
Journal of Computational and Applied Mathematics 126 (2000) 369–380
www.elsevier.nl/locate/cam

Computing a Hurwitz factorization of a polynomial
Luca Gemignani

Dipartimento di Matematica, Universit�a di Pisa, Via Buonarroti 2, I-56125 Pisa, Italy

Received 31 March 1999; received in revised form 13 September 1999

Abstract

A polynomial is called a Hurwitz polynomial (sometimes, when the coe�cients are real, a stable polynomial) if all its
roots have real part strictly less than zero. In this paper we present a numerical method for computing the coe�cients
of the Hurwitz factor f(z) of a polynomial p(z). It is based on a polynomial description of the classical LR algorithm
for solving the matrix eigenvalue problem. Similarly with the matrix iteration, it turns out that the proposed scheme
has a global linear convergence and, moreover, the convergence rate can be improved by considering the technique of
shifting. Our numerical experiments, performed with several test polynomials, indicate that the algorithm has good stability
properties since the computed approximation errors are generally in accordance with the estimated condition numbers of
the desired factors. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Numerical techniques for splitting a polynomial p(z) of degree n with respect to di�erent contours
C in the complex plane have both theoretical and practical interest. Despite of the vast literature con-
cerning the case where C is the unit circle (see, for instance, [7,14] for general references on some
classical methods based on Koenig’s theorem and on the qd algorithm, and [9,13,12] for some recent
improvements which yield numerical procedures with optimal sequential and parallel computational
cost estimates), a few authors have considered the problem of factoring p(z) with respect to the imag-
inary axis [2,3]. Such a decomposition has the form of p(z)=f(z)g(z) where g(z) and f(z) have
no roots with negative and nonnegative real parts, respectively. The polynomial f(z), whose roots
lie in the open plane R(z)¡ 0, is called a Hurwitz polynomial or, if its coe�cients are real, a stable
polynomial. Stable polynomials play an essential role in dynamic stability and control theory [1,11].
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Therefore, it is important to devise numerical tools for recognizing whether a given polynomial is a
Hurwitz polynomial and for approximating its stable factor whenever the answer is negative.
The theory of generalized circles [6] easily yields a link between the two above-mentioned fac-

torization problems. Indeed, the image of the straight line R(z) = 0 under the bilinear (Moebius)
transformation t� : z → (z − �)=(z + �); � ∈ R; � 6= 0, is the unit circle. Therefore, at least in
principle, a factorization of p(z) with respect to the imaginary axis can be obtained from one of
the p̂(z) = p(t�(z))(z + �)n with respect to the unit circle. However, this approach su�ers from
several computational disadvantages. Firstly, the coe�cients generated by the pre-processing phase
are available only within certain errors and, by virtue of the well-known conditioning theorems,
this can result in large �nal perturbations. Secondly, a numerical algorithm for recognizing stable
polynomials can use pro�tably some necessary conditions that are very easy to check [6].
The aim of the present paper is to describe a numerical iterative scheme for evaluating the coef-

�cients of the stable factor of degree k of a polynomial p(z). The stability of a single step is not
guaranteed, but since it is a method of iterative re�nement using the original data, i.e., the coe�-
cients of p(z), for computing the correction, the overall stability of the method is quite good. The
well-known LR algorithm for solving the eigenvalue problem for matrices of Hessenberg form gives
the theoretical basis on which our approach rests. The polynomial scheme shares the convergence
property of the matrix iteration but, unlike this, it can be arranged to produce a sequential algorithm
which is very e�cient in the typical case where n− k � n.
Let A1 be an n × n lower Hessenberg matrix with unit superdiagonal entries having p(z) as its

characteristic polynomial. The stationary LR iteration applied to the starting matrix A1 de�nes a
sequence of similar matrices by means of the following rule:

q(As) = LsRs;

As+1 = L−1
s AsLs; s¿1:

(1)

