution (petroleum ether (PE)–acetone 5:1)
followed by further purification over a Sephadex LH-20 column using
methanol as solvent. SZ-1, SZ-3 and SZ-5 were obtained from the PE/
acetone (6:1), PE/acetone (7:1) and PE/acetone (7:2) eluting fractions, re-
spectively, by repeated column chromatography over silica gel eluted
with gradient solvent mixture (PE–acetone) with increasing polarity
(%Acetone from 0 to 100%), followed by further purification using
Sephadex LH-20 eluted with methanol. The structures of SZ-1, 2, 3,
4 and 5 were readily assigned to 1,5,8-trihydroxy-3-methoxy-2-
(3-methyl-2-butenyl)xanthone [25], γ-mangostin [26], garcinone E [27],
α-mangostin [28] and mangostenone D [29], respectively by comparison
of their NMR spectral datawith those reported in the literature. Purities of
SZ-1 to SZ-5 were 98.7%, 99.2%, 98.8% and 99.8% and 99.0% respectively,
determined by HPLC.

2.2. Antimicrobials and chemicals

α-Mangostin was extracted and purified as described above.
Daptomycin was purchased from Tocris Bioscience, United Kingdom.
Vancomycin hydrochloride was the 2nd ASEAN Reference Standard
(ARS) and obtained from the ARS Singapore representative. All phospho-
lipids were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL).
Phospholipids used in this study were 1,2-di-(9Z-octadecenoyl)-sn-
glycero-3-phosphoethanolamine (DOPE) and 1,2-dioleoyl-sn-glycero-3-
phospho-(1′-rac-glycerol) (sodium salt) (DOPG). The stock solution of
vancomycin was prepared by dissolving and diluting in purified water
to make up to 1000 μg/ml and stored frozen at−24 °C. All chemicals
used were purchased from Sigma Aldrich unless otherwise stated.

2.3. Bacterial strains and growth condition

The bacterial strains used in these studies were S. aureus ATCC29213,
Bacillus cereus ATCC11778, Enterococcus faecalis ATCC29212, and three
MRSA clinical isolates: DM21455 (from eye), DM09808R (from eye),
and DB57964/04 (from blood). All strains used were not more than
four passages removed from the original master stock obtained from
the American Type Culture Collection or from our clinical isolate collec-
tion. The direct colony suspension method described by the Clinical
and Laboratory Standards Institute (CLSI) was used for inoculum prepa-
ration. Inoculum suspensions weremade from isolated colonies selected
from an 18- to 20-h/35 °C Tryptic Soy Agar (TSA) plates. Bacterial strains
used in antibacterial action studies were suspended in HEPES buffer
(5 mM HEPES, pH 7).

2.4. Susceptibility testing

The stock solution of α-mangostin used in the studies was first
dissolved in N,N-dimethylformamide (DMF) and then diluted in puri-
fied water to make up to 1000 μg/ml and stored frozen at −20 °C.
MIC determinations were performed using the broth macro-dilution
method as described by the CLSI. Serial twofold dilutions of
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α-mangostin, daptomycin or vancomycin solutions were prepared in
Mueller Hinton Broth (MHB), cation adjusted (MHB) in test tubes.
The inoculum was prepared by making a direct MHB suspension of
isolated colonies selected from the 18–20 h Tryptic Soy Agar (TSA)
plate. The concentration of the inoculum suspension was adjusted
with MHB. After inoculation, each tube contained approximately
5×105 Colony Forming Units (CFU)/mL. The tubes were then incubat-
ed at 35 °C for 22 h. The organisms used in the MIC studies are listed
in Table 1.

2.5. Time-kill kinetics

The inoculum was prepared by making a direct suspension of iso-
lated colonies selected from the 18–20 h Tryptic Soy Agar (TSA) plate
in 0.31 mM phosphate buffer (0.31 mM monobasic potassium; pH
7.2). The concentration of the inoculum suspension was adjusted
with the buffer. After inoculation, each tube with the desired concen-
tration of α-mangostin or vancomycin solution also contained bacte-
ria at 105 to 106 CFU/mL. The tubes were then incubated at 35 °C and
samples were withdrawn at the specified time intervals for viable
plate counts. Serial 10-fold dilutions of the sample were made in
the diluent, D/E Neutralisation Broth. A 20 μL aliquot of each dilution
was plated out on TSA plates using the surface-spread plate method.
The plates were incubated at 35 °C for 48 to 72 h. The possibility of
carry-over of the antimicrobial agents onto the plates was examined
using the test organism as control in the serial dilutions in the pres-
ence and absence of the antimicrobial agents. The detection limit of
reliable viable plate count was found to be 10 CFU/ml for α-
mangostin and 100 CFU/ml for vancomycin.

2.6. Multipassage resistance selection studies

Membrane targeted activity of α-mangostin may be expected to
avoid the development of resistance. Multipassage resistance selec-
tion studies were carried out to test this idea using α-mangostin
with E. faecalis (ATCC29212) and MRSA (DM21455). The develop-
ment of resistance of these organisms against α-mangostin was mea-
sured based on the progressive increase in the MIC of the bacteria
over time (passages). After 20 to 22 h of incubation, bacterial growth
was checked and bacteria that grew in the highest concentration
were re-passaged in a fresh dilution series of the antimicrobial agents.
The process was repeated every 20 to 22 h for up to 20 passages and
the MICs were determined at every passage as specified earlier. Resis-
tance was defined as an increase in original MIC of more than 4 fold
[30].

