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a b s t r a c t

Various structures for n-in-p planar pixel sensors have been developed at KEK in order to cope with the
huge particle fluence in the upcoming LHC upgrades. Performances of the sensors with different
structures have been evaluated with testbeam. The n-in-p devices were connected by bump-bonding to
the ATLAS Pixel front-end chip (FE-I4A) and characterized before and after the irradiation to 1�1016

1 MeV neq=cm2. Results of measurements with 120 GeV/c momentum pion beam at the CERN Super
Proton Synchrotron (SPS) in September 2012 are presented.
& 2015 CERN for the benefit of the Authors. Published by Elsevier B.V. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In collider physics, the pixel detector is usually used as an
innermost subdetector of a multi-purpose detector, such as the
ATLAS [1] and CMS [2] detectors. The pixel detector is located at
short distance from the interaction point, O(1–10 cm), in a high
radiation environment. After a high fluence the full depletion
voltage may reach or exceed 1 kV [3]. Many concerns arising at
such high voltages (destructive sparking, large dark currents, cable
isolation, power supplies, etc.) impose an operation under the
partially depleted voltage after irradiation. This is possible by

adopting a n-in-p approach. The n-in-p planar pixel sensor is one
of the candidates of high radiation tolerant sensors for the future
high luminosity experiments. The n-in-p type has the following
major advantages:

� It does not show type inversion and can be operated partially
depleted during their whole lifetime because p–n junction is
formed on the readout side.

� It needs only single sided lithograph processing and therefore
is potentially inexpensive compared with a typical n-in-n type
sensor.

� It collects electrons which are, due to their higher mobility, less
prone to trapping. Trapping is the factor limiting the operation
of any silicon sensor in a very high radiation environment.
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A schematic view of an n-in-p planar pixel sensor is shown in
Fig. 1.

2. Devices under test

The n-in-p pixel samples used in the beamtest were manufac-
tured by HPK (Hamamatsu Photonix K.K.) in collaboration with the
ATLAS Japan silicon group [4–6]. All samples were made from Float
Zone (FZ) wafers. The designs of HPK pixel sensors are character-
ized by the biasing and separation structures.

The measured wafer resistivity was � 6 kΩ=cm.

2.1. Biasing structure and separation structure

Biasing structures are implemented in order to test the sensors
before being bump-bonded to the FE chips. As the sensor and the
FE chip are the most expensive components of a pixel module they
both should be tested before joining them by the bump-bonding
process. The biasing structures enable sensor to apply bias voltage
by connecting all the pixels to the ground. The biasing structures
of HPK sensors are either made of ‘Poly-Silicon resistor (denoted
by PolySi)’ or ‘Punch Through (denoted by PT)’. The PolySi structure
consists of a bias rail which is laid out on the short pixel side
boundary and poly-silicon resistor which is laid out to achieve
higher enough resistance to separate between the pixels and to
minimize the noise. The PT structure consists of a bias rail and a
punch through dot. If a bias voltage is applied on the bias rail, the
potential of the pixels will be fixed via the punch through mechan-
ism from the bias rail to the pixel implant.

In the n-in-p case, free charge carriers, electrons, are accumu-
lated on the surface of the silicon bulk between the adjacent nþ

implants by positive charge-up in the surface of the oxide layer.
The omnipresent electron inversion layer would shorten the nþ

implants without further precautions. Separation is usually pro-
vided by a p-type boron implant between the pixels, forming a
lateral p–n junction. The separation structures of HPK sensors are
called either the ‘common P-stop’ type or the ‘P-spray’, depending
on the structure of this isolation implant. The boundary of
adjacent pixels is divided by the single-line P-stop in the common
P-stop type and the area between the pixels is entirely covered by
P-spray in the P-spray type.

2.2. Specification of HPK sensors

To investigate the combinations of biasing and separation struc-
tures, four options are designed and manufactured. The four candi-
dates are ‘PolySi, common P-stop’, ‘PolySi, P-spray’, ‘PT, common
P-stop’ and ‘PT, P-spray’. A schematic view of four candidates is
illustrated in Fig. 2.