Usually the shift function q(z) is a polynomial whose job is to transform the spectrum of A1 in order
to accelerate the convergence. However, other possibilities can be considered and, for our purposes,
the case when q(z) is a rational function is much more interesting. In fact, the choice q(z) = t�(z)
inuences the convergence in such a way that the eigenvalues �i of A1 are treated not with respect to
their order in magnitude, but in magnitude of t�(�i). This means that, under very mild assumptions,
the iterates As approach a block triangular form revealing the separation of the eigenvalues in the
right half plane from the eigenvalues in the left half plane.
The matrix algorithm (1) can be completely translated into a polynomial setting. The resulting

iterative scheme performs the shift with rational q(z) implicitly and it generates the sequences of
the characteristic polynomials of the last n − k leading principal submatrices of As at the cost
of O(n(n − k)) arithmetic operations per step. For the sequence of polynomials of degree k a
global linear convergence to the stable factor f(z) can be shown that is governed by the ratio
of min{|t�(�i)|: �i ∈ R(z)¿0} and of max{|t�(�i)|: �i ∈ R(z)¡ 0}. Once the convergence has
taken place, an improvement of the convergence rate can be achieved by complementing the basic
procedure with some suitable shift strategy (cf. [4,5]).
The paper is organized in the following way. Section 2 deals with the theoretical derivation of

our method whereas, in Section 3, we discuss implementation issues and report the results of some
numerical experiments.
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2. Splitting a polynomial with respect to the imaginary axis

Let p(z) be a monic complex polynomial of degree n,

p(z) =
n−1∑
i=0

aizi + zn =
n∏

i=1

(z − �i): (2)

For any given positive real number �, one may consider the bilinear transformation

t�(z) =
z − �
z + �

: (3)

Whenever t�(z) is de�ned on the set � of the roots of p(z), it can be easily observed that

{�i ∈ �: |t�(�i)|¡ 1}= {�i ∈ �: �i ∈ R(z)¿ 0};

{�i ∈ �: |t�(�i)|= 1}= {�i ∈ �: �i ∈ R(z) = 0}
and

{�i ∈ �: |t�(�i)|¿ 1}= {�i ∈ �: �i ∈ R(z)¡ 0}:
Thus, without loss of generality, we assume that the roots of p(z) are numbered in such a way that

|t�(�1)|¿ · · ·¿|t�(�k)|¿ 1¿|t�(�k+1)|¿ · · ·¿|t�(�n)| (4)

and, then, we de�ne the Hurwitz factor f(z) of p(z) by

f(z) =
k∏

i=1

(z − �i): (5)

In this section we develop a numerical iterative scheme for computing approximations to the
coe�cients of f(z). It is based on the theory of multishift LR iterations for the solution of the
matrix eigenvalue problem [16,17].
Let us consider an n × n lower Hessenberg matrix A1 with unit superdiagonal entries having

p(z) as its characteristic polynomial. A stationary multishift LR iteration for the computation of the
eigenvalues of A1, i.e., the roots of p(z), is de�ned by the following rule:

q(As) = LsRs;

As+1 = L−1
s AsLs; s¿1;

(6)

where q(z) is called the shift function and we tacitly assume that the matrix q(As) can be factored
at any step in the LR way, that is, as the product of a unit lower triangular matrix Ls by an upper
triangular matrix Rs. It can be shown that the rate of convergence of the matrix iteration (6) depends
on certain ratios associated with partitions in the spectrum of the shifted matrix q(A1). If q(z) is
a linear or a quadratic factor then (6) reduces to a some variant of the classical LR algorithm of
Rutishauser. However, under the further assumption that q(z) is de�ned on the spectrum of A1, other
di�erent choices have been also investigated in the literature [16].
For our purposes, a natural choice is q(z) = t�(z). In this way, separation of the eigenvalues in

the right-half-plane from the eigenvalues in the left-half-plane takes place. Moreover, one step of
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the matrix iteration (6) can be split into one standard LR step

As − �I = L̂sR̂s;

As+1=2 = �I + R̂sL̂s; s¿1;
(7)

followed by an other standard RL step

As+1=2 + �I = R̂s+1=2L̂s+1=2;

As+1 = L̂s+1=2R̂s+1=2 − �I; s¿1:
(8)

Since A1 is a lower Hessenberg matrix with unit superdiagonal entries, then R̂1 is an upper
bidiagonal matrix with unit superdiagonal entries and hence A3=2 is of lower Hessenberg form with
unit superdiagonal entries. The same arguments apply to (8) and, therefore, we may conclude that
all the matrices As and As+1=2 are lower Hessenberg matrix with unit superdiagonal entries.
Now, let us introduce the polynomial vector

[ (s)0 (z);  
(s)
1 (z); : : : ;  

(s)
n−1(z)]

T;

where  (s)0 (z)=1 and  (s)i (z) is the characteristic polynomial of the i× i leading principal submatrix
of As. The following equation [8]:

z




 (s)0 (z)
 (s)1 (z)
...