2.7. Cytoplasmic membrane depolarization assay

The effect ofα-mangostin on themembrane potential of clinical iso-
late S. aureus (DM4001) was probed by membrane sensitive DiSC3-5
Table 1
In vitro antimicrobial activities ofmangosteen extracts (SZ-1–SZ-5) against Gram-positive
bacteria.

Bacteria MIC (μg/mL)

SZ-1 SZ-2 SZ-3 SZ-4 SZ-5 Vana

S. aureus DM21455b >12.5 3.125 3.125 1.56 >12.5 0.78
S. aureus DM09808Rb >12.5 12.5 3.125 1.56 >12.5 1.56
B. cereus ATCC11778 >12.5 1.56 3.125 1.56 >12.5 1.56
MRSA DB57964/04 NDc 1.56 ND 1.56 ND ND
S. aureus ATCC29213 ND 1.56 ND 0.78 ND 1.56

a Vancomycin.
b Clinical isolate strains.
c Not determine.
fluorescent assay based on the modified method of Wu and Hancock
[31]. Briefly, S. aureus was harvested at an early exponential growth
phase and washed with buffer solution (5 mM HEPES at pH 7) and
resuspended in the same buffer until an optical density of 0.09 at
620 nm [OD620] was obtained. The cell suspension was incubated
with 0.4 μM DiSC3-5 (Invitrogen) and 0.1 M potassium chloride (KCl)
solution at 37 °C until DiSC3-5 uptake was maximal (when the reduc-
tion of fluorescence intensity was stable due to self-quenching of
DiSC3-5 in the untreated bacteria). The desired concentration of
α-mangostinwas added into a stirred cuvette. The fluorescence reading
wasmonitored for 500 swith a Photon Technology InternationalModel
814 fluorescence spectrophotometer, at an excitation wavelength of
660 nm and an emission wavelength of 675 nm. DMF alone had no ef-
fect on depolarization. Experiments were repeated at least three times
and were reproducible. Data from one experiment is presented.

2.8. EtBr uptake assay

Cytoplasmic membrane disruption was determined by using
ethidium bromide (EtBr). EtBr is a membrane impermeable dye and
is a DNA intercalating agent. When the integrity of inner membrane
was disrupted, EtBr may bind to DNA in the cell and fluoresces
more strongly when exposed to UV light. S. aureus with OD620=
0.09 was prepared as for the cytoplasmic membrane depolarization
assay as described above. The cell suspension was incubated with
17 nM EtBr at 37 °C until the fluorescence reading was stable. Then,
the desired concentration of an antimicrobial was added and the fluo-
rescence reading was monitored for 500 s at an excitation wave-
length of 360 nm and an emission wavelength of 616 nm using
Photon Technology International Model 814 fluorescence spectro-
photometer. DMF alone had no effect on EtBr fluorescence and mem-
brane permeability. Triton X-100 (40%) was used to maximize the
permeabilization effect. Experiments were repeated at least three
times and yielded reproducible results. Results from one experiment
are presented.

2.9. SYTOX green assay

To further investigate the effect of α-mangostin on the bacterial
membrane, another membrane impermeable dye, SYTOX green
(Invitrogen) was used. Similar to the EtBr, SYTOX green fluoresces
strongly when it interacts with nucleic acids. S. aureus with OD620=
0.2 was prepared and suspended in 40 mM PBS (100 mM NaCl, pH
7) as for the EtBr uptake assay described above. The cell suspension
was incubated with 3 μM of SYTOX green for 5 min. Then, the desired
concentration of α-mangostin was added and the fluorescence was
monitored for 800 s with at an excitation wavelength of 504 nm
and an emission wavelength of 523 nm. DMF alone had no effect on
SYTOX Green fluorescence. Melittin (10 μg/mL; cell lytic factor;
EZBiolab, USA) was used as a positive control. Experiments were re-
peated at least three times and were reproducible. Data from one ex-
periment is presented.

