
Topology and its Applications 157 (2010) 857–869

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Symmetric extensions of dihedral quandles and triple points
of non-orientable surfaces

J. Scott Carter a,∗,1, Kanako Oshiro b,2, Masahico Saito c,3

a University of South Alabama, United States
b Hiroshima University, Japan
c University of South Florida, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 August 2009
Accepted 1 December 2009

Keywords:
Knot theory
Knotted surfaces in 4-dimensions
Quandles, non-orientable surfaces
Quandle homology
Symmetric quandle homology
Triple point numbers
Dihedral quandles
Quandle extensions

Quandles with involutions that satisfy certain conditions, called good involutions, can
be used to color non-orientable surface-knots. We use subgroups of signed permutation
matrices to construct non-trivial good involutions on extensions of odd order dihedral
quandles.
For the smallest example R̃3 of order 6 that is an extension of the three-element dihedral
quandle R3, various symmetric quandle homology groups are computed, and applications
to the minimal triple point number of surface-knots are given.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we construct an extension R̃m of the dihedral quandle Rm with a non-trivial good involution for each
odd positive integer m = 2n + 1. The extensions R̃m we construct are not involutory, and in particular, not isomorphic to
dihedral quandles. As an application, such an extension is used to study the minimal triple point numbers of non-orientable
surface-knots in thickened 3-manifolds. Detailed definitions will be given in Section 2.

A quandle is a set with a binary operation that is self-distributive: (a � b) � c = (a � c) � (b � c) and satisfies two other
properties. The algebraic structure mimics the Reidemeister moves, and consequently quandles are a fundamental tool in
knot theory. Quandle cohomology theories [2,4] have been constructed, and applied to knots by using quandle elements
as colors and cocycles as weights to define quandle cocycle invariants. The same construction was applied to surface-knots
using triple points of the projections, and a variety of applications have been found.

The original definitions of quandle colorings and quandle cocycle invariants are dependent upon orientations of the dia-
grams, and in particular, the invariants were defined at first only for orientable surface-knots. A quandle is called involutory
if (x � y) � y = x holds for any elements x, y of the quandle. An involutory quandle is also called a kei [23], and has the
property that colorings are defined for unoriented knots and surfaces. To generalize involutory quandles and quandle cocy-
cle invariants for unoriented diagrams and non-orientable surfaces, quandles with good involutions were defined [15] and
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studied [16,19]. Quandles with good involutions are called symmetric quandles. Constructions of symmetric quandles have
depended mainly on computer calculations, or by hand for specific families of quandles, such as dihedral quandles. In par-
ticular, it was shown in [16] that any dihedral quandle of odd order only has the trivial (identity map) good involution. In
this paper, we give a construction of symmetric quandles via extensions of dihedral quandles. Specifically, we prove that
for any odd order dihedral quandle, there is an extension with a non-trivial good involution that is connected and is not
involutory.

The smallest of such extensions is given by a two-to-one quandle homomorphism R̃3 → R3, onto the three-element
dihedral quandle. Various homology groups of this quandle R̃3 are computed, and specific non-trivial cycles and cocycles
are presented. Applications are given for the minimal triple point numbers of non-orientable surfaces.

The minimal triple point number t(K ) of a knotted or linked surface F is defined to be the smallest number of the triple
point numbers among all the diagrams of the surface-link F , and denoted by t(F ). Quandle cocycle invariants [4–6] are used
for studies of minimal triple point numbers of orientable surface-links; Satoh and Shima [22] determined the minimal triple
point number of the 2-twist-spun trefoil, and Hatakenaka [10] gave a lower bound of 6 for the 2-twist-spun figure-eight
knot. Kamada [14] proved that, for any positive integer N , there is an orientable 2-knot (an embedded sphere, a spherical
surface-knot) K with t(K ) > N . His argument (Alexander modules) does not immediately apply to higher genus surfaces or
non-orientable surfaces.

Iwakiri [12] used quandle cocycle invariants to provide a surface-knots K with the triple point canceling number τ (K ) as
large as you please. The triple point canceling number is the minimal number of 1-handles needed to change a surface-knot
into another with a projection that has no triple point. It was pointed out by Satoh that, since τ (K ) � t(K ), Iwakiri’s result
implies that for any positive integer N , there is an orientable surface-knot K with t(K ) > N . Iwakiri’s results can be applied
to higher genus orientable surfaces, but not to non-orientable surfaces.

In [16,19,21], large minimal triple point numbers of (not necessarily orientable, and two-component) surface-links are
realized. Their arguments, however, do not immediately apply to surface-knots. In this paper, we give surface-knots in
thickened 3-manifolds with arbitrary large minimal triple point numbers.

The paper is organized as follows. A summary of definitions and known results necessary for this paper are given in
Section 2. Explicit constructions are given in Section 3 to prove the existence of symmetric extensions of odd order dihedral
quandles. Symmetric quandle homology groups are computed for the smallest such example in Section 4, and applications
to the minimal triple points are presented.

2. Preliminaries

In this section we give a summary of necessary definitions and set up the notation.

2.1. Symmetric quandles

Definition 2.1. ([1,13,18,23]) A quandle, X , is a set with a binary operation (x, y) �→ x � y such that:

(I) (idempotency) for any x ∈ X , x � x = x,
(II) (right-invertibility) for any x, y ∈ X , there is a unique z ∈ X , denoted by x � ȳ, such that x = z � y, and

(III) (self-distributivity) for any x, y, z ∈ X , we have (x � y) � z = (x � z) � (y � z).

Typical examples are conjugations of groups x � y = y−1xy. Any subset of a group closed under conjugation, thus, is a
quandle. In particular for the dihedral group D2m for any positive integer m, the subset Rm of reflections forms a quandle
by conjugation. In this paper, we will concentrate on the case m = 2n + 1 — an odd integer. It is known that D2m has
a presentation 〈x, y : x2 = ym = (xy)2 = 1〉. The reflections and rotations of the regular m-gon are written as xy j and y j

for j = 0, . . . ,m − 1, respectively. Since (xy j)−1(xyi)(xy j) = xy2 j−i , the quandle Rm can be identified with Zm with the
operation i � j = 2 j − i (mod m).