 (s)n−1(z)


= As




 (s)0 (z)
 (s)1 (z)
...

 (s)n−1(z)


+



0
...
0

p(z)


 (9)

is the key property in order to express (7) and (8) in a polynomial setting.
Writing

z



 (s+1=2)0 (z)
 (s+1=2)1 (z)

...
 (s+1=2)n−1 (z)


= L̂

−1
s AsL̂s



 (s+1=2)0 (z)
 (s+1=2)1 (z)

...
 (s+1=2)n−1 (z)


+



0
...
0

p(z)


 ; (10)

we �nd that

 (s+1=2)0 (z)
 (s+1=2)1 (z)

...
 (s+1=2)n−1 (z)


= L̂

−1
s




 (s)0 (z)
 (s)1 (z)
...

 (s)n−1(z)


 :

By replacing As+1=2 in (10) with �I + R̂sL̂s, we obtain that

(z − �)



 (s+1=2)0 (z)
 (s+1=2)1 (z)

...
 (s+1=2)n−1 (z)


= R̂s




 (s)0 (z)
 (s)1 (z)
...

 (s)n−1(z)


+



0
...
0

p(z)


 :
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Similarly, from (8) we �nd that

(z + �)



 (s+1=2)0 (z)
 (s+1=2)1 (z)

...
 (s+1=2)n−1 (z)


= R̂s+1=2



 (s+1)0 (z)
 (s+1)1 (z)

...
 (s+1)n−1 (z)


+



0
...
0

p(z)


 :

By combining these two relations we �nally arrive at the following result:

(z − �)



R̂s+1=2



 (s+1)0 (z)
 (s+1)1 (z)

...
 (s+1)n−1 (z)


+



0
...
0

p(z)






= (z + �)



R̂s




 (s)0 (z)
 (s)1 (z)
...

 (s)n−1(z)


+



0
...
0

p(z)







: (11)

Equivalently, by recalling that both R̂s and R̂s+1=2 are upper bidiagonal matrices with unit super-
diagonal entries, we can write

(z − �)(r̂(s+1=2)1  (s+1)0 (z) +  (s+1)1 (z)) = (z + �)(r̂(s)1  (s)0 (z) +  (s)1 (z));

: : : ;

: : : ;

(z − �)(r̂(s+1=2)n  (s+1)n−1 (z) +  (s+1)n (z)) = (z + �)(r̂(s)n  (s)n−1(z) +  (s)n (z));

(12)

where r̂(s)i ; r̂(s+1=2)i denotes the diagonal entries of R̂s and R̂s+1=2, respectively, and, for the sake
of simplicity, we set  (s)n (z) = p(z) for any s. The computation of the unknowns of (12) can be
performed as follows. First, we observe that � is a root of the polynomials placed on the left-hand
side of (12) from which there follows that

r̂(s)i =−  (s)i (�)

 (s)i−1(�)
; 16i6n: (13)

Then, r̂(s+1=2)n+1−i and the coe�cients of  
(s+1)
n−i (z) are recursively determined for i= 1; 2; : : : ; n by means

of a direct inspection of the coe�cients of the auxiliary polynomials

�(s)i (z) = (z + �)

{
r̂(s)i  (s)i−1(z) +  (s)i (z)

z − �

}
: (14)

In view of these �ndings, we propose the following iterative scheme — called Factor Iteration —
for approximating the coe�cients of the stable factor f(z) of degree k¿1 of a monic polynomial
p(z) of degree n.