2.10. Calcein leakage experiment

Leakage from large unilamellar vesicles (LUV) was monitored by
the release of calcein encapsulated in the LUVs as described [32,33].
In brief, the lipids (DOPE/DOPG=75/25) were dissolved in metha-
nol/chloroform (1:2, by volume). The solvent was dried gently using
a constant stream of nitrogen gas. Then, the lipid film was placed
under vacuum for at least 2 h. The dried lipid film was hydrated
with calcein solution (80 mM calcein, 50 mM HEPES, 100 mM NaCl,
0.3 mM EDTA, pH 7.4) to a final lipid concentration of 30 mM. The hy-
drated vesicles were frozen in liquid nitrogen and warmed in water
bath for 7 cycles. Homogeneous LUVs with 100 nm were then pre-
pared by the extrusion method using a mini-extruder (Avanti Polar
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Lipid Inc.), as described in the Avanti Polar Lipid Inc. website [34]. The
extrusion was done for 10 cycles using a polycarbonate membrane
(Whatman, pore size 100 nm). Calcein encapsulated vesicles were
separated from free calcein with gel filtration column using Sephadex
G-50. The concentration of eluted liposomes was determined using a
total phosphorus determination assay as described by Avanti Polar
Lipids, Inc. website [35]. Calcein leakage was monitored using a Pho-
ton Technology International Model 814 fluorescence spectropho-
tometer, at an excitation wavelength of 490 nm and an emission
wavelength of 520 nm. An aliquot of the LUV suspension was added
into a stirred cuvette at various concentrations of an α-mangostin so-
lution in DMF to obtain the desired lipid to α-mangostin ratios of 2, 4
and 8. The final concentration of lipid was 50 μM and the final per-
centage of DMF is b0.2%. 0.1% Triton X-100 was added to determine
the intensity at complete leakage. Control experiment using 0.2% of
DMF demonstrated that leakage of calcein from the LUVs was not ob-
served. Percentage of leakage (%L) was calculated with %L=[(It− I0) /
(I∞− I0)]∗100], where I0 and It are intensities before and after addi-
tion of α-mangostin respectively and I∞ is intensity after addition of
0.1% triton X-100.

2.11. Visualization of bacterial membrane permeation

Clinical isolate S. aureus DM4001 was suspended in HEPES buffer
(5 mM) until the OD620 of 0.4 was obtained. The suspension was in-
cubated with 1.56 μg/mL (1× MIC) and 6.25 μg/mL (4× MIC) respec-
tively for 20 min with 3 μM of SYTOX green. Then, the S. aureus were
immobilized on poly(L-lysine)-coated glass slides. The slides were ex-
amined by fluorescence microscope (ZEISS Model Axioplan 2IE) with
an excitation wavelength of 485 nm. Bacterial treatment with vanco-
mycin (6.25 μg/mL) was used as control.

2.12. Scanning electron microscopy (SEM)

For the electron microscopy analysis, S. aureus DM 4001 was grown
on TSA Plates overnight and a suspension of 108 CFU/ml was prepared
in United States Pharmacopeia Buffer (USP Phosphate buffer). The sus-
pension was centrifuged at 3000 rpm for 20 min and the pellet was
washed with the same buffer. An aliquot of the bacterial suspension
was incubated with 10 μg/ml of α-mangostin at 35 °C for 30 min.
After incubation, the bacterial suspension was again centrifuged,
washed and prefixed in 0.5 ml of a mixed aldehyde fixative (2% glutar-
aldehyde and 2% paraformaldehyde in 0.1 M sodium cacodylate buffer,
pH 7.2) for 24 h. Then the suspensionwaswashed once again in sodium
cacodylate buffer (Electron Microscopy Sciences, Washington, USA)
and subsequently mounted on poly-L-Lysine coated cover-slips and
post-fixed in 1% osmium tetroxide (Electron Microscopy Sciences). Fol-
lowing dehydration in a graded series of ethanol, the samples were
critical-point-dried and sputter coated with 10 nm of gold. All samples
were viewed and photographed on a Philips XL30-FEG-SEM (FEI Elec-
tron Optics BV, Eindoven, The Netherlands) at an accelerating voltage
of 10 kV at the Electron Microscopy Unit, National University of Singa-
pore. Bacteria incubated in USP phosphate buffer without the addition
of α-mangostin was used as a control and processed in the same man-
ner and photographed.

2.13. Hemolysis

The hemolytic activity of α-mangostin was determined by the
amount of hemoglobin that was released from rabbit erythrocytes.
Fresh rabbit red blood cells (RBCs) were isolated from the whole
blood of New Zealand white rabbits, which was approved by the
IACUC of SingHealth and were according to the standards of the Associ-
ation for Research in Vision and Ophthalmology. The blood was
centrifuged at 3000 rpm for 10 min. Then, RBCs were further washed
with sterile PBS for 2 times and diluted to 8% (v/v) stock solution in
sterile PBS. α-Mangostin was dissolved in DMSO and mixed with
RBCs to prepare the desired concentration of α-mangostin in RBCs
(final v/v of RBCs=4%). Final v/v of DMSO in the RBC suspension was
at 0.5%, which had negligible effect on RBCs. The RBC suspensions
were then added to 96-well plates and incubated at 37 °C for 60 min.
After incubation, the RBC suspensions were centrifuged at 3000 rpm
for 3 min. The supernatant (100 μL) was transferred into a clean
96-well plate and the amount of hemoglobin liberated was determined
by measuring the absorbance (abs) at 576 nmwith TECAN infinite 200
microplate reader. 2% Triton X-100 and PBS were used as positive and
negative control, respectively. Percent of hemolysis was calculated
using equation as below:

% Hemolysis ¼ Mixtureabs576 nm−Negativecontrolabs576 nm

Positivecontrolabs576 nm−Negativecontrolabs576 nm
� 100:

2.14. Molecular dynamic (MD) simulations

Molecular models of the interactions of α-mangostin with model
bacterialmembranes in the presence of solvent water were constructed
in silico and studied using molecular dynamics (MD) simulations. Al-
though the lipid composition of the inner membrane of different bacte-
ria varies, the major components in the bacterial inner membrane are
POPE (1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine) and
POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) [36]. Thus
we used 128 mixed lipid molecules with a ratio of POPG/POPE=3/1
to represent and capture the general model of bacterial membrane
[37]. Both α-mangostin and lipid molecules were modeled using the
Gromos53a6 force field [38] and solvent water molecules were
modeled using the simple point charge model (SPC) [39]. The parame-
ters of α-mangostin were generated using the Automated force field
Topology Builder (ATB) [40]. Two simulations were carried out, using
1 and 9α-mangostinmolecules, corresponding to lowand high concen-
trations of α-mangostin. In both simulations, α-mangostin molecules
with random orientations were put close to the model bacterial mem-
brane. Then the system was solvated with about 7200 water molecules
and neutralized with sodium ions. Before the production stage of the
MD simulation, the system was subjected to 500 steps of energy mini-
mization using the steep descent algorithm, followed by 10 ps NVT sim-
ulation. Then a 250 ns MD simulation was performed for both cases,
corresponding to different concentrations of α-mangostin. To enhance
sampling of the conformations of α-mongostin at a certain distance
from the bilayer center, a series of distance-restrained simulations
was carried out by fixing the distance between one α-mangostin and
the bilayer center, using the pull module of gromacs [41]. During all
MD simulations, a cut-off distance of 1.2 nm was used for both the LJ
and real-space electrostatic interactions, and the particle-mesh Ewald
algorithmwas employed to calculate the long-range electrostatic inter-
actions in reciprocal space. The Nose–Hoover method was used to
maintain the target temperature at 310 K and Parrinello–Rahman
method with semi-isotropic coupling was used for maintaining the
pressure at 1 atm in the NPT ensemble.

3. Results

3.1. Antimicrobial activity of xanthones extracted from mangosteen

In vitro antimicrobial activities of the five natural xanthones isolat-
ed from the hull of mangosteen fruit (Table 1) demonstrated that
α-mangostin was the most potent of the plant extracts after screen-
ing against Gram-positive bacteria, as MIC values were 0.78–
1.56 μg/mL. In contrast, gamma-mangostin (SZ-2) and garcinone E
(SZ-3) had higher MIC values (MICs 3.125–12.5 μg/mL), while mang-
ostenone D (SZ-5) and 1,5,8-trihydroxy-3-methoxy-2-(3-methyl-2-



Fig. 2. Time-kill kinetics of MRSA and B. cereus using α-mangostin and vancomycin as
comparator. (2A) Concentration-dependent bactericidal killing curve of MRSA (09808R)
using α-mangostin. Effect of (2B) α-mangostin and (2C) vancomycin on the survival of
MRSA and B. cereus. MIC values (μg/mL): α-mangostin=1.56; vancomycin=1.56. Limit
of detection: log10 CFU/mL=1 for α-mangostin and log10 CFU/mL=2 for vancomycin.
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butenyl)xanthone (SZ-1) were not active even at 12.5 μg/mL. MIC
levels for α-mangostin (SZ-4) were comparable to vancomycin
for B. cereus, S. aureus as well as several isolates of MRSA (MIC=
1.56 μg/mL for all the strains tested). MIC values for vancomycin
were within CLSI published ranges [42]. Comparing the structures
of SZ-1 to SZ-5, the presence of an isoprenyl group at the
carbon-8 position may play an important role in conferring antimi-
crobial activity since molecules that lack this moiety (SZ-1) or
cyclized to the adjacent carbon (SZ-5) displayed poor antimicrobial
properties.

3.2. Time killing assay

To understand the nature of the action against Gram-positive bacteria,
time killing analyses were carried out using ATCC strains and clinical iso-
lates of S. aureus.α-Mangostin displayed rapid, concentration-dependent
killing of MRSA (09808R), at concentrations of 2× MIC or 4× MIC levels
achieving 3-log and 5-log reductions respectively in viable counts within
5 min (Fig. 2A). At concentrations below 1×MIC, less than a 3-log reduc-
tion of viable counts was attained. Similar findings were observed when
another MRSA (DM21455) and B. cereus (ATCC11778) were tested and
rapid killing of over >3 log CFU/mL was found at the concentration of
3 μg/mL in 5 min (Fig. 2B). Vancomycin had notably poorer bactericidal
activity against MRSA (DM21455) and B. cereus (ATCC11778) at 2× MIC
or 8× MIC. There was no significant (≥3-log) reduction in viable cells
even after 300 min of incubation with vancomycin at 8× MIC (Fig. 2C).
Vancomycin is bactericidal against S. aureus and kills in a time-
dependent manner [43]. A previous report has shown that 16–20 h is
needed to achieve a 3-log reduction of the bacterial inoculum [44]. By
comparison α-mangostin has rapid bactericidal action.

3.3. Multistep resistance selection

Antibiotic resistance is defined asmore than a 4-fold increase in orig-
inal MIC [30]. To examine this issue, a laboratory simulation of resis-
tance using E. faecalis ATCC29212 and MRSA DM21455 was carried out
and these organisms were individually incubated with α-mangostin.
Resistance was not seen to develop for E. faecaliswhich had less than a
>4-fold MIC increase for α-mangostin (MIC at passage 0, 0.78 μg/mL;
MIC at passage 20, 1.56 μg/mL). 2-fold increase in MIC was observed
for MRSA DM21455 from passage 10–19 (Fig. 3). However, the 2-fold
increase was not stable throughout the experiment and was within
the error margin for MIC testing. Overall, there was no evidence for
the emergence of mutational resistance of the two tested strains of E.
faecalis and MRSA against α-mangostin.