Let G be a group, H a subgroup, s : G → G an automorphism such that s(h) = h for each h ∈ H . Define a binary opera-
tion on G by a � b = s(ab−1)b. Then this defines a quandle structure on G . This passes to a well-defined quandle structure
on the right cosets G/H that is given by Ha � Hb = Hs(ab−1)b. In particular, if ζ ∈ Z(H) ∩ H where Z(H) = {ζ ∈ G:
ζh = hζ for all h ∈ H}, then Ha � Hb = Hab−1ζb defines a quandle structure. Let us denote the resulting quandle by
(G, H, ζ ). This construction is found in [13,18]. For G = D2m with H = 〈x〉 and ζ = x, one computes H yi � H y j =
H yi y− j xy j = Hxy2 j−i = H y2 j−i , so that we have Rm = (D2m, H, x).

Any element c ∈ X of a quandle X , defines a function Sc : X → X by (x)Sc = x � c and that is a quandle automorphism
(by axioms (II) and (III)) and that is called a symmetry of X . The set of symmetries {Sc|c ∈ X} forms the inner automorphism
group of X that is denoted by Inn(X). If Inn(X) acts transitively on X , then X is said to be connected.

Definition 2.2. ([15]) An involution ρ : X → X defined on a quandle is a good involution if x � ρ(y) = x � ȳ and ρ(x � y) =
ρ(x) � y. Such a pair (X,ρ) is called a quandle with a good involution or a symmetric quandle.
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The associated group [8] of a quandle X is G X = 〈x ∈ X: x � y = y−1xy〉. The associated group, G(X,ρ) of a symmetric
quandle (X,ρ) is defined [15,16] by G(X,ρ) = 〈x ∈ X: x � y = y−1xy, ρ(x) = x−1〉. The natural map μ : X → G(X,ρ) is the
composition of the inclusion map X → F (X) and the projection map F (X) → G(X,ρ) , where F (X) is the free group on X .
For a quandle X , an X-set [9] is a set Y equipped with a right action of the associated group G X . For a symmetric quandle
(X,ρ), an (X,ρ)-set is a set Y equipped with a right action of the associated group G(X,ρ) . We denote by yg or by y · g
the image of an element y ∈ Y under the action of g ∈ G(X,ρ) . The following three formulas hold: y · (x1x2) = (y · x1) · x2,
y · (x1 � x2) = y · (x−1

2 x1x2), and y · (ρ(x1)) = y · (x−1
1 ), for x1, x2 ∈ X and y ∈ Y .

2.2. Homology theories for symmetric quandles

A cohomology theory of quandles was defined [4] as a modification of rack cohomology theory [9]. In this section we
review homology groups for symmetric quandles defined in [15], see also [16].

Let Y be an (X,ρ)-set which may be empty. Let Cn(X)Y be the free abelian group generated by (y, x1, . . . , xn), where
y ∈ Y and x1, . . . , xn ∈ X . For a positive integer n, let C0(X)Y = Z(Y ), the free abelian group generated by Y , and set
Cn(X)Y = 0 otherwise. (If Y is empty, then define C0(X) = 0). Define the boundary homomorphism ∂n : Cn(X)Y → Cn−1(X)Y
by

∂n(y, x1, . . . , xn) =
n∑

i=1

(−1)i[(y, x1, x2, . . . , xi−1, x̂i, xi+1, . . . , xn)

− (y · xi, x1 � xi, x2 � xi, . . . , xi−1 � xi, x̂i, xi+1, . . . , xn)
]

for n � 1 and ∂n = 0 for n � 1. Then C∗(X)Y = {Cn(X)Y , ∂n} is a chain complex [9]. Let D Q
n (X)Y be the subgroup of Cn(X)Y

generated by
⋃n−1

i=1 {(y, x1, . . . , xn) | xi = xi+1}, and let Dρ
n (X)Y be the subgroup of Cn(X)Y generated by n-tuples of the form

(y, x1, . . . , xn) + (
y · xi, x1 � xi, . . . , xi−1 � xi,ρ(xi), xi+1, . . . , xn

)
where y ∈ Y , x1, . . . , xn ∈ X , and i ∈ {1, . . . ,n − 1}. Then {D Q

n (X)Y , ∂n} and {Dρ
n (X)Y , ∂n} are subcomplexes of Cn [16], and

chain complexes C R∗ (X)Y , C Q∗ (X)Y , C R,ρ∗ (X)Y , C Q ,ρ∗ (X)Y are defined, respectively, from chain groups C R
n (X)Y = Cn(X)Y ,

C Q
n (X)Y = Cn(X)Y /D Q

n (X)Y , C R,ρ
n (X)Y = Cn(X)Y /Dρ

n (X)Y , C Q ,ρ
n (X)Y = Cn(X)Y /(D Q

n (X)Y + Dρ
n (X)Y ). Their respective ho-

mology groups [16] are denoted by H R∗ (X)Y , H Q∗ (X)Y , H R,ρ∗ (X)Y , and H Q ,ρ∗ (X)Y , respectively. When Y = ∅, this subscript
is dropped. Corresponding cohomology groups are defined as usual, as well as (co)homology groups with other coefficient
groups.

An extension of a quandle X is a surjective quandle homomorphism f : E → X such that for any element of X , the
cardinality of the inverse image by f is constant. We also say that E is an extension of X . In [3], an interpretation of
quandle 2-cocycles was given in terms of extensions of quandles, in a manner similar to group extensions by group 2-
cocycles. It is, therefore, a natural question to ask for a relation between symmetric quandle 2-cocycles and extensions of
symmetric quandles. Here we observe such an interpretation.

Let (X,ρ) be a symmetric quandle, and A be an abelian group, and φ : X2 → A be a symmetric quandle 2-cocycle.
Specifically, φ satisfies:

• φ(x1, x1) = 0,
• φ(x1, x2) − φ(x1, x3) − φ(x1 � x2, x3) + φ(x1 � x3, x2 � x3) = 0 for any x1, x2, x3 ∈ X ,
• φ(x1, x2) + φ(ρ(x1), x2) = 0, and
• φ(x1, x2) + φ(x1 � x2,ρ(x2)) = 0.

An extension of a quandle X by a quandle 2-cocycle φ, denoted by X ×φ A, was defined in [3] by (x,a) � (y,b) = (x � y,a +
φ(x, y)). Define ρ̃ : X ×φ A → X ×φ A by ρ̃(x,a) = (ρ(x),−a).

Proposition 2.3. (X ×φ A, ρ̃) is a symmetric quandle.

This follows from direct calculations.