Factor Iteration
Let � be a positive real number; moreover, for 16i6n − k, let  (0)n−i(z) be a monic polynomial

of degree n− i;
for s= 1; 2; : : : ;

1. compute r̂(s)n−i+1; 16i6n− k, by means of (13);
2. evaluate the coe�cients of the polynomials �(s)n−i(z); 16i6n− k, de�ned by (14);
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3. determine the coe�cients of the monic polynomials  (s+1)n−i (z); 16i6n− k, by recursively using

r̂(s+1=2)n−i+1  
(s+1)
n−i (z) = �(s)n−i(z)−  (s+1)n−i+1(z); 16i6n− k;

where we set  (s+1)n (z) = p(z).
end

The arithmetic cost of one iteration is O(n(n− k)). In particular, in the case where n− k�n, the
arithmetic cost is almost linear with respect to the degree n of the input polynomial.
In [5] the author studied some numerical methods for the approximate factorization of complex

polynomials that are based on LR matrix iterations with polynomial shifts. The convergence theory
of these methods can be also applied to the Factor Iteration yielding the following result. We recall
that the l-norm, l ∈ {1; 2;∞}, of a polynomial p(z) coincides with the l-norm of its coe�cient
vector.

Theorem 1. Let p(z) be a monic polynomial of degree n. For a �xed positive real number �;
assume that its zeros �i; 16i6n; are numbered so that (4) holds. Then; for almost any choice of
the polynomials  (0)n−j(z); 16j6n − k; the Factor Iteration does not break down for any s ∈ N.
Moreover; we have that∥∥∥∥∥ (s+1)k (z)−

k∏
i=1

(z − �i)

∥∥∥∥∥
∞
=O(�s+1);

where � is any number satisfying

|t�(�k+1)=t�(�k)|¡�¡ 1:

This theorem states the convergence of the polynomial sequence { (s)k (z)} to the stable factor
f(z) of p(z). Analogous results can also be proved for the other sequences { (s)n−i(z)}; 16i6k − 1,
generated by the Factor Iteration whenever a separation |t�(�n−i)|¿ |t�(�n−i+1)| occurs. In this way,
at least virtually, our method may be applied in order to extract the roots of p(z) with respect to
their ordering in magnitude of t�(�i).
It is clear that the convergence rate depends on the choice of the parameter �. A good selection

needs some preliminary information about the root distribution of p(z) in the complex plane, that
is, about the separation between the wanted and unwanted spectrum. To establish a more precise
claim, we assume that the roots �k+1; : : : ; �n in the right-half-plane are on or inside the rectangular
region

R+ = {z ∈ C: 0¡x16R(z)6x2; 06|I(z)|¡y1; y1¿x2}; (15)

whereas the remaining roots �1; : : : ; �k in the left-half-plane belong to the symmetric region

R− = {z ∈ C: − x26R(z)6−x1; 06|I(z)|¡y1; y1¿x2}: (16)

We have performed numerical experiments in order to evaluate

max{|t�(�i)|: �i ∈ R+}
min{|t�(�i)|: �i ∈ R−}
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for many di�erent choices of � and of the distribution of the zeros of p(z). They indicate that the
smallness of the quantity

cos �=
x1

|x1 + iy1|
gives a rather precise measure of how di�cult our problem is.
Indeed, some theoretical results can also be obtained. For a �xed value ��¿ 0 of �, let us denote

by z( ��)= a( ��)+ ib( ��) a point of R+ where the function |t ��(z)| attains to its maximum. By calculus,
we easily �nd that b( ��) = y1 and, moreover,

�( ��) =
max{|t ��(z)|: z ∈ R+}
min{|t ��(z)|: z ∈ R−} =

|t ��(a( ��) + iy1)|
|t ��(−a( ��) + iy1)| :

The two points a( ��)+iy1 and −a( ��)+iy1 are symmetric with respect to the imaginary axis which is
mapped into the unit circle by t ��(z). In this way, using the fact that Moebius transformations preserve
the symmetry of a pair of points with respect to generalized circles (see [6, Theorem 5:4d]), we are
able to prove that t ��(a( ��) + iy1) and t ��(−a( ��) + iy1) are symmetric with respect to the unit circle.
This means that these two points lie in the same ray emanating from the origin and that the product
of their distances from the origin equals 1. Thus, we have that

|t ��(−a( ��) + iy1)| − |t ��(a( ��) + iy1)|= |t ��(a( ��) + iy1)− t ��(−a( ��) + iy1)|:
In order to obtain a lower bound on the distance between the images of the two considered points,
we observe that

|t ��(a( ��) + iy1)− t ��(−a( ��) + iy1)|¿ 4 ��a( ��)
(|a( ��) + iy1|+ ��)2

;

from which it follows that

|t ��(a( ��) + iy1)− t ��(−a( ��) + iy1)|¿ 2 ��a( ��)
a( ��)2 + y21 + ��2

¿
2 ��x1

x21 + y21 + ��2
= �( ��): (17)