3.4. α-Mangostin depolarizes the bacterial membrane

α-Mangostin showed rapid killing action, which is similar to the nat-
ural antimicrobial peptides [45]. From this observation, a membrane
targeted antibacterial action is expected. DiSC3-5 is a cytoplasmic mem-
brane potential sensitive dye. Partitioning of DiSC3-5 onto the surface of a
polarized cell self quenches its fluorescence. Depolarization prevents dye
partitioning on the cell surface and releases the dye into themediawith a
concomitant increase in fluorescence intensity. Thus, the increase in
fluorescence intensity of DiSC3-5 would be proportional to the degree
of membrane potential reduction [31]. Addition of α-mangostin to the
clinical isolate S. aureus DM4001 caused a rapid, concentration-
dependent increase in fluorescence intensity of DiSC3-5, indicating loss
of membrane potential (Fig. 4). Fluorescence signals from bacteria ex-
posed to higher concentrations of α-mangostin at 2×, 4× and 8× MIC
concentrations showed a sharper, immediate increase. The extent of de-
polarization at 8×MICwas very similar to 4×MIC asα-mangostin at 4×
MIC was able to completely dissipate the membrane potential. Cells ex-
posed to 1× MIC lost membrane potential gradually. In contrast, no
depolarization was observed at α-mangostin concentrations lower
than the MIC.
3.5. Ethidium bromide (EtBr) uptake assay

The membrane interaction study was continued using EtBr, a
membrane impermeable dye which is generally excluded from bacte-
ria with intact membranes. The dye intercalates into double-stranded
nucleic acids with enhanced fluorescence in the visible region. Mem-
brane disruption by α-mangostin allowed the influx of the dye to
complex with intracellular nucleic acids with increased fluorescence
intensity. Addition of α-mangostin at concentrations of 2× MIC, 4×
MIC and 8× MIC to the clinical strain of S. aureus resulted in a strong
increase in the emission intensity of EtBr at 616 nm (Fig. 5A). Addition
ofα-mangostin at concentrations lower thanMIC did not display signif-
icant enhancement of EtBr fluorescence. Controls without antimicrobial
treatment, membrane-targeting antibiotics such as daptomycin and
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Fig. 5. α-Mangostin as a cytoplasmic membrane disruption agent. (A) Effects of
α-mangostin with different concentrations on the fluorescence intensity of EtBr incu-
bated with clinical isolate S. aureus DM4001 at 0.25×, 0.5×, 1×, 2×, 4× and 8× MICs.
(B) Effects of different antibiotics on the EtBr fluorescence intensity: red line, 1 μL
DMF; black line, α-mangostin, 8× MIC; blue line, daptomycin, 12.5 μg/mL; light blue
line, vancomycin, 8× MIC; and purple line, 15 μL triton X-100. MIC values (μg/mL):
α-mangostin=1.56; vancomycin=1.56. cps: count per second.

Fig. 3.Multipassage resistance selection studies of α-mangostin. Plot of MIC (μg/mL) of
α-mangostin against E. faecalis ATCC29212 and MRSA DM21455 during 20 serial pas-
sages. No 4-fold increase of MIC was observed. However, a 2-fold increase of MIC
value for MRSA was observed from passage 10–19.
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vancomycin did not result in an increased intensity of EtBr fluorescence
(Fig. 5B). As expected, addition of Triton X-100 (40%) as a positive con-
trol (Bio-Rad laboratories) rapidly permeabilized the bacterial mem-
brane allowing entrance of EtBr, which complexed with nucleic acids
and fluoresced.

3.6. SYTOX green assay

We further investigated the membrane disruption action of α-
mangostin using SYTOX green dye. Addition ofα-mangostin to the clin-
ical isolate S. aureus DM4001 caused concentration-dependent increase
in fluorescence intensity of SYTOX green indicating that the membrane
was permeabilized (Fig. 6). Addition of α-mangostin at concentrations
of 2× MIC and 4× MIC resulted in a strong increase in the emission in-
tensity of SYTOX green fluorescence emission. Cells exposed to 0.5×
and 1×MIC increased the SYTOX green fluorescence emission gradual-
ly. In contrast, no increase of fluorescence emission was observed at
α-mangostin concentrations at 0.25× MIC (Fig. 6). Melittin is a princi-
pal peptide of bee venom with strong membrane lytic property [46].
Addition of 10 μg/mL ofmelittin caused a rapid increase in fluorescence
intensity of SYTOX green, indicating that the cells were permeabilized
rapidly. The result demonstrated that α-mangostin has similar mem-
brane permeabilization effect to melittin. Therefore, the SYTOX green
assay further shows that α-mangostin is membrane targeting.

