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Rapid remodeling of the actin cytoskeleton in the pre- and/or post-synaptic compartments is responsible for the
regulation of neuronal plasticity, which is an important process for learning andmemory. Cofilin1 plays an essen-
tial role in these processes and a dysregulation of its activity was associated with the cognitive decline observed
during normal aging and Alzheimer's disease (AD). To understand themechanism(s) regulating Cofilin1 activity
we evaluated changes occurring with regard to Cofilin1 and its up-stream regulators Lim kinase-1 (LIMK1) and
Slingshot phosphatase-1 (SSH1) in (i) human AD brain, (ii) 1-, 4-, and 10-months old APP/PS1 mice, (iii) wild
type 3-, 8-, 12-, 18- and 26-months old mice, as well as in cellular models including (iv) mouse primary cortical
neurons (PCNs, cultured for 5, 10, 15 and 20 days in vitro) and (v) mouse embryonic fibroblasts (MEF). Interest-
ingly, we found an increased Cofilin1 phosphorylation/inactivation with age and AD pathology, both in vivo and
in vitro. These changes were associated with a major inactivation of SSH1. Interestingly, inhibition of γ-secretase
activitywith Compound-E (10 μM)prevented Cofilin1 phosphorylation/inactivation through an increase of SSH1
activity in PCNs. Similarly, MEF cells double knock-out for γ-secretase catalytic subunits presenilin-1 and -2
(MEFDKO) showed a strong decrease of both Cofilin1 and SSH1phosphorylation,whichwere rescued by the over-
expression of human γ-secretase. Together, these results shed new light in understanding the molecular mech-
anisms promoting Cofilin1 dysregulation, both during aging and AD. They further have the potential to impact
the development of therapies to safely treat AD.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer's disease (AD) is the most common form of dementia
among the elderly. Amyloid-β peptides (Aβ) form senile plaques,
which, together with hyperphosphorylated tau-based neurofibrillary
tangles (NFT), are the hallmarks of AD neuropathology [1]. From a clin-
ical point of view, a decline in episodic memory is observed, often mis-
taken with normal aging-related cognitive deficiencies [1]. These
similarities raised questions about the role of aging in AD onset and pro-
gression, thus demanding major efforts to clarify the molecular mecha-
nisms underlying these processes [2].

Aβ is strongly suspected to play a major role in the development of
dementia. Elevated Aβ levels produce abnormalities in learning and
synaptic functions in amyloid precursor protein (APP) transgenic mice
id precursor protein; APP/PS1,
id precursor protein knockout
; CpdE, Compound E; DIV, days
orm1;MEFs,mouse embryonic
of γ-secretase, presenilin-1 and
ressing the human γ-secretase
alneurons;pCofilin1,phosphor-
ase isoform 1; PS1, presenilin 1;
SH1, Slingshot phosphatase iso-

).
[3,4]. Furthermore, studies in human [5,6] and 3×Tg-AD mice (triple
transgenic model of AD) [7] highlighted the importance of soluble
endocytosed intraneuronal Aβ as the initial mediator of Tau pathology
and cognitive decline. Indeed, although senile plaque-formation has
been widely proposed to be responsible of the Aβ toxic effects, meticu-
lous analyses of AD patients suggest that the soluble pool of Aβ42 corre-
lates better with cognitive decline than Aβ plaques [5,6,8]. Oligomers of
Aβ42 significantly (i) diminish long-term potentiation (LTP), which is
needed for learning and memory [9], (ii) promote an increase of oxida-
tive stress [10–12], (iii) impair synaptic functions [9,12]. Whether these
effects are mainly due to the extracellular or to the endocytosed Aβ re-
main to be clarified, although disturbances in the metabolism of Aβ
might regionally increase Aβ42 levels that negativelymodulate neuronal
activity and potentially lead to a decline in cognitive performance [13].