2.3. Colorings of surface-knots by symmetric quandles

A knot diagram for a classical knot (n = 1) or for a surface-knot (n = 2) is the image of a general position map from a
closed n-manifold (collection of circles or surfaces) into R

n+1 with crossing information indicated by breaking the under-arc
or under-sheet (see [7] for details). Let a surface diagram D of a surface-knot F be given. We cut the diagram further into
semi-sheets by considering the upper sheets also to be broken along the double point arcs. Observe that in the local picture
of a branch point there are two semi-sheets, at a double point there are 4 semi-sheets, and at a triple point, there are 12
semi-sheets.
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Fig. 1. A basic inversion.

Fig. 2. A weight of a triple point.

Let (X,ρ) denote a symmetric quandle, and let Y denote an (X,ρ)-set. The surface diagram D has elements of X
assigned to the sheets and elements of Y assigned to regions separated by the projection such that the following conditions
are satisfied:

• (Quandle coloring rule on over-sheets) Suppose that two adjacent semi-sheets coming from an over-sheet of D about a
double curve are labeled by x1 and x2. If the normal orientations are coherent, then x1 = x2, otherwise x1 = ρ(x2).

• (Quandle coloring rule on under-sheets) Suppose that two adjacent under-sheets e1 and e2 are separated along a double
curve and are labeled by x1 and x2. Suppose that one of the two semi-sheets coming from the over sheet of D , say e3,
is labeled by x3. We assume that a local normal orientation of e3 points from e1 to e2. If the normal orientations of e1
and e2 are coherent, then x1 � x3 = x2, otherwise x1 � x3 = ρ(x2).

• (Region colors) Suppose that two adjacent regions r1 and r2 which are separated by a semi-sheet, say e, are labeled by
y1 and y2, where y1, y2 ∈ Y . Suppose that the semi-sheet e is labeled by x. If the normal orientation of e points from
r1 to r2, then y1 · x = y2.

• An equivalence relation (of a local normal orientation assigned to each semi-sheet and a quandle element associated to
this local orientation) is generated by the following rule (basic inversion): Reverse the normal orientation of a semi-sheet
and change the element x assigned the sheet by ρ(x).

A symmetric quandle coloring, or an (X,ρ)Y -coloring, of a surface-knot diagram is such an equivalence class of symmetric
quandle colorings. See Fig. 1.

We call a diagram D with an (X,ρ)Y -coloring, C D , an (X,ρ)Y -colored diagram and denote it by (D, C D). Let (D, C D) and
(D ′, C D ′ ) be (X,ρ)Y -colored diagrams.

We say that (D, C D) and (D ′, C D ′ ) are Roseman move equivalent if they are related by a finite sequence of Roseman moves
[20] (see also [7]) such that the colors are kept constant outside of each local move.

Let (D, C D) be an (X,ρ)Y -colored diagram of an (X,ρ)Y -colored surface-link (F , C). For a triple point of D , define
the weight as follows: Choose one of eight 3-dimensional regions around the triple point and call the region a specified
region. There exist 12 semi-sheets around the triple points. Let ST , SM and S B be the three of them that face the specified
region, where ST , SM and S B are in the top sheet, the middle sheet and the bottom sheet at the triple point, respectively.
Let nT , nM and nB be the normal orientations of ST , SM and S B which point away from the specified region. Consider a
representative of C D such that the normal orientations of ST , SM and S B are nT , nM and nB and let x1, x2 and x3 be the
labels assigned the semi-sheets S B , SM and ST , with the normal orientations nB , nM and nT , respectively. Let y be the label
assigned to the specified region. The weight is ε(y, x1, x2, x3), where ε is +1 (or −1) if the triple of the normal orientations
(nT ,nM ,nB) does (or does not, respectively) match the orientation of R

3. See Fig. 2. The sum
∑

τ ε(y, x1, x2, x3) of the

weight over all triple points of a colored diagram (D, C D) represents a 3-cycle [cD ] ∈ C Q ,ρ
3 (X)Y [16]. Colored diagrams and

cycles represented by colored diagrams are similarly defined when region colors are absent, or equivalently, when Y = ∅.

Lemma 2.4. ([16,19]) If two colored diagrams (D, C D) and (D ′, C D ′ ) are Roseman move equivalent, then they represent homologous
3-cycles, [C D ] = [C D ′ ] ∈ H Q ,ρ

(X)Y .
3
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For surface-knots or link in R
4, it is known [20] that two diagrams of equivalent (ambiently isotopic) surface-knot or a

link are Roseman move equivalent.

2.4. Triple point numbers

Let F be a surface-link and D a diagram of F . The minimal triple point number of F is evaluated by quandle invariants
with symmetric quandle cocycles as follows:

Lemma 2.5. ([16,19]) Let (X,ρ) be a symmetric quandle. Let θ : Z(X3) → Z be a symmetric quandle 3-cocycle θ ∈ C3
Q ,ρ(X) of

(X,ρ) such that θ(a,b, c) ∈ {0,−1,1} for any (a,b, c) ∈ X3 . For a symmetric quandle coloring C D of the diagram D, if θ([C D ]) = α
for α ∈ Z, then t(F ) � |α|.

Especially, when a symmetric quandle 3-cocycle θ : Z(X3) → Z of (X,ρ) satisfies θ(a,b, c) = ±1 for any (a,b, c) ∈ X3

such that a /∈ {b,ρ(b)} and c /∈ {b,ρ(b)}, we say θ is the 3-cocycle with ± monic terms.
For surface-knots and links in a thickened 3-manifold M × [0,1], where M is a closed 3-manifold, we take the natural

projection p : M × [0,1] → M in the direction of the unit interval to define the diagrams. Then the minimal triple point
number is defined in the same manner as usual. By [11], we may assume that diagrams in M of equivalent (ambiently
isotopic) surface-knot or link in M × [0,1] are Roseman move equivalent.

3. Extensions of dihedral quandles with good involutions

In this section we prove:

Theorem 3.1. For each positive integer n, there is an extension R̃2n+1 of R2n+1 with a non-trivial good involution ρ that is connected
and is not involutory.

Note that there are extensions R2(2n+1) → R2n+1, and R2(2n+1) has a non-trivial good involution for any n > 0, see [16].
In this case, however, R2(2n+1) is involutory and is not connected. Connectedness of quandles play important roles in color-
ing knots and quandle homology. The identity map on an involutory quandle is a trivial good involution. Thus the interesting
features of the extension R̃2n+1 are its connectivity and its non-trivial good involution.