3.7. α-Mangostin induced leakage from calcein-loaded LUVs

We constructed artificial bacterial membrane containing 75/25
DOPE/DOPG lipids to further investigate the membrane targeting prop-
erties of α-mangostin. Dye leakage from the LUVs showed that
α-mangostin could induce ~37% leakage at a lipid-to-α-mangostin
Fig. 4. α-Mangostin induced membrane depolarization of Gram-positive bacteria. (3A)
Effects of α-mangostin on the fluorescence intensity of DiSC3-5 in the presence of clin-
ical isolate S. aureus DM4001. α-Mangostin was added when the intensity of DiSC3-5 is
stable at 0.25× MIC–8× MIC. MIC values (μg/mL): α-mangostin=1.56. cps. count per
second.
ratio of 2. The lytic activity at lipid-to-α-mangostin ratio of 4 was
~28% and ~16% at the ratio of 8 (Fig. 7). The results showed that
α-mangostin could interact with artificial bacterial membranes and in-
duced vesicle lysis.
Fig. 6. SYTOX green assay further shows that α-mangostin is membrane active agent.
Effects ofα-mangostin at 0.25×, 0.5×, 1×, 2× and 4×MICs to the clinical isolate S. aureus
DM4001 incubated with SYTOX green. Dark blue line: Melittin (10 μg/mL). Addition of
DMF (green line) and 0.25× MIC (purple line) had no effect on the SYTOX green fluores-
cence emission.
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Fig. 7. α-Mangostin induced leakage of artificial bacterial membrane. Percent released
of calcein from 75/25 DOPE/DOPG LUVs upon addition of lipid to α-mangostin ratios of
4 and 8.
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3.8. Visualization of permeation of bacterial membranes

The cationic dye SYTOX green (Invitrogen) is amembrane imperme-
able dye. When the bacterial membrane is disrupted, SYTOX green
levels will increase in the cytoplasm, resulting in bound fluorophore
to intracellular nucleic acids, which can be visualized using fluorescence
microscopy. Fig. 8 shows that when the clinical isolate, DM4001 of
S. aureus was exposed to 3.125 μg/mL (2× MIC) and 6.25 μg/mL (4×
MIC) of α-mangostin, in the presence of SYTOX green, a marked fluo-
rescence signal within the bacteria could be observed. The results
suggested thatα-mangostin disrupted the bacterial membrane rapidly.
Untreated controls or bacteria treated with vancomycin at 6.25 μg/mL
did not show similar levels of fluorescence.
Fig. 8. α-Mangostin induced influx of SYTOX green into S. aureus. Cells fluoresced in green w
consequent of membrane disruption. Control and vancomycin (6.25 μg/mL) did not show
only.
3.9. Visualization of cell damage by using scanning electron microscopy

Morphological changes were visualized with scanning electron
microscope. S. aureus (DM4001) treated with α-mangostin were com-
pared with untreated controls. Untreated cells had intact, smooth and
spherical morphology (Fig. 9A and C). In contrast, bacteria exposed to
10 μg/mL of α-mangostin showed significant changes. Numerous
lysed cells accompanied by cellular debris and release of intracellular
components were observed. In addition, some cells had burst with
deep craters on the cell walls compatible with the idea of a membrane
targeted action mechanism (Fig. 9B and D).

3.10. Selectivity study using rabbit red blood cells

To investigate the effect of α-mangostin on the mammalian
membrane, we determined the lytic effect of α-mangostin using
rabbit RBCs. Fig. 10 shows that at MIC and bactericidal concentra-
tions (2× and 4× MIC), the % hemolyses were 7.7+/−2.4%,
8.1+/−1.9% and 10.5+/−4.8% respectively (Fig. 10). The result
demonstrates that α-mangostin has good selectivity against bacte-
rial membrane at MIC and bactericidal concentrations.

3.11. Molecular dynamic (MD) simulations

To understand membrane disruption on an atomic level, we used
MD simulations to provide information on membrane penetration
pathways of α-mangostin using a model bacterial membrane. We
determined the penetration properties of α-mangostin into POPE/
POPG (75/25) bilayers using all-atom MD simulations. When
α-mangostin was placed close to the bacterial membrane, a rapid ab-
sorption of the molecule into the membrane was observed. At a low
drug/lipid ratio (1/128), the distance between α-mangostin and the
hen treated with α-mangostin at 2× (3.125 μg/mL) and 4× MICs (6.25 μg/mL) as the
significant amount of stained cells. Control without treatment, cells with SYTOX green
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Fig. 9. Scanning electron microscopy showed that α-mangostin induced cell lysis and membrane disruption. Scanning electron microscopy of cell morphology of S. aureus with and
without α-mangostin treatment after 30 min. (A) and (C): control without treatment at magnifications of 5000× and 20,000×, respectively. (B) and (D): S. aureus incubated with
10 μg/mL α-mangostin after 30 min at magnifications of 5000× and 20,000×, respectively. White arrow indicated leakage of intracellular components.
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lipid bilayers (Fig. 11) decreased sharply by 100 ns and reached an
equilibrium distance of 1.5 nm, locating just below the head groups of
the lipid molecules. As the number of α-mangostin molecules was
increased, some α-mangostin molecules penetrated deeper into the
lower leaflet of the modeled bacterial membrane during the course of
the simulation (Fig. 12). This was accompanied by perturbation of the
integrity of the membrane with a large number of defects (filled with
water molecules; Fig. 12) and the increased average lipid area
(Fig. 13). These observations were strong indication of increased mem-
brane perturbation induced by α-mangostin and which tended to cor-
roborate the data from both the biophysical studies as well as the SEM
Fig. 10. Selectivity study using rabbit red blood cells. Hemolysis of α-mangostin at MIC
and bactericidal concentrations were tested. PBS: indicator of no hemolysis; Triton
X-100 (2%): indicator of 100% hemolysis.
results. Fig. 14 shows that the conformation ofα-mangostin at different
distances from the bilayer center. During penetration, the isoprenyl
group first entered into the hydrophobic region of the membrane,
which is driven by hydrophobic interactions. Then, the α-mangostin
was entropically driven and its long axis was orientated in parallel to
the lipid tails.
Fig. 11. α-Mangostin could penetrate into lipid bilayers rapidly. The distance between
α-mangostin and the lipid bilayers decreased in 100 ns indicated α-mangostin could
penetrate into the lipid bilayers rapidly.
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Fig. 12. Penetration of α-mangostin enhanced permeability of bacteria lipid membrane
as a result of hydrophobic interaction. Snapshots of simulation at high α-mangostin
concentration to show the interaction of α-mangostin with bacterial membrane
(POPG/POPE=75/25). At 200 ns, α-mangostin was able to reach lower leaflet of the
lipid bilayers, which is facilitated by the hydrophobic interaction of the α-mangostin
with phospholipid lipid tails. Penetration of α-mangostin also enhanced permeability
of bacteria lipid membrane as water translocation across the membrane could be
observed.