In order to communicate with the sensors via FE chip, the sensors
are mounted on the FE-I4A [7] single chip card (SCC). The size of

pixel cells of FE-I4A is 250� 50 μm2. The specifications of the HPK
sensors are listed in Table 1. The three out of seven samples were
irradiated with neutron as high as 1�1016 1 MeV neq=cm2 at
Ljubljana reactor [8].

3. Beamtest at CERN SPS

In September 2012, a beamtest was held at H6 beam line of the
CERN super proton synchrotron (SPS), using 120 GeV πþ particles at
an average trigger rate of � 650 Hz per cycle. The EUDET telescopes,
composed of six monolithic pixel sensor planes, were used for tracking
beam particles, with a pointing resolution of s� 3 μm. In the first
batch of the beamtest, the four non-irradiated (NR) samples were
tested. In the second batch, three out of four samples were irradiated
and the rest one was non-irradiated to be used as a reference.

Table 2 shows the run conditions. The threshold and the time-
over-threshold (ToT) values were tuned to achieve uniform per-
formance of pixels on the FE-I4A. Although no reliable calibrated
conversion values from ToT to charge are available for the FE-I4A
chip, the average calibration between the ToT and the Vcal was
available for each sample at the beginning of the beamtest by
seeing the ToT distributions as a function of the Vcal. The Vcal is a
DAC value which is linear to the injection charge, while the ToT
may not be linear to it. This Vcal calibration enables to evaluate the
relative charge values of hit clusters. The relation between Vcal
and collected charge, Q, is described as

Q ½e� ¼ Ccal ½F� � ða ½V=DAC� � Vcal ½DAC�þb ½V�Þ
elementary charge ½C� ; ð1Þ

where Ccal is the capacitance of the injection capacitor which is
located on the analog circuit of FE-I4A for calibration, a and b are
the constant values which are corresponding to the slope and
offset of the Vcal DAC, respectively. These variables are different in
each FE-I4 chip, and therefore it is necessary to measure these
before a beamtest. However, a circuit to measure the injection
capacitance is not implemented for FE-I4A and we cannot know
absolute value of collected charge.

4. Results

4.1. Hit efficiency

Fig. 3 shows the overall hit efficiency for each sensor as a
function of the bias voltage.

The efficiency is defined as a probability of the existence of a hit
within a window of 7 1.5-pixel size in both row and column
directions from the track position extrapolated from the EUDET
tracking. The hit efficiencies at the full depletion voltages are listed
in Table 3. In order to investigate the structure dependence, the hit
efficiencies inside the pixel were calculated with small granularity
and mapped on 2D histograms, which are denoted by pixel hit
efficiency maps. The pixel hit efficiency maps at �400 V in batch
1 and �1200 V in batch 2 are shown in Fig. 4 and 5, respectively.
In the pixel hit efficiency maps, the efficiencies are measured with
1� 1 μm2 granularity. The plot represents one pixel plus parts of
its eight neighbors.

By comparing the hit efficiencies of sensors with various
biasing and separation structures before and after the irradiation,
a number of differences are observed. For the non-irradiated
samples, the hit efficiencies of P-spray separation are inferior to
that of P-stop separation even at the full depletion voltage. In the
P-spray, the large inefficiency regions are observed at the corners
on the bias rail side. In the PT biasing structure, the inefficient
region is larger than that of PolySi.Fig. 1. A schematic view of an n-in-p planar pixel sensor.
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For the irradiated samples, the inefficient regions are observed
at four corners of a pixel, especially near the bias rail side. The
shapes of PT and bias rails structures are clearly observed. In order
to evaluate the differences in the region around bias rail, the hit
efficiencies are projected in the long pixel direction. The range
used for the projections is the region between 45 μm and 55 μm in
the short side direction and the projected hit efficiencies at
�1200 V are shown in Fig. 6. According to the designs of KEK32
and KEK34, illustrated in Fig. 2, the routes of the poly-silicon
resistors near the bias rail are different. The poly-silicon resistors
are laid out near the bias rail in KEK32 which adopts common
P-stop separation, while it is not the case for KEK34 which adopts
P-spray separation. These results imply that the poly-silicon
resistors near the bias rail intensify the inefficiency.