In particular, the choice ��=
√

x21 + y21 is the one maximizing �(�) and it produces

�(
√

x21 + y21) = cos �:

Finally, since the real function R+ × R+ 3 (x; y) → x=(x + y) is increasing with respect to the
variable x and decreasing with respect to y, we obtain that

�( ��)6
1

1 + �( ��)
:

Summing up, the following result holds.

Theorem 2. Let R+ and R− be the two subsets of C de�ned by (15) and (16); respectively. Assume
that the n zeros �i of a complex polynomial p(z) are such that k¿1 roots belong to R− whereas
the remaining n− k¿1 roots lie in R+. Then; for any given �¿ 0 we have that

max{|t�(�i)|: �i ∈ R+}
min{|t�(�i)|: �i ∈ R−}6

max{|t�(z)|: z ∈ R+}
min{|t�(z)|: z ∈ R−}6

1
1 + �(�)

;
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where �(�) is given by (17): Furthermore; if we set �=
√

x21 + y21 and cos �= x1=|x1 + iy1|, then we
�nd that

max{|t�(�i)|: �i ∈ R+}
min{|t�(�i)|: �i ∈ R−}6

1
1 + cos �

:

In the next section we will discuss an e�ective implementation of the Factor Iteration and we will
present the results of our computational experience.

3. Computational results

We implemented di�erent versions of the Factor Iteration using MathematicaTM . In its basic form
our code gets in input the coe�cients of an n-degree real monic polynomial p(z) together with an
integer k that represents the degree of the stable factor f(z) of p(z). Then it generates n − k real
monic polynomials  (0)n−h(z); 16h6n − k, where  (0)n−h(z) has degree n − h, and it starts with the
computation of the Factor Iteration.
There are two possible ways of terminating the iteration for a factor. The �rst one uses a

well-known property about the sign of the coe�cients of f(z) [6]. Observe that we can write

f(z) =
∏
i

(z + i)
∏
j

(z + �j)(z + ��j);

where −i ¡ 0 are the real roots of f(z) and −�j; − ��j are the complex roots with R(�j)¿ 0.
Carrying on the multiplication we realize that all the coe�cients of f(z) are of the same sign of
its leading coe�cient, that is, they are positive. Hence, at the sth step our algorithm checks �rst if
all the coe�cients of the computed approximation  (s)k (z) are positive. If this condition is satis�ed
then we also check if

‖ (s)k (z)−  (s−1)k (z)‖2
‖ (s)k (z)‖2

6�;

where, at present, ad hoc choices are made for the threshold value �. If yes, then the algorithm is
halted and  (s)k (z) is the computed approximation for f(z). On the contrary, when the number of
iterations exceeds a �xed value itmax, the program stops by reporting failure.
Our code has been tested by performing numerical experiments on a computer using the equivalent

of 15 decimal digits oating point arithmetic. It is clear that a good selection of the value of � is
crucial and it should take into account some information about the conditioning of the problem.
Regarding at this important numerical issue, let p(z; �) = f(z; �)g(z; �) be the factorization with
respect to the imaginary axis of the n-degree perturbed polynomial p(z; �) where p(z; 0)=p(z) and
p(z) has no roots along the imaginary axis. By means of a linearization process, the new factors
f(z; �) and g(z; �) can be thought of as determined by one step of the Newton iteration with initial
guesses f(z; 0) =f(z) and g(z; 0) = g(z). In this case the Jacobian matrix is the resultant matrix of
f(z) and g(z) and, therefore, its condition number gives an estimate of the conditioning of splitting
p(z). In our numerical tests we computed the spectral condition number of a matrix by means of
the MathematicaTM function SingularValues.
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Table 1

degree = j sj condj

31 0.35 36
29 0.87 2:4E + 04
28 0.64 5:1E + 05
24 0.78 1:2E + 07

A lot of numerical examples were run to investigate the stability properties of our method.
We considered real polynomials p(z) of degree 32 generated as the product of a real polyno-
mial q(z) of degree 16, with random coe�cients between −0:5 and 0.5, by q(−z). We chose
�=1;  (0)31 (z)=l31p′(z) and  (0)j (z)=lj( 