The proof follows a construction of a group extension of the dihedral group and the definition of a quandle structure on
group cosets that were described in Section 2.

Definition 3.2. Let e j denote the column vector in R
m whose jth entry is 1 and the remaining entries are each 0. A signed

permutation matrix is a square matrix of size m matrix whose columns are of the form (±eσ(1),±eσ(2), . . . ,±eσ(m)) where
σ ∈ Σm is a permutation. The set of signed permutation matrices form a group Hm of order 2mm! that is called the hyper-
octahedral group. Define the group S Hm to be the signed permutation matrices of determinant 1.

To avoid extra subscripts, we write (±eσ(1),±eσ(2), . . . ,±eσ(m)) as (±σ(1),±σ(2), . . . ,±σ(m)). Then the matrix multi-
plication, in this notation, is written as(

ε1 · σ(1), . . . , εm · σ(m)
) · (δ1 · τ (1), . . . , δm · τ (m)

) = (
ετ(1)δ1 · σ (

τ (1)
)
, . . . , ετ (m)δm · σ (

τ (m)
))

,

where εi = ±1 and δ j = ±1 for i, j = 1, . . . ,m. The product is obtained by looking at the entry in the τ (1) position of
(ε1 · σ(1), ε2 · σ(2), . . . , εm · σ(m)) and write that entry first after having been multiplied by δ1, then look at the entry in
the τ (2) position and write that second after having been multiplied by δ2, and the process continues to the mth position.
For example, (1,5,4,−3,−2) · (5,1,2,3,4) = (−2,1,5,4,−3) while (5,1,2,3,4) · (1,5,4,−3,−2) = (5,4,3,−2,−1).

We identify a subgroup of S Hm that maps onto the dihedral group. Let m = 2n + 1. Consider the subgroup G2n+1
of S H2n+1 that is generated by the pair of elements a = (1,2n + 1,2n, . . . ,n + 2,−(n + 1), . . . ,−3,−2) and b = (2n +
1,1,2, . . . ,2n).

The dihedral group, D2(2n+1) , will be identified with the image of its faithful representation in permutation matrices.
Specifically, we identify the reflection x with (1,2n + 1,2n, . . . ,2), the rotation y with (2n + 1,1,2, . . . ,2n), and D2(2n+1)

with the subgroup of permutation matrices generated by these two elements. Then the map that takes each matrix (aij) to
(|aij|) defines a group homomorphism onto the dihedral group: f : G2n+1 → D2(2n+1) , such that f (a) = x and f (b) = y.

Lemma 3.3. The order of G2n+1 is (2n + 1) · 22n+1 . The centralizer of a, C(a) = {c ∈ G2n+1: ac = ca}, is generated by the elements(
1, ε2(2n + 1), ε3(2n), . . . , εn+1(n + 2),−εn+1(n + 1), . . . ,−ε2(2)

)
where ε j = ±1 for j = 2, . . . ,n + 1. In particular, |C(a)| = 2n+1 .
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Proof. Let I �ε = (ε1(1), ε2(2), . . . , ε2n+1(2n + 1)) where ε j = ±1 for j = 1, . . . ,2n + 1, such that
∏2n+1

j=1 ε j = 1 (an even
number of entries are negative). There are(

2n + 1

0

)
+

(
2n + 1

2

)
+ · · · +

(
2n + 1

2n

)
= 22n

such elements. We show that these elements are in G2n+1. Since a2 = (1,−2,−3, . . . ,−(2n + 1)), for i = 1, . . . ,2n,
a2(b−ia2bi) has negative signs at the first and the (i + 1)th entries, and positive signs otherwise. Hence b− j(a2b−ia2bi)b j

has negative signs at the ( j + 1)th and (i + j + 1)th entries, and positive signs elsewhere. By multiplying elements of these
forms, any I �ε with an even number of negative signs can be obtained. Since bia = ab−i I �ε for such an I �ε , any element of
G2n+1 is written uniquely as b j I �ε or ab j I �ε . In Lemma 3.7, we will describe the multiplication of such normal forms. This is
analogous to elements of D2n+1 having the form y j and xy j . In total, we have |G2n+1| = (2n + 1) · 22n+1.

If ac = ca, then c must be of the form I �ε or aI �ε . From the equation a · aI �ε = aI �ε · a, we have ε j = ε2n+3− j . Since the
determinants of the matrices are all +1, the initial sign, ε1 must be positive; or else, an odd number of the remaining ε j
are negative, but these signs agree in pairs. Thus

aI �ε = (
1, ε2(2n + 1), . . . , εn+1(n + 1),−εn+1(n), . . . ,−ε2(2)

)
.

A similar computation gives that I �ε = (1, ε2(2), . . . , εn+1(n + 1), εn+1(n + 2), . . . , ε2(2n + 1)) are the only diagonal signed
permutation matrices that commutes with a. These are products of the aI �ε that commute with a. This completes the
proof. �

Let H = C(a) denote the centralizer of a. Consider the quandle structure R̃2n+1 = (G2n+1, H,a) given by Hu � H v =
Huv−1av . From the preceding lemma, we have |R̃2n+1| = (2n + 1)2n .

Lemma 3.4. There is a surjective quandle homomorphism f : R̃2n+1 → R2n+1 .

Proof. The group homomorphism f : G2n+1 → D2(n+1) defined earlier, by f (a) = x and f (b) = y, satisfies f (C(a)) = 〈x〉.
Hence f induces a quandle homomorphism (written by the same letter) f : R̃2n+1 = (G2n+1, C(a),a) → R2n+1 =
(D2(2n+1), 〈x〉, x). �
Lemma 3.5. For any positive integer n, the quandle R̃2n+1 = (G2n+1, H,a) has a good involution.

Proof. Define a map ρ : R̃2n+1 → R̃2n+1 by

ρ(Hu) =
{

H(−1,−2, . . . ,−(n + 1),n + 2, . . . ,2n + 1)u if n is an odd number,

H(1,−2, . . . ,−(n + 1),n + 2, . . . ,2n + 1)u if n is an even number.

Note that the elements inserted (−1,−2, . . . ,−(n + 1),n + 2, . . . ,2n + 1) and (1,−2, . . . ,−(n + 1),n + 2, . . . ,2n + 1), re-
spectively, are indeed elements of G2n+1, as they have even numbers of negative signs. We prove that this map is a good
involution of R̃2n+1.