Fig. 14. The conformation of α-mangostin at different distance from the bilayer center.
Isoprenyl group is important to facilitate the α-mangostin to penetrate into the lipid
bilayer.
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4. Discussion

In this study, the antimicrobial properties of five xanthones isolated
from the hull of the mangosteen fruit (Fig. 1) were investigated. Among
these compoundsα-mangostin was found to be the most potent antimi-
crobial with rapid killing and low MIC values. The molecule elicits rapid
in vitro bactericidal activity against Gram-positive bacteria including clin-
ically relevant pathogens like MRSA (Table 1). The rapid bactericidal ac-
tivity (3-log reduction in 5 min) of α-mangostin is reminiscent of
membrane lytic cationic antimicrobial peptides [45,46]. In comparison,
vancomycin did not display a 3-log10 reduction in viable bacteria count
even after 300 min at a very high concentration of 8× MIC (Fig. 2C), a
result in accordance with previous reports showing that 16–20 h was
Fig. 13. Distribution of area per lipid of bacterial membrane in the presence of nine
α-mangostin molecules using the last 200 ns MD simulation trajectories. The first
200 ns simulations were treated as equilibrium stage. The area per lipid was calculated
by dividing the membrane area by the number of lipid molecules in one leaflet.
needed to achieve a 3-log10 reduction in viable bacteria counts [44]. It is
generally accepted that vancomycin inhibits biosynthesis of the bacterial
cell wall by binding to the D-Ala–D-Ala terminus of the growing
peptidoglycan component, which is the substrate for crosslinking of pep-
tidoglycan via the transpeptidation reaction, suggesting an inherently
slower mechanism of action [47,48]. Thus, α-mangostin exhibits more
potent and rapid bactericidal action as an outcome of membrane
targeting compared to vancomycin.

Interestingly, α-mangostin is a small organic molecule with a mo-
lecularweight of 410.46 g/molwhich shares some similar antimicrobial
properties withmeta-phenylene ethynylene (mPE). mPE, a cationic an-
timicrobial peptide, mimics a membrane targeting small oligomer with
rapid bactericidal activity. mPE also shows a low probability toward de-
veloping resistance in Gram-positive bacteria [49,50]. Our data indi-
cates that α-mangostin targets the bacterial membrane, resulting in
rapid bactericidal action and resistance is averted as the membrane
targeting would be effective to reduce the mutational possibility of suf-
ficiently changing the membrane structure to avoid resistance.

Althoughα-mangostin has been studied as an effective antimicrobi-
al since the 1980s, the mechanism of action against Gram-positive bac-
teria remains unclear [11–16]. Using environment-sensitive fluorescent
probes, we demonstrated that the primary target of the molecule is the
cytoplasmic membrane. The DiSC3-5 assay showed that α-mangostin
induced a rapid dissipation of membrane potential at >2×MIC. To fur-
ther investigate α-mangostin as a cytoplasmic membrane disruptive
agent, we also showed that α-mangostin caused considerable leakage
of intracellular components using EtBr uptake assay. In contrast, S. aureus
exposed to daptomycin showed no increase in EtBr fluorescence. The re-
sult is in accordance with a report showing that daptomycin is a
non-lytic membrane active agent [51]. The results were also supported
by the SYTOX green assay and calcein leakage assays, which showed
that α-mangostin could induce rapid bacterial membrane disruption.
These results confirmed that α-mangostin alters the proton motive
force and caused structural damage to the cytoplasmic membrane.
Using SYTOX green with fluorescence microscopy further proved that
α-mangostin could disrupt the cytoplasmicmembrane. Significant cyto-
plasmic staining was observed at 4× MIC, which corresponded to the
rapid 3-log reduction of viable cell count shown in Fig. 2A. Therefore, cy-
toplasmic membrane disruption is shown to be the dominant action
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mechanism to explain the bactericidal properties of α-mangostin. Con-
sistent with these results, SEM images showed that S. aureus exposed
to α-mangostin had severely damaged morphology with irregular
cell wall structure, leakage of intracellular components and agglom-
erated material, which corroborated the biophysical studies using
DiSC3-5, EtBr and SYTOX green. Interestingly, α-mangostin is also
found as a membrane active agent to depolarize mitochondrion
membrane potential in eukaryotic cells [52,53]. In fact, themitochondrion
membrane has similar lipid composition to the bacterial membrane with
cardiolipin and phosphatidylethanolamine components [54]. Therefore, a
similar mechanism of action maybe expected for michondrion and the
bacterialmembrane. Our data supports this statement as the antibacterial
mechanism of α-mangostin disrupts the cell membrane.