(0)
j+1(z))

′; 166j630, where the coe�cients lj were determined
in such a way that all the polynomials are monic. Next we computed the separation ratios sj =
|t1(�j+1)=t1(�j)|; 16j631, where �j were the numerical approximations of the zeros of p(z) obtained
by means of the MathematicaTM function NSolve. For each of the indices j such that 166j631
and sj ¡ 1, we also estimated the spectral condition condj of factoring p(z) as p(z) =

∏j
i=1(z −

�j)
∏n

h=j+1(z − �h).
The resulting implementation was used to study the convergence of the sequences { (s)j (z)} towards

the desired factor fj(z) =
∏j

i=1(z − �j). In particular, in order to illustrate the behaviour of these
approximations, we set the value of � equal to the machine precision so that the algorithm always
terminated reporting failure. Below we report the results of a typical execution. Table 1 shows the
estimated values of the condition number and of the separation ratio of the �rst 4 factors fj(z).
The plot of the logarithm to base 10 of the approximation errors

�(s)j = ‖ (s)j (z)−  (s−1)j (z)‖2=‖ (s)j (z)‖2; j = 24; 28; 29; 31;

evaluated at the steps s= 4i; 16i616, is described in Fig. 1.
This illustration suggests two important observations that are con�rmed by our numerical expe-

rience. Firstly, the errors of the computed approximations to the desired factors are generally in
accordance with the estimates on the conditioning. Secondly, despite of the recursive construction
of the approximations, a rapid convergence can be observed at a certain level j independently of
the behaviour of the approximations at the previous levels whenever sj�sh for h¿j. This property
motivates the interest in developing numerical methods for the approximation of a factor.
The second set of numerical tests was concerned with the description of the root-locus of certain

real polynomials formed from the odd and the even parts of Hurwitz polynomials. These polynomials
are generated by many recursive algorithms for signal processing [10]. Speci�cally, we considered
Hurwitz polynomials p(z) of degree 32 obtained as follows:

p(z) =
16∏
i=1

(z2 + 2zai + a2i + b2i ); (18)

where ai and bi are drawn from the uniform distribution in [0; 1].
The component parts of p(z) are given by

qeven(z) = 0:5(p(z) + p(−z)); qodd(z) = 0:5(p(z)− p(−z)):
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Fig. 1.

If we combine these parts by forming the family of new polynomials

p̂(z;w1;w2) = qeven(z) + (w1 + w2z)qodd(z);

where w1 and w2 are real parameters, then it can be shown that the zero distribution of p̂(z;w1;w2)
in the complex plane is completely de�ned by the sign of w1 and of w2 + (lceven=lcodd), where
lceven and lcodd denote the leading coe�cient of qeven(z) and of qodd(z), respectively. In particular,
p̂(z;w1;w2) has 31 zeros in the left-half-plane and 1 zero in the right-half-plane whenever w1 is
positive and w2¡ − (lceven=lcodd). Moreover, the positive zero, denoted by �n(w1;w2), tends to the
in�nity as w2 approaches −(lceven=lcodd).
Our numerical experiments returned a plot of the function �n(t;−(lceven=lcodd)(2−t)) with the vari-

able t varying from 0 to 1. To do this, we de�ned a sequence of equispaced nodes ti= i=50; 16i649,
in the open interval (0; 1) and then we determined numerical approximations �̂n(ti;−(lceven=lcodd)(2−
ti)) of the zeros �n(ti;−(lceven=lcodd)(2 − ti)) by means of our program. If i = 1, we set � = 1 and
 (0)31 (z)=l31p′(z). Otherwise, if i¿ 1, we performed the selection �= �̂n(ti−1;−(lceven=lcodd)(2−ti−1))
and