(i) It is an involution by

(ρ ◦ ρ)(Hu) = H
(
ε1,−2, . . . ,−(n + 1),n + 2, . . . ,2n + 1

)2
u = Hu,

where ε is the sign ±.
(ii) For any element Hu and H v in R̃2n+1,

ρ(Hu) � H v = H
(
ε1,−2, . . . ,−(n + 1),n + 2, . . . ,2n + 1

)
u � H v

= H
(
ε1,−2, . . . ,−(n + 1),n + 2, . . . ,2n + 1

)
uv−1av.

On the other hand,

ρ(Hu � H v) = ρ
(

Huv−1av
) = H

(
ε1,−2, . . . ,−(n + 1),n + 2, . . . ,2n + 1

)
uv−1av.

Hence, ρ(Hu) � H v = ρ(Hu � H v) is satisfied.
(iii) For any element Hu and H v in R̃2n+1,

Hu � ρ(H v) = Hu � H
(
ε1,−2, . . . ,−(n + 1),n + 2, . . . ,2n + 1

)
v

= Huv−1(ε1,−2, . . . ,−(n + 1),n + 2, . . . ,2n + 1
)
a
(
ε1,−2, . . . ,−(n + 1),n + 2, . . . ,2n + 1

)
v

= Huv−1a−1 v.
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The last equality is satisfied by(
ε1,−2, . . . ,−(n + 1),n + 2, . . . ,2n + 1

)
a
(
ε1,−2, . . . ,−(n + 1),n + 2, . . . ,2n + 1

) = a−1.

The equality(
Hu � ρ(H v)

) � H v = Huv−1a−1 v � H v = Huv−1a−1 v v−1av = Hu

implies Hu � ρ(H v) = Hu � H v . �
Lemma 3.6. The quandle R̃2n+1 is not involutory for any positive integer n.

Proof. It is sufficient to show that the equality (Ha � Hb) � Hb = Ha does not hold in R̃2n+1. Since (Ha � Hb) � Hb =
Hab−1abb−1ab = Hb−1a2b, we show that b−1a2b /∈ H . One computes

b−1a2b = (2, . . . ,2n + 1,1)
(
1,−2,−3, . . . ,−(2n + 1)

)
(2n + 1,1, . . . ,2n)

= (2, . . . ,2n + 1,1)
(−(2n + 1),1,−2,−3, . . . ,−2n

)
= (−1,2,−3, . . . ,−(2n + 1)

)
.

By Lemma 3.3, H is generated by some square matrices of size 2n + 1 whose (1,1)-entries are 1, and (1, i)-entries and
( j,1)-entries are 0 for any i, j �= 1. Thus the matrix (−1,2,−3, . . . ,−(2n + 1)) is not an element of H . Therefore, R̃2n+1 is
not involutory. �

Let I be the kernel of the map f : G2n+1 → D2(2n+1) in Lemma 3.4, i.e.,

I =
{

I �ε = (
ε1(1), . . . , ε2n+1(2n + 1)

) ∣∣∣ εi = ±1,

2n+1∏
i=1

εi = 1

}
.

Define the maps fa : I → I , fb : I → I and fb−1 : I → I as follows:

fa
[(

ε1(1), . . . , ε2n+1(2n + 1)
)] = (

ε1(1), ε2n+1(2), . . . , ε2(2n + 1)
)
,

fb
[(

ε1(1), . . . , ε2n+1(2n + 1)
)] = (

ε2n+1(1), ε1(2), . . . , ε2n(2n + 1)
)
, and

fb−1

[(
ε1(1), . . . , ε2n+1(2n + 1)

)] = (
ε2(1), . . . , ε2n+1(2n), ε1(2n + 1)

)
,

where the order of (ε2, . . . , ε2n+1) is reversed for fa , and (ε1, . . . , ε2n+1) is cyclically permuted for fb and fb−1 . We can
easily see that fa , fb and fb−1 are automorphisms of I , f −1

a = fa and f −1
b = fb−1 . Moreover, their actions on the diagonal

matrices correspond to the dihedral actions of the elements x, y, and y−1. To imagine this action consider a necklace of
2n + 1 pearls an even number of which are black. The automorphisms fb and f −1

b act as rotations while fa acts a reflection
of the necklace that fixes the first pearl on the strand.

We also consider distinguished elements

I+ = (
1, . . . ,n,−(n + 1),n + 2, . . . ,2n,−(2n + 1)

)
and

I− = (−1,2, . . . ,n + 1,−(n + 2),n + 3, . . . ,2n + 1
)
,

which have exactly two minus signs. Observe that fb(I+) = I− . Then the following equalities hold:

I �εa = afa(I �ε), I �εb = bfb(I �ε), I �εb−1 = b−1 f −1
b (I �ε),

ba = ab−1 I+, and b−1a = abI−.

Consequently, we have the following relations:

b± ja = ab∓ j

[ j−1∏
k=0

f ∓k
b (I±)

]
and I �εb± j = b± j f ± j

b (I �ε).

If 1 � j � n, then
∏ j−1

k=0 f −k
b (I+) is a diagonal matrix in I that has two blocks of j contiguous (−)-signs; the first block ends

at n + 1, and the second block ends at 2n + 1. In particular,
∏n−1

k=0 f −k
b (I+) has exactly one (+)-sign at position (1). Similarly,∏n−1

k=0 f k
b (I−) has exactly one (+)-sign at position (n + 1).

For i = 1, . . . ,2n + 1, let I(i) denote the diagonal matrix that has exactly one (+)-sign at position (i, i) and (−1)’s at the
other positions along the diagonal.
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Lemma 3.7. The following product formulas hold:

1. (bi I �ε)(b j I�δ) = bi+ j f j
b (I �ε)I�δ ,

2. (bi I �ε)(ab j I�δ) = ab j−i[∏i−1
k=0 f j−k

b (I+)] f j
b ( fa(I �ε))I�δ ,

3. (abi I �ε)(ab j I�δ) = a2b j−i[∏i−1
k=0 f j−k

b (I+)] f j
b ( fa(I �ε))I�δ ,

4. (abi I �ε)(b j I�δ) = abi+ j f j
b (I �ε)I�δ .