The extent ofmembrane damage variedwhen bacteriawere exposed
to different membrane targeting antimicrobials. It has been suggested
that the degree of membrane disruption is a continuous graduation
[55]. The antimicrobial activity of α-mangostin appears to be different
from othermembrane targeted antimicrobials including cationic antimi-
crobial peptides [31], ceragenins [56] and daptomycin [57]. These agents
elicit bactericidal action by forming ion channels or transmembrane
pores without causing considerable damage to the membrane integrity
[51,58]. However, it is important to note that membrane targeted action
without causing lysis does not impede the emergence of drug resistant S.
aureus. For instance, daptomycin resistant S. aureus has been reported
recently [59–61]. Several groups reported genetic mutations in mprF,
yycG, rpoB, and rpoC [62] and cell wall thickening [63] may play major
roles in the emergence of daptomycin resistant S. aureus. In one particu-
lar mutant strain, it has been shown that resistance is mediated by over
production of lysophosphotidyl glycerol. The lysophosphotidyl glycerol
increases the net positive charge on the membrane surface thereby
reducing the affinity of daptomycin and cationic antimicrobial peptides
[64]. Therefore, interaction ofα-mangostin with cytoplasmicmembrane
causing cell lysis via non-electrostatic interactionsmay represent a novel
way of diminishing the probability of developing resistance in suscepti-
ble pathogens. In support of this, an in vitro multipassage resistance
selection study has shown that no observable resistance was developed
against α-mangostin. In contrast, Farrell et al. reported that resistance
of bacteria emerged at the 5th passages against daptomycin.

Molecular dynamic simulations showed that a strong hydrophobic
association of α-mangostin with lipid alkyl chains is the driving force
for the rapid penetration ofα-mangostin. The isoprenyl groups conjugat-
ed to the xanthone scaffold as short lipid tails were found to trigger the
penetration into the hydrophobic region of themembrane. The isoprenyl
groups would act to reduce the free energy barrier of penetration. In
addition, the presence of isoprenyl groups further increased the hydro-
phobicity of α-mangostin, thus enhancing the tendency to partition
into the membrane. All together, the presence of isoprenyl groups pro-
duced more potent antibacterial activity. The results suggest that the
largely hydrophobic α-mangostin prefers to be solvated by the hydro-
phobic portion of the lipids. Lack of one isoprenyl group in SZ-1 and
SZ-5 had poorer antimicrobial properties as the free energy barrier for
bacterial membrane penetration was high. Our results are also in accor-
dance with a recent report showing that the presence of at least two
isoprenyl groups conjugated to the xanthone scaffold is important to
confer potent antimicrobial properties [65]. In addition, during the simu-
lations, we also observed a large number of water defects. Although
some of these defects were transient, there were several occurrences of
defects that evolved into water translocation across the membrane. At
longer time and length scales, the increased permeability may allow
large molecules to permeate through the membrane resulting in the
leakage of intracellular components. It is likely that the strong affinity
of α-mangostin to hydrophobic alkyl chain perturb the integrity and
packing density, thus leading to the leakage of intracellular components.
Although α-mangostin is also known to interact with transmembrane
precursor proteins via hydrogen bonding [66], our biophysical studies
and MD simulations demonstrate that the rapid perturbation of the
bacterial inner membrane integrity is the main driver of cell killing. To
further support the role of hydrophobic interaction of α-mangostin in
perturbing bacterial membrane, we investigated the partition coefficient
(logP) ofα-mangostin using HPLCmethod according to the OECD guide-
lines for the testing of chemicals [67]. The determined logP value of α-
mangostin was 6.4, indicating that α-mangostin has a strong hydropho-
bic nature and suggesting a strong tendency for partitioning into the
bacterial membrane via hydrophobic interaction. Therefore, our data
clearly suggests that hydrophobic interaction is crucial in bacterial killing.

In summary, we have shown that the bacteria inner membrane is
the major target for α-mangostin in Gram-positive pathogens. α-
Mangostin is easily extracted from the hull of a common tropical fruit.
Elevated exposure of α-mangostin led to membrane disruption and
leakage of intracellular contents within 5–10 min. Hydrophobic associ-
ations ofα-mangostinwith lipidmembrane led tomembrane deforma-
tion and diffusion of water molecules across the membrane. Resistance
was not formed in laboratory simulations using E. faecalis and a MRSA.
In addition, α-mangostin is more specific against bacterial membrane
than mammalian membrane at MIC and bactericidal concentrations.
Our results suggest that α-mangostin as a backbone molecule may be
useful for further development.
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