Objective: To evaluate reduction whether endoscopic screening reduces mortality among patients with gastric cancer, a population-based cohort study was performed in Japan, where both radiographic screening and endoscopic screening for gastric cancer have been conducted. Methods: The subjects were selected from among participants in gastric cancer screening in 2 cities (Tottori and Yonago) from 2007 to 2008. The subjects were defined aged 40-79 years, 67% of gastric cancer screening in the previous year. Follow-up related to mortality was continued from the date of the first screening to the date of death or up to December 31, 2013. A Cox proportional hazards model was used to estimate the relative risks (RRs) of incident gastric cancer, gastric cancer death, all cancer deaths except gastric cancer death, and all-cause death except gastric cancer death. Results: The subjects were 9,950 participants in endoscopic screening and 4,324 participants in radiographic screening (RR: 0.67, 95% CI: 0.47-0.93) for all cancer deaths except gastric cancer screening compared to that of radiographic screening group (RR adjusted by age, sex, age group, and city of residence = 0.327, 95% CI: 0.177-0.905). The adjusted RR of endoscopic screening was 0.66 (95% CI: 0.47-0.93) for all cancer deaths except gastric cancer death and 0.932 (95% CI: 0.742-1.170) for all-cause deaths except gastric cancer death. Conclusions: The results of the present study suggest that endoscopic screening can decrease mortality from gastric cancer by 67% compared with radiographic screening. The finding that endoscopic screening reduces mortality reduction from gastric cancer.

Objective: It is known that patients with cancer are more at risk of becoming depressed. However, there is lack of information about how these patients are treated. This study aims to investigate if cancer patients are treated differently from non-cancer depression patients. METHODS: Using IMS® Disease Analyzer, patients were selected who were initially diagnosed with depression following cancer diagnosis between January 2013 and March 2014. The study population consisted of 604 depression patients with and without cancer diagnosis (mean age 63.8 years, 35.6% male, 60% with private health insurance). In the cohort of cancer patients 27.6% had a breast cancer, 13.3% malignant neoplasms of lymphoid or hematopoietic tissue, 12.5% brain tumor, 8.3% prostate cancer, 10.0% cancer of disease of connective tissue and substance of connective tissue and blood vessel, 66.5% of breast cancer patients. Being metformin users could facilitate early prevention and support for affected patients with potentially beneficial implications for their therapy. Further research has to be done to investigate these risk factors in more detail.

Objective: Although the psychological effect of breast cancer (BC) diagnosis is well documented, less is known about the prevalence of, and risk factors for depression and anxiety in the BC patients. METHODS: Women initially diagnosed with breast cancer (ICD 10: C50) between January 2009 and December 2013 (indexdate) were identified from general practitioner (GP) data of 11 general practices identified potential risk factors for the development of depression/anxiety disease within one year after indexdate. A total of 23,709 patients at GPs and 19,977 at GYN were available for the analysis. RESULTS: Baseline characteristics of the subjects are as follows: mean age 50%, with cumulative exposure to GLDs were conducted to assess effects on overall mortality.

OBJECTIVES: The latest available national data from the Slovak Republic (SR) are for year 2008. The objective of this paper was to analyze and prospectively predict long-term national trends of malignant melanoma (MM) incidence, mortality, clinical stages and prevalence of MM until 2018 and to provide actual data for the purpose of cost-of-illness studies and budget impact analysis in the SR. METHODS: Time-trends of national data on incidence, mortality, clinical stages and prevalence of MM in 1968-2008 were analyzed by using join-point regression (Version 4.1.5). The data were pre-icted to the current year 2015. The trends are presented with a corresponding 95% Confidence Intervals (CI) and p-value with null hypothesis being constant with time. RESULTS: Epidemiological trends in males (n=8,008), MM age-standardized incidence represented 9.0/100,000 (n=315 cases, mean age=63.8 y) with the last annual percentage change (APC) of 5.3% in 1995-2008 (95% CI: -3.5-7.1, p<0.0001), estimated incidence for 2015 is 13.49/100,000 (95% CI:0.637). Mortality in 2008 rep-rented 2.3/100,000 (n=8) with the last APC 2.2% (95% CI: 1.6-2.8, p<0.0000), estimated mortality in 2015 is 3.15/100,000 (95% CI:0.159). In females (n=3,864), MM incidence was 7.5/100,000 (n=330, mean age=60.27 y), with the APC 3.5% (1968-2008, 95%CI: 3.1-3.8, p<0.0001), estimation 2015 is 13.1/100,000 (95% CI:0.637). Mortality in 2008 represented 1.5/100,000 (n=74). APC 0.53% in 1988-2008 (95% CI: -0.6-1.15, p=NS), estimation 2015 represents 1.73/100,000 (95% CI:0.378). National prevalence in 2015 for both sexes represents 8.626 cases. We estimate 65.6% patients diagnosed in the 1st stage, 32.4% in the 2nd stage, 2.2% in the 3rd, 6.0% in the 4th and 0.18% in the undefined clinical stage. The number of cases in the 1st stage is increasing during the time, however, the 4th stage remains stable. CONCLUSIONS: Actual data on prevalence and clinical stages of MM in the SR can be used as the source for setting the size of population in cost-of-illness studies and budget-impact analyses.
PCN16