4.2. Charge collection efficiency

Since the hit signals are formed by the deposited charges of
injected particles, studying the charge collection efficiency (CCE) is
necessary. The CCE of PolySi types is especially of large concern as
the results of the efficiency analysis proved that the poly-silicon
resistors create the inefficiencies after 1�1016 neq=cm2 neutron
irradiation. The CCE is calculated by

ðCCEÞ ¼ Vcalcollected
Vcalexpected

ð2Þ

The expected Vcal is the average Vcal collected on the central
region of a pixel at �400 V for batch 1 and �1200 V for batch 2,
assuming all of the generated charge is collected there with such a
high bias voltage. The central region of a pixel is defined as a
region between 150 μm to 350 μm in the long side direction, and
between 45 μm to 55 μm in the short side direction of Fig. 4 and 5.
The CCE provides the information where the charges are lost.

In order to investigate the reason of the decreases of the hit
efficiencies near the poly-silicon resistors after the irradiation,
the CCE of the middle region is projected in both long and short
pixel directions as the hit efficiency analyses. The middle region
projected in long pixel direction is the region between 45 μm and
55 μm in the short side direction and that in short pixel direction
is the region between 150 μm and 350 μm in the long side
direction.

The projected CCE along the long and short pixel directions is
shown in Figs. 7 and 8, respectively.

The regions around bias rail cause inefficiency of charge
collection. This behavior is the same as that of the hit efficiency
analysis. However, inefficiency regions are seen in the other
boundaries between pixels even for non-irradiated sensors. This
can be explained by effect of charge sharing with neighbor pixel.
When a track passes at the boundary of two pixels, charge is
generated in the silicon bulk and induces charges in two pixels.
Sometimes the ratio of shared charge is partial to one of the two
pixels and the amount of collected charge by another pixel may be
less than the threshold. As a result, the charge information is lost
for the latter pixel and the CCE becomes smaller than the actual
value effectively. The depth (inefficiency) and the width (s) of the
inefficiency valley at 125 μm in Fig. 7 are summarized in Table 4.

The inefficiency and s are found as the results fitting the
following inverted Gaussian:

poffset�pinefficiency � exp �ðx�pmeanÞ2
p2s

 !
; ð3Þ

where the variables with p are the parameters of the fitting.

Pixel Electrode Common P-stop P-spray

Bias Rail Poly Silicon Resistor Punch Through Dot

Fig. 2. A schematic view of four candidates.

Table 1
The properties of the KEK/HPK n-in-p pixel sensors. ‘BC’, which is a unit of the
time-over-threshold (ToT), is short for ‘Bunch Crossing’. 1 BC is corresponding to
25 ns. In the first batch of the beamtest, the four non-irradiated samples were
tested. In the second batch, three out of four samples were irradiated and the rest
one was non-irradiated to be used as a reference.

Silicon crystal p-type FZ, 4–7 kΩ cm
Sensor thickness 150 μm
Pixel size 50 μm� 250 μm

ID Bias st. Dose Threshold (e) Batch
Isolation st. ðneq=cm2Þ ToT (BC at ke)

KEK18 PT 0 1600 1
P-Stop 10 at 10

KEK19 PolySi 0 1600 1, 2
P-Stop 10 at 10

KEK20 PT 0 1700 1
P-Spray 9 at 10

KEK21 PolySi 0 1600 1
P-Spray 10 at 10

KEK32 PolySi 1�1016 1600 2
P-Stop 9 at 5

KEK33 PT 1�1016 1600 2
P-Spray 6 at 5

KEK34 PolySi 1�1016 1600 2
P-Spray 6 at 5

Table 2
Run conditions of the beamtest at the CERN SPS in September 2012.

Batch Bias voltage (�V) Temp. (1C)

1 6, 14, 25, 40, 57, 100, 200, 400 þ20
2 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200 �50
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In Fig. 8, two peaks of inefficiency are observed at the two
boundaries, at 25 μm and 75 μm. By comparing the peak of two biasing
structures, PT and PolySi, significant charge losses are observed at the
boundaries which have poly-silicon resistor. The results of the CCE
analysis strongly support the results of the hit efficiency analysis, where
the poly-silicon resistors cause the decrease of the hit efficiency. The
potential of the poly-silicon resistors which are at ground weakens the
electric field in the silicon under the poly-silicon resistors. The ineffi-
ciency and s of the inefficiency valley at 25 μm in Fig. 8 are summarized
in Table 5. These values are found as the results fitting with Eq. (3).