Proof. The calculations follow directly from the formulas above. �
Lemma 3.8. The quandle R̃2n+1 is connected.

Proof. Since any element of G2n+1 is written as bi I �ε or abi I �ε for some i ∈ {0, . . . ,2n} and I �ε = (ε1(1), . . . , ε2n+1(2n+1)) ∈ I ,
any element of R̃2n+1 is written as Hbi I �ε . We further abbreviate I �ε as �ε . Thus Greek letters with arrows in the formulas
below indicate diagonal matrices.

Claim 1. For any Hbi �ε ∈ R̃2n+1 , there exists a matrix �δ ∈ I such that(
Hbi � Hbn+i) � Hbn+i �δ = Hbi �ε.

Proof of Claim 1. Using Lemma 3.7, one computes(
Hbi � Hbn+i) � Hbn+i �δ = Hbib−(n+i)abn+i �δb−(n+i)abn+i �δ

= Hb−nabn+i �δb−n−iabn+i �δ
= Habn

[
n−1∏
l=0

f l
b(I−)

]
bn+i �δb−n−iabn+i �δ

= Hbn I(n + 1)bn+i �δb−n−iabn+i �δ
= Hb2n+i f n+i

b

(
I(n + 1)

)�δb−n−iabn+i �δ
= Hbn f −n−i

b

(
f n+i
b

(
I(n + 1)

)�δ)abn+i �δ
= Hbn I(n + 1) f −n−i

b (�δ)abn+i �δ
= Hbnabn+i( f n+i

b ◦ fa
)(

I(n + 1) f −n−i
b (�δ))�δ

= Hab−n

[
n−1∏
l=0

f −l
b (I+)

]
bn+i f n+i

b

(
I(n + 2)

)(
f n+i
b ◦ fa ◦ f −n−i

b

)
(�δ)�δ

= Hbi f n+i
b

(
I(1)

)
f n+i
b

(
I(n + 2)

)(
f n+i
b ◦ fa ◦ f −n−i

b

)
(�δ)�δ

= Hbi I(n + i + 1)I(i + 1)
(

f n+i
b ◦ fa ◦ f −n−i

b

)
(�δ)�δ

= Hbi I(n + i + 1)I(i + 1)
(

f 2n+2i
b ◦ fa

)
(�δ)�δ.

Then one computes(
f 2n+2i
b ◦ fa

)
(�δ) = (δ2i, δ2i−1, . . . , δ1, δ2n+1, . . . , δ2i+1),

where we abbreviated the notation omitting the numbers that specify the entry, as all matrices in question for the rest of
the proof are diagonal (for example, the first entry of the first case should read δ2i(1)). With this convention, we obtain the
expression

C(�δ) = I(n + i + 1)I(i + 1)
(

f 2n+2i
b ◦ fa

)
(�δ)�δ

= I(n + i + 1)I(i + 1)(δ1δ2i, δ2δ2i−1, . . . , δ2iδ1, δ2i+1δ2n+1, . . . , δ jδk, . . . δ2n+1δ2i+1)

where the generic kth term δ jδk has the property that j + k ≡ 2i + 1 (mod 2n + 1). For any choice of �δ, the entry of
( f 2n+2i

b ◦ fa)(�δ) · (�δ) for which 2 j ≡ 2i + 1 (mod 2n + 1) is (δ j)
2. Solving, we see that this is position j = i +n + 1. Therefore,

C(�δ) = (
δ1δ2i, δ2δ2i−1, . . . , δiδi+1,−δi+1δi, δi+2δi−1, . . . , δ2iδ1,

δ2i+1δ2n+1, . . . , δn+iδi+n+2,−
(
δ2 )

, δn+i+2δi+n, . . . , δ2i−1δ2n+1
)
.
n+i+1
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Table 1

R � C 0 1 2 3 4 5

0 0 5 1 0 2 4
1 2 1 3 5 1 0
2 4 0 2 1 3 2
3 3 2 4 3 5 1
4 5 4 0 2 4 3
5 1 3 5 4 0 5

We choose a set of coset representatives {Hbi �ε} for each i = 1, . . . ,2n + 1 as follows. Let �ε ∈ I be given. Define S �ε(i) ⊂
{i + 2, . . . ,n + i + 1} by the condition s ∈ S �ε(i) if and only if εs = ε2i+2−s where throughout all subscripts are taken mod
(2n + 1) but chosen to be the representative element in {1, . . . ,2n + 1}. We show that Hbi �ε and Hbi �η represent the same
coset if and only if S �ε(i) = S �η(i). The cosets Hbi �ε and Hbi �η are the same if and only if bi �ε · �η b−i ∈ H , and bi �ε · �η b−i =
f −i
b (�ε · �η). On the other hand, from the proof of Lemma 3.3, a diagonal matrix is an element of H if and only if it has the

form (1, ε′
2, . . . , ε

′
n+1, ε

′
n+1, . . . , ε

′
2), so that f −i

b (�ε · �η) ∈ H if and only if εi+1 · ηi+1 = 1, εi+2 · ηi+2 = εi · ηi , and so forth,
which implies S �ε· �η = {i + 2, . . . ,n + i + 1}. Thus εi+1 = ηi+1, and S �ε(i) = S �η(i). Hence {S �ε(i)} represent cosets uniquely.

Now we show that for any �ε ∈ I there is C(�δ) such that Hbi �ε and Hbi C(�δ) represent the same coset. If n + i + 1 ∈ S �ε(i),
then εn+i+1 = εn+i+2. Hence the product δn+i+2δi+n = −(δn+i+1)

2 is negative. This sign then determines the sign of the
entry in position (i + n) of C(δ). We continue in this way: i + n ∈ S �ε(i) if and only if δn+i+3δi+n−1 = −1. Inductively, the
signs of the products δkδ2i+1−k are determined (cyclically) to the right of the (n + i + 1)st entry by the values to the left and
by considering whether or not a given element is in S �ε(i). In this way, we obtain families �δ for which SC(�δ)(i) = S �ε(i). �
Claim 2. For any elements Hbi �ε1 and Hbi �ε2 of R̃2n+1 , there exist symmetries S1, . . . , Sμ of R̃2n+1 such that (Hbi �ε1)(Se1

1 ◦· · ·◦ S
eμ
μ ) =

Hbi �ε2 , where e j = ±1 for j = 1, . . . ,μ.