Aβ peptides are derived from APP, a type I membrane protein that
undergoes a first cleavage by β-secretase leading to the production of a
99 amino-acid long APP-C99 (APP-C-terminal fragment). The latter is
further processed within the membrane bilayer by the intramembrane
aspartyl-protease γ-secretase to generate an APP intracellular domain
(AICD) released into the cytoplasm, and Aβ secreted in the extracellular
compartment [14]. Despite the prominent role of γ-secretase in driving
Aβ production, its involvement in the cellular pathways regulating cog-
nitive processes is controversial because both the increase and the lack
of γ-secretase activity were reported to impair synaptic function and
neuronal survival [15–18]. APP is not the unique substrate for γ-
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secretase, which is responsible for the cleavage of a broad range of pro-
tein receptors playing a role in neuronal trafficking and synaptic plastic-
ity [reviewed in [19]].

Recently, modifications of γ-secretase by nitrosative stress were
found to be responsible for an age-dependent increase of the Aβ42/Aβ40

ratio in rat hippocampal neurons, thus offering a new possible mecha-
nism linking aging and AD [20]. Indeed, the accumulation of Aβ42

would trigger a pathological mechanism leading to an aberrant neuritic
morphology, sprouting and breakdown [21], which affect the structure
of synapses and lead to (i) alteredneuronal electrophysiology [22], (ii) in-
hibition of long-termpotentiation [23] and (iii) transientmemory deficits
[24].

These phenomena strictly involve the actin cytoskeleton, which ac-
tively participates in thematuration and in themaintenance of the syn-
apses by regulating spine morphology [25], receptor anchoring/
trafficking and synaptic plasticity [26,27]. Among numerous actin-
binding proteins, the actin-depolimerizing factor (ADF)/cofilin family
proteins, comprising inmammals Cofilin1 (a non-muscle type), Cofilin2
(amuscle-type) andADF (also known as destrin), critically control actin
filament dynamics and reorganization by severing and depolymerizing
actin filaments [28]. A growing body of evidence lends support to a
link between neurite transport defects or impaired synaptic plasticity
observed with age or in neurodegenerative diseases, and alterations in
the organization and dynamics of the actin cytoskeleton initiated by
Cofilin1 [27,29–31]. Regulation of Cofilin1 activity is quite complex
and involves cross-talking pathways [30]. In particular, Cofilin1 is
inactivated by LIMkinase isoform1 (LIMK1)-mediated phosphorylation
at Serine 3 (Ser3), and is reactivated by Slingshot phosphatase isoform1
(SSH1)-mediated dephosphorylation [28]. Although other kinases and
phosphatases can affect Cofilin1 activity, LIMK1 and SSH1 show the
highest substrate specificity [30]. Remarkably, phosphorylation of Thre-
onine 508 activates LIMK1 whereas phosphorylation at Serine 937 and
978 inactivates SSH1 [28]. In addition, not only Cofilin1 but also LIMK1
is a substrate for SSH1 activity, which in thisway can control Cofilin1 ac-
tivation either directly or indirectly through an upstream regulation of
LIMK1 [32].

In this study, we show that a dysregulation of SSH1/LIMK1/Cofilin1
(hereafter, Cofilin1 pathway) occurs in the brain as an effect of both
age and AD pathological features. We further demonstrate that γ-
secretase activity is involved in the regulation of both Cofilin1 protein
levels and phosphorylation/inactivation, providing potential new in-
sights into the molecular mechanisms that link aging to AD.

2. Materials and methods

2.1. Human tissues

Post-mortem tissues from frontal cortex were obtained from the Jo-
seph and Kathleen Bryan Alzheimer's Disease Research Center, Duke
University Medical Center [33]. Controls were compared to patients
with moderate to severe Alzheimer's disease. The age of death, gender
and postmortem intervalwere comparable in both groups. Demograph-
ic and diagnostic features available for patients used in this study are
showed in the Supplementary Table 1.