 (0)31 (z) = PolynomialQuotient[p(z); z − �̂n(ti−1;−(lceven=lcodd)(2− ti−1))];

where PolynomialQuotient[p(z); q(z)] gives the result of dividing p(z) by q(z) with any remainder
dropped.
Concerning the stop criterion, a little modi�cation of the basic procedure was implemented. At

each step s, �rst we computed a suitable approximation r(s)i of �n(ti;−(lceven=lcodd)(2− ti)) according
to the following rule (cf. (9)):

r(s)i = lc(z (s)31 (z)− p(z));

where lc(p(z)) denotes the leading coe�cient of p(z). Then we calculated the value �(s)i =32|p(r(s)i )=
p′(r(s)i )|. A classical result [6] states that there is a zero ri of p(z; ti;−(lceven=lcodd)(2− ti)) such that

|ri − r(s)i |6�(s)i :
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Fig. 2.

Thus, the computation for the ith zero was stopped if the condition �(s)i 6‖p(z; ti;−(lceven=lcodd)(2−
ti))‖2�, where � denotes here the machine precision, was satis�ed. In this case, r(s)i = �̂n(ti;
−(lceven=lcodd)(2 − ti)) was the numerical approximation of �n(ti;−(lceven=lcodd)(2 − ti)) to be used
in the following steps.
In order to accelerate the convergence we also complemented the basic procedure with a suitable

shift strategy. If we found that

|r(s)i − r(s−1)i |6
√
‖p(z; ti;−(lceven=lcodd)(2− ti))‖2�;

then the value of � was changed to r(s)i into the subsequent iterations for the ith zero.
Fig. 2 illustrates a characteristic path of the positive zero obtained in one numerical experiment.
As it is theoretically proved, the trajectory goes to the in�nity when ti approaches to 1.
In all the numerical experiments we have carried out the program never reported failure. The

number of iterations needed to approximate the positive zero of p(z; ti;−(lceven=lcodd)(2− ti)) usually
increases together with the value of i. This is especially true as the point ti is near to 1 because of
the very rapid deterioration of the separation ratio. For instance, in the numerical test of Fig. 2 we
found that the average number of iterations was 11 for the computation of the �rst 35 zeros whereas
it was 63 for the computation of the 14 remaining zeros.
Finally, we planned a third set of numerical experiments in order to verify if our algorithm can be

used as a stability-test procedure. In particular, we considered the problem of recognizing whether
a given real polynomial is Hurwitz. It can be shown [15] that if p(z) is a Hurwitz polynomial
then ‖p(z)‖1¿232

√
a0, where a0 denotes the known coe�cient of p(z). This fact ensures that many

polynomials can not be Hurwitz even though they have positive coe�cients. Moreover, since the 1-
norm of p(z) increases exponentially with the degree the same holds for the conditioning of splitting
p(z) notwithstanding that one factor has a small degree.
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To support these statements numerically, we generated 100 Hurwitz polynomials p(z) of degree
32 by the rule (18). The condition number of determining a quadratic factor of p(z) with � = 0:1
was 1014 in the average. It is interesting to point out that the roots of each polynomial were usually
computed at high precision by the NSolve function. This means that the condition number of the
factorization problem is not related to the condition numbers of the zeros and, in addition, di�erent
arrangements of the zeros lead to di�erent factorizations whose condition numbers can vary greatly.
In conclusion, we have proposed a numerical algorithm for the approximate Hurwitz factorization

of a polynomial p(z). Our numerical experiments indicates that it can be used to determine e�ciently
the coe�cients of the two factors f(z) and g(z) whenever one factor has a small degree. If, otherwise,
p(z) has a quite balanced zero distribution with respect to the imaginary axis, then the conditioning
of the Hurwitz factorization problem generally increases in such a way that the problem cannot be
solved in a satisfactory way by �nite precision arithmetic computations. We also arrive at similar
conclusions when we apply our algorithm to Hurwitz polynomials as a stability-test procedure. To
our experience, in these latter two cases using some numerical algorithm for the computation of all
the roots of p(z) with respect to a di�erent ordering, like the one that is introduced by a random
shift of the origin, usually provides a better approach.
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