Proof of Claim 2. From Claim 1, it follows that for each j = 1,2, there is a matrix �δ j such that (Hbi � Hbn+i) � Hbn+i �δ j =
Hbi �ε j . Denote the symmetries coming from Hbn+i , Hbn+i �δ1 and Hbn+i �δ2, by Sb , S1 and S2, respectively. Then

((
Hbi �ε1

)
S−1

1

)
S2 = ((((

Hbi �ε1
)

S−1
1

)
S−1

b

)
Sb

)
S2 = ((

Hbi)Sb
)

S2 = Hbi �ε2

as desired. �
Claim 3. For any element Hbi �ε of R̃2n+1 , there exists some symmetries S1, . . . , Sν of R̃2n+1 such that (H)(Se1

1 ◦ · · · ◦ Seν
ν ) = Hbi �ε ,

where e j = ±1 for j = 1, . . . , ν .

Proof of Claim 3. Reduce the integer k = i(n + 1) modulo 2n + 1. Then we have

H � Hbk = Hb−kabk = Hb2k f k
b

[
k−1∏
l=0

f l
b(I−)

]
= Hbi f k

b

[
k−1∏
l=0

f l
b(I−)

]
.

To simplify the notation, let �α = f k
b (

∏k−1
l=0 f l

b(I y)). By Claim 1, there exists some symmetries S1, . . . , Sμ of R̃2n+1 such that

(Hbi �α)(Se1
1 ◦ · · · ◦ S

eμ
μ ) = Hbi �ε , where e j = ±1 for j = 1, . . . ,μ. Therefore we obtain

(H)
(

S Hbk ◦ Se1
1 ◦ · · · ◦ S

eμ
μ

) = Hbi �ε
as desired. �

Lemma follows from Claim 3. �
Theorem 3.1 follows from Lemmas 3.4, 3.5, 3.6, and 3.8.

Example 3.9. The extension R̃3 = (G3, C(a),a), where H = C(a), a = (1,3,−2) and b = (3,1,2), consists of 6 elements. The
six elements are represented by 0 through 5 as (0 = H, 1 = Hb2, 2 = Hb, 3 = H(−1,−2,3), 4 = Hb2(−1,2,−3), 5 =
Hb(−1,−2,3)) with the quandle operation given by Table 1.

The map f : R̃3 → R3 is given by f (i) ≡ i (mod 3). The good involution is the involution ρ = (0 3)(1 4)(2 5).



866 J.S. Carter et al. / Topology and its Applications 157 (2010) 857–869
Fig. 3. A diagram of the surface constructed.

4. Homology groups of R̃3 and triple point numbers

For R̃3, computer calculations give the results below on symmetric quandle homology groups. Let χ(x,y,z) ∈
C3

Q ,ρ(R̃2n+1,Z) be the characteristic function. Define a 3-cochain

A(x, y, z) = χ(x,y,z) − χ(ρ(x),y,z) − χ(x�y,ρ(y),z) − χ(x�z,y�z,ρ(z)) + χ(ρ(x)�y,ρ(y),z)

+ χ(ρ(x)�y,y�z,ρ(z)) + χ((x�y)�z,ρ(y)�z,ρ(z)) − χ((ρ(x)�y)�z,ρ(y)�z,ρ(z)).

Then Mathematica calculations show:

Lemma 4.1. Let R̃3 be as above.

(i) H Q ,ρ
2 (R̃3,Z) = 0, H Q ,ρ

3 (R̃3,Z) ∼= Z.

(ii) The 3-chain c = (2,1,2) + (2,0,1) − (1,0,2) − (0,2,1) ∈ C Q ,ρ
3 (R̃2n+1,Z) is a 3-cycle (c ∈ Z Q ,ρ

3 (R̃3,Z)) that represents a

generator [c] of H Q ,ρ
3 (R̃3,Z) ∼= Z.

(iii) Any 3-cycle with less than 4 basis terms (triples) is null-homologous.
(iv) The 3-cochain φ = A(0,1,0) + A(0,1,2) − A(0,2,1) is a 3-cocycle (φ ∈ Z 3

Q ,ρ(R̃3,Z)) that represents a generator of

H3
Q ,ρ(R̃3,Z) ∼= Z dual to [c], that is: φ([c]) = 1.

(v) The 3-cochain φ′ = A(0,1,0) + A(0,1,2) + A(0,2,0) − A(0,2,1) + A(1,0,1) − A(1,0,2) + A(1,2,0) + A(1,2,1) +
A(2,0,1) + A(2,0,2) − A(2,1,0) + A(2,1,2) is a 3-cocycle with ± monic terms such that φ′([c]) = 4.

Theorem 4.2. For any positive integer N, there is a closed 3-manifold M and a non-orientable surface-knot F in M × [0,1] such that
t(F ) > N.

Proof. For the 3-cycle c of Lemma 4.1(ii), make a colored triple point in a 3-ball for each basis term. The degenerating
terms are capped by branch points. Connect them together to form a larger 3-ball B with all triple points and branch points
included, see Fig. 3. The boundary ∂ B contains a colored classical link diagram illustrated in Fig. 4. One can also obtain
Fig. 4 from the formula for the 3-cycle c of Lemma 4.1(ii) as follows: The 3-cycle c is represented by a colored diagram
with region colors as depicted in Fig. 5. Take the “double” of Fig. 5 and extend, see Fig. 6. By smoothing the black dots that
represent branch points, we obtain Fig. 4.

Then add 1-handles to connect double curves of the diagram. In Fig. 4 the attaching disks of 1-handles are indicated by
dotted circles. The shapes of the circles, T -shaped, oval and circle, respectively, together with the colors of arcs indicate the
pairs of the attaching regions. Note that the oval and circle ones must be rotated 180 degrees before identifying. This twist
makes the surface non-orientable. A handlebody H of genus 3 results as an ambient manifold, and it has 5 closed curves
on the boundary.

Attach 2-handles to H along the closed curves on the boundary. Let M ′
0 be the result, which is a compact 3-manifold

with boundary. By capping off the boundary of M ′
0 by handlebodies, we obtain a closed orientable 3-manifold M0 with a

diagram D0 in it, that represents c. Let m be an integer such that 4m > N . Taking an m-fold knot connected sum, we have a
connected closed 3-manifold M = #m M0 and a connected, colored diagram D = #m D0 in M which represents mc. By lifting
D to M ×[0,1], we obtain the surface-knot F whose minimal triple point number is greater than N: Using the 3-cocycle φ′
in Lemma 4.1, we have t(F ) � 4m by Lemma 2.5. Therefore we obtain the inequality t(F ) > N . �

Note that using the 3-cocycle φ′ , we can also prove that the minimal triple point number of the constructed surface-knot
F in the above proof is exactly 4m.

The next result shows that homological conditions on the surface changes the triple point numbers.
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Fig. 4. Adding 1-handles.

Fig. 5. Representing the 3-cycle c.

Proposition 4.3. Any surface-knot diagram colored with R̃3 in a closed 3-manifold M that is null-homologous in H2(M;Z2) as an
underlying generic surface, and with less than 8 triple points, is null-homologous in H Q ,ρ

3 (R̃3,Z).

For the proof, we need the following lemma, calculated by Mathematica. Let Y = {α,β}, and let R̃3 act on Y by α · u = β ,
β ·u = α for any u ∈ R̃3. This provides cycles represented by colored diagrams with regions with checkerboard colorings. The
map of deleting the first factor π : (α or β, x1, . . . , xn) �→ (x1, . . . , xn) induces a chain map π : C Q ,ρ

n (R̃3,Z)Y → C Q ,ρ
n (R̃3,Z).

Lemma 4.4. Let R̃3 , Y be as above.

(i) H Q ,ρ
3 (R̃3,Z)Y ∼= Z × Z3 .

(ii) The 3-chain

γ = (α,0,1,0) + (α,0,1,2) + (α,0,2,0) + (α,1,2,0)

− (α,2,1,0) + (β,0,2,0) + (β,1,2,0) + (β,2,0,1) ∈ C Q ,ρ
3 (R̃3,Z)Y

is a 3-cycle (γ ∈ Z Q ,ρ
3 (R̃3,Z)Y ) that represents a generator [γ ] of Z ⊂ H Q ,ρ

3 (R̃3,Z)Y .
(iii) Any 3-cycle with less than 8 basis terms (quadruples) is null-homologous.
(iv) The 3-cochain φ′′ = A(0,1,0) + A(0,1,2) + A(0,2,0) − A(0,2,1) + A(1,0,1) − A(1,0,2) + A(1,2,0) + A(1,2,1) +

A(2,0,1) + A(2,0,2) − A(2,1,0) + A(2,1,2) is a 3-cocycle (φ′′ ∈ Z Q ,ρ
3 (R̃3,Z)) with ± monic terms such that φ′′ ◦

π∗([γ ]) = 8.
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Fig. 6. Assembling triple points.

Fig. 7. A 3-colorable virtual knot that has no non-trivial coloring by R̃3.

Lemma 4.5. The induced map π∗ : H Q ,ρ
3 (R̃3,Z)Y → H Q ,ρ

3 (R̃3,Z) restricted to the Z factor multiplies the generator by 2.

Proof. One computes φ ◦ π∗([γ ]) = φ((0,1,0) + (0,1,2) + (0,2,0) + (1,2,0) − (2,1,0) + (0,2,0) + (1,2,0) + (2,0,1)) =
2. �
Proof of Proposition 4.3. Let D be a colored diagram in a closed 3-manifold M whose underlying generic surface represents
a null-homologous class in H2(M;Z2), and that is non-trivial in H Q ,ρ

3 (R̃3). In particular, we have φ(D) �= 0, where φ is
a cocycle in Lemma 4.1(iv). Then there is a checkerboard coloring for D as it is null homologous in H2(M;Z2), and let
D ′ be the cycle in Z Q ,ρ

3 (R̃3,Z)Y represented by D with the checkerboard coloring. Since π∗([D ′]) �= 0 in H Q ,ρ
3 (R̃3,Z), by

Lemma 4.5, [D ′] is non-trivial in H Q ,ρ
3 (R̃3,Z)Y . Then Lemma 4.4(iii) implies that D must have at least 8 triple points. �

Remark 4.6. Note that any coloring by R̃3 gives rise to a coloring by R3 by the map f : R̃3 → R3, but the converse is not
necessarily true. All classical 3-colorable knots we tested, however, have non-trivial colorings by R̃3, so we conjecture that
it is always the case.

On the other hand, there are virtual knots that are 3-colorable but are not non-trivially colored by R̃3. Such an example
is depicted in Fig. 7. The virtual knot in the figure is 3-colorable, and any coloring by R3 is determined uniquely by the
colors on the arcs labeled A and B , so that there are 9 colorings by R3, three of which are trivial. Suppose there is a non-
trivial coloring by R̃3. If the induced 3-coloring is trivial, say 0 ∈ R3, then the coloring consists of the two lifted colors, say 0
and 3. These two elements, however, satisfy 0 � 3 = 0 and 3 � 0 = 3, so that a connected virtual knot will be monochromatic,
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a contradiction. Hence we may assume that the given non-trivial coloring induces a non-trivial 3-coloring. Let α, α′ and
β ∈ R̃3 be the colors assigned on the arcs A, A′ and B , respectively, with respect to the right direction normals as depicted.
The induced colors of R3 are the same for α and α′ , that is, f (α) = f (α′). Hence α′ = α or ρ(α). Note, by inspection, that
(x � y) � y = ρ(x) holds for any x, y ∈ R̃3 such that x �= y and x �= ρ(y). Hence the colors of the arcs on C and C ′ are α � β

and ((α′ � β) � β) � β = ρ(α′ � β) = ρ(α′) � β , respectively. By tracing this arc back we see that for any choice of α or α′ , no
consistent coloring can be obtained.

Concluding remarks. The most remarkable aspect of this quandle X = R̃3 is its free part in H3 despite its being connected
(Lemma 4.1(i)). It is known [17] that the ordinary quandle homology groups do not have free part if it is connected.
This shows that the symmetric quandle homology is quite different from the original quandle homology, and this fact
should be useful for non-orientable surfaces. We conjecture, however, that any surface-knot diagram in R

3 colored by R̃3

represents null-homologous class in H Q ,ρ
3 (R̃3,Z)Y . It is an interesting fact that, from Proposition 4.3, the homology class a

surface represents in homology groups of the parent 3-manifold is related to the non-triviality in quandle homology and
the minimal triple point number.

It is an interesting problem to compute the quandle (co)-homology of quandle extensions (which are given by surjective
quandle homomorphisms) in terms of the homological information of the source, target, and fiber.
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