2.2. Animals

All animal procedures were performed in accordance to Swiss au-
thority guidelines. Animals were sacrificed at the selected age, brains
were extracted, weighed, flash-frozen, and stored at −80 °C until
total protein extraction from one hemibrain and further analyses. Fro-
zen brain specimens were obtained from 3-, 8-, 12-, 18- and 26-
months old wild type (WT) (C57Bl/6 J) mice and 1-, 4- and 10-
months old APPKM670/671NL/PS1L166P transgenic mice (APP/PS1) mice
[34] or APP knock-out (APPKO) mice [35], and their littermate controls.
APP/PS1 mice were studied at 1, 4 and 10 months of age, because this
is the time frame during which these mice develop all pathological AD
features [34]. Indeed, cerebral amyloidosis starts at 6–8 weeks, and
the ratio of human amyloid Aβ42/Aβ40 is respectively 1.5 and 5 in
pre-depositing (1 month-old) and amyloid-depositing mice (4 and
10 months-old). Consistent with this ratio, extensive congophilic pa-
renchymal amyloid but minimal amyloid angiopathy is observed [34].
Amyloid-associated pathologies include dystrophic synaptic boutons,
hyperphosphorylated tau-positive neuritic structures and robust gliosis,
with neocortical microglia number increasing threefold from 1 to
8 months of age. Global neocortical neuron loss is not apparent up to
8 months of age, but local neuron loss in the dentate gyrus is observed.
In addition, diffuse Aβ plaques are strongly increased at 8 month and
defects in cognition were observed only at 8 month [34]. Because the
age process in WT mice is much longer than that observed in APP/PS1
mice, we have decided not to limit the analysis of the Cofilin1 pathway
in WT mice to the time points selected for APP/PS1 mice. Indeed, ac-
cording to the American Federation of Aging Research criteria (http://
www.afar.org/research/funding/animal-use/), 2–3 months-old mice
can be considered young and they represent the biological equivalent
of teen-agers and college freshmen, whereas 26 months-old mice can
be considered old, taking also into consideration that a median survival
is of about 24 months. Finally APPKOmice [35]were studied at the same
time points selected for APP/PS1 mice to test whether the changes ob-
served in a model characterized by an accelerated APP cleavage (APP/
PS1) were different in the absence of APP protein.

2.3. Cell culture and treatments

Mouse primary cortical neurons (PCNs) were prepared from embry-
onic day 17 Of1 mouse fetal brains. Cortices were digested in a media
containing papain (20 U/ml, Sigma-Aldrich GmbH, Buchs, Switzerland)
anddissociated bymechanical trituration. Cellswere plated in neurobasal
medium (Invitrogen, LuBioScience GmbH, Lucerne, Switzerland) supple-
mentedwith B27 (Invitrogen, LuBioScienceGmbH, Lucerne, Switzerland)
and 2mM L-glutamine on poly-L-ornythine coated plates at 1 × 105 cells/
cm2 at 37 °C in a humidified 5% CO2 atmosphere. At day 5, 10, 15 and 20,
neurons werewashed twice with PBS and proteins were extracted as de-
scribed below. The criteria to univocally establish at what age in vitro
PCNs reflect aging neurons in vivo do not appear very clear due to diver-
gent interpretations. Indeed, from one side, it was reported that during
the first week, in vitromouse PCNs establishmorphological and function-
al axons and dendrites; during the second week they establish synaptic
activity and from the third week on (14 DIV) they begin to show canon-
ical signs of aging, including (i) accumulation of ROS, (ii) lipofuscin gran-
ules, (iii) heterochromatic foci, (iv) activation of the c-Jun N-terminal
protein kinase (JNK) and (v) the DNA repair p53/p21 pathways as well
as (vii) cholesterol loss and (viii) increased cholesterol-24-hydroxylase
[36–38]. In addition, in vitro hippocampal neurons cultured for 3 weeks
(21 DIV) undergo a time-associated increase in tubulin acetylation simi-
lar to that observed in vivo, and a time-associated increase in the phos-
phorylation of the microtubule-associated protein Tau [38] similar to
those reported either in aged human brains [39] or in mouse models of
senescence [40]. On the other side, it has been shown that starting at 28
DIV, mouse PCNs present a time-dependent and significant increase in
known features of the aging brain, including protein oxidation, creatine
kinase expression and calcium channel density [41,42]. In addition,
based on phase contrast microscopy and the evaluation of the neuronal
nuclear protein NeuN levels in mouse PCNs cultured from 5 to 60 DIV,
it seems that (i) 20–25DIV cultured neurons show typical signs of neuro-
nal maturation, while (ii) only a subset of the neuronal population sur-
vives through DIV60 [43]. Thus, this spontaneous age-related loss of
neurons supports an important distinction between DIV 20–25 neurons
(“matured neurons”) and DIV60 neurons (“aged neurons”). Based on
the above-cited information, 20 DIV neurons used in this study may bet-
ter reflect mature-to-old neurons in vivo, and not exclusively aging neu-
rons in the brain. To test γ-secretase activity-dependent changes of
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Cofilin1 pathway, the day before the selected time points, neurons were
treated overnightwithDMSO (0.25%) orγ-secretase inhibitor Compound
E (CpdE) (10 μM, Merck Millipore, Darmstadt, Germany) and then sub-
jected toWestern Blot analysis as described below. Mouse Embryonic Fi-
broblasts: (i) wild-type (MEF), (ii) double knock-out for presenilin-1
(PS1) and -2 (PS2) [MEFDKO, [44,45]] and (iii) double knock-out overex-
pressing the human γ-secretase complex [MEFDKO + hγ-secretase, [46]]
were grown in 10 cm dishes in DMEM, supplemented with 10% fetal bo-
vine serum (FBS) and penicillin/streptomycin (P/S) (Invitrogen,
LuBioScience GmbH, Lucerne, Switzerland).
2.4. Western Blot

Total protein extracts were prepared in 1% NP40–HEPES buffer
(50 mM HEPES, pH 7.0, 150 mM NaCl, 5 mM MgCl2, 5 mM CaCl2),
supplemented with protease inhibitor cocktail (Roche, Rotkreuz,
Switzerland), and were clarified by centrifugation for 1 h at 16,000 ×g,
4 °C. Protein concentrations were determined using standard BCA
assay (Pierce, Rockford, IL, USA). Ten micrograms of protein were re-
solved on 4–12% Bis-Tris PAGE gels (Invitrogen, LuBioScience GmbH,
Lucerne, Switzerland), or on standard 12% acrylamide/bisacrylamide
Tris Glycine gels for SDS-PAGE analysis. For immunoblot analysis, gels
were transferred onto nitrocellulose membranes (Whatman, Dassel,
Germany), and incubated overnight at 4 °Cwith the following antibodies:
anti-Cofilin1 612144 (1:1000, Bd Transduction Laboratories, Allschwil,
Switzerland) anti-phospho(Ser3)-Cofilin1 3311 s (1:500, Cell Signaling,
Bioconcept, Allschwill, Switzerland), anti-phospho(Ser3)-Cofilin1
ab12866 (1:1000, abcam, Cambridge, United Kingdom), anti-LIMK1
ab87971 (1:1000, abcam, Cambridge, United Kingdom), anti-
phospho(Thr508)-LIMK1 ab38508 (1:500, abcam, Cambridge, United
Kingdom), anti-SSH1 ab107799 (1:1000, abcam, Cambridge, United
Kingdom), anti-phospho(Ser978)-SSH1 SP3901 (1:500, ECM Biosciences,
Versailles, KY, USA), anti-PS1 ab10281 (1:1000, abcam, Cambridge,
United Kingdom), anti-APP-C terminal fragments (CTFs) A87717
(1:10,000, Sigma-Aldrich, GmbH, Buchs, Switzerland), anti-Chronophin
4686 (1:500, Cell Signaling, Bioconcept, Allschwill, Switzerland) and
anti-β-actin A2066 (1:5000, Sigma-Aldrich GmbH, Buchs, Switzerland).
Membranes were developed by using anti-mouse/rabbit/rat IgG conju-
gated to Alexa 680 or 800 purchased from Invitrogen (LuBioScience
GmbH, Lucerne, Switzerland). The Odyssey infrared imaging system
(LICOR, Bad Homburg, Germany) was used to detect the fluorescent sig-
nal. For each antibody used in this study, a dose–response analysis was
performed by loading 15–40 μg total proteins from 3 months-old WT
mouse brain whole homogenate — this is to correlate changes observed
in signal strength with changes observed at the protein levels (Supple-
mentary Fig. 1). As shown in Supplementary Fig. 1, all signals exhibit lin-
earity at the protein levels tested and the protein amount (30 μg)weused
for sample analysis all over the manuscript falls into this linear range.
2.5. Aβ quantification

Cultures media from 5, 10, 15 and 20 days in vitro (DIV) neurons
were collected, protease inhibitor cocktail (Roche, Rotkreuz,
Switzerland) added, and Aβ peptides were quantified using mouse
Aβ40 