TREATMENT STRATEGIES FOR ELDERLY PATIENTS WITH NEWLY DIAGNOSED MULTIPLE MYELOMA: A META-ANALYSIS AND INDIRECT COMPARISON

Buchberger M1, Rochus U2, Vukicic D1, Willenbacher W3, Siebert U4

1Janssen Research & Development, Beerse, Belgium, 2Janssen EMEA, Beerse, Belgium

OBJECTIVES: To assess the relative efficacy of bortezomib (B), carfilzomib (K), lenalidomide (L), and the combination of lenalidomide and bortezomib (LB) in newly diagnosed elderly MM (age > 65 years) in terms of progression-free survival (PFS) and overall survival (OS).

METHODS: We performed a systematic literature search in MEDLINE, EMBASE, Cochrane Library and CRD databases. The primary search yielded 2,673 abstracts, of which 2,016 were removed due to duplication. The remaining 657 were reviewed. A total of 96 studies were included in our analysis. 84 RCTs were included in the meta-analysis. Treatment duration was mainly reported as median values and 95% credible intervals.

RESULTS: The data were summarized by median values and 95% credible intervals. A network meta-analysis was performed using a random-effects model with non-informative priors. Posterior distributions for the HR were summarized by median values and 95% credible intervals.

CONCLUSIONS: The analysis of the network meta-analysis may help to identify the optimal treatment option.

PCN19

COMPARISON OF TREATMENT DURATION AT TARGETED AGENTS IN RENAL CELL CARCINOMA (RC) PATIENTS

Feinberg BA1, Bohr M1, Drenning J2, Garofalo DF1, Montgomery J2

1Cardinal Health, Dublin, OH, USA, 2Cardinal Health, Dallas, TX, USA

OBJECTIVES: Conducting comparative effectiveness research among multiple classes of targeted agents for renal cell carcinoma (RCC) provides insights to HCPs and patients on the cost of care. This study aims to investigate the association of the major molecular targets with treatment duration in RCC patients. The evidence of dasatinib and nilotinib is limited by small treatment studies. The evidence on the association between the surrogate outcomes and final outcomes are needed.

METHODS: Using claims data (MORE2 Registry), patients with RCC who completed at least one treatment regimen were included. Treatment duration was measured from the start of TKI treatment longer than mTOR treatment. Future research should determine if whether this relationship between the surrogate outcomes and final outcomes are equally applicable to dasatinib and nilotinib.

RESULTS: Patients received 1240 complete lines of therapy. Mean duration of treatment by line of therapy was as follows: 1st LOT: 4.0 mo (n=599); 2nd LOT: 3.2 mo (n=357); 3rd LOT 3.1 mo (n=284). There was statistically significant difference in mean duration of treatment between the groups of patients by second line regimen (p=0.003). Within the second line patient group the tyrosine kinase inhibitor (TKI) treated patients had greater duration compared to the mammalian target of rapamycin (mTOR) treated patients (3.5 mo vs 2.6 mo, p-value=0.006). However no difference in duration was observed among first (p=0.7239) and third line regimens (p=0.6476).

CONCLUSIONS: In this study there was statistically significant difference in duration among leading systemic agents between the second-line treatment of RCC where patients were shown to remain on TKI treatment longer than mTOR treatment. Future research should determine if toxicity and costs influence duration in this therapeutic area.