5. Conclusion

Newly developed n-in-p pixel sensors were evaluated using
testbeam at CERN SPS. Four combinations of structures were

compared. Overall hit efficiency of 97.6% was confirmed at
�1200 V after irradiation of 1�1016 neq=cm2. It is found that p-
spray caused the inefficiency region around the PT dots even
before irradiation; the bias rail and the PolySi resistor caused
the inefficiency after irradiation, which were caused by ineffi-
cient charge collection due to the weakened electric field
under the bias rail and the PolySi resistor. In the next produc-
tion, several new designs are prepared. Bias rails will be moved
outside the pixel boundary; PolySi resistors will be placed on
top of the pixel electrode.
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Fig. 3. The overall hit efficiency of the DUTs in batch 2. The open symbols denote non-irradiated sensors and the filled symbols show irradiated sensors.

Table 3
The overall hit efficiencies of non-irradiated and irradiated sensors from the first
and the second batch. The run conditions are summarized in Table 2.

Batch 1 (�400 V) Batch 2 (�1200 V)

ID Eff. (%) ID Eff. (%)

KEK18 99.5170.01 KEK19 99.8770.00
KEK19 99.5370.01 KEK32 96.2870.02
KEK20 97.1570.03 KEK33 97.0970.01
KEK21 98.6470.02 KEK34 97.5870.01
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Fig. 4. Local tracking efficiency maps of a pixel of batch 1. (a) KEK18-NR, (b) KEK19-
NR, (c) KEK20-NR and (d) KEK21-NR. The dashed box shows the region of a pixel.
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Fig. 5. Local tracking efficiency maps of a pixel of batch 2. (a) KEK19-NR as a
reference, (b) KEK32-IR, (c) KEK33-IR and (d) KEK34-IR. The dashed box shows the
region of a pixel.
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Fig. 7. The projected collected charge efficiency along the long pixel direction of
both batches 1 (upper) and 2 (lower). ‘KEK19’ in the lower plot is a non-irradiated
sample used as a reference.

0 20 40 60 80 100

0.4

0.6

0.8

1

1.2

1.4

KEK19: PolySi / common P-stop

KEK32: PolySi / common P-stop

KEK33: PT / P-spray

KEK34: PolySi / P-spray

0.4

0.6

0.8

1

1.2

1.4

KEK18: PT / common P-stop

KEK19: PolySi / common P-stop

KEK20: PT / P-spray

KEK21: PolySi / P-spray

 Batch 1 (HV = -400 V)

 Batch 2 (HV = -1200 V)

C
ha

rg
e 

co
lle

ct
io

n 
ef

ci
en

cy

Coordinate along short side of pixel ( m)

Fig. 8. The projected collected charge efficiency along the short pixel direction of
both batches 1 (upper) and 2 (lower). ‘KEK19’ in the lower plot is a non-irradiated
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Table 4
The inefficiency and s of the inefficiency valley at 125 μm in Fig. 7.

ID Inefficiency (%) s ðμmÞ

Batch 1 (�400 V)
KEK18 13.670.5 5.072.5
KEK19 21.770.5 3.270.7
KEK20 43.870.3 5.470.6
KEK21 63.970.2 4.770.3

Batch 2 (�1200 V)
KEK19 12.970.0 4.771.1
KEK32 71.970.0 6.270.2
KEK33 44.170.0 5.770.3
KEK34 51.170.0 4.370.2

Table 5
The inefficiency and s of the inefficiency valley at 25 μm in Fig. 8.

ID Inefficiency (%) s ðμmÞ

Batch 1 (�400 V)
KEK18 16.871.2 4.870.5
KEK19 12.471.3 3.270.7
KEK20 10.571.3 4.270.7
KEK21 9.5 71.1 6.071.0

Batch 2 (�1200 V)
KEK19 8.8 70.0 7.870.7
KEK32 38.770.0 5.870.1
KEK33 15.070.0 4.670.2
KEK34 31.270.0 5.370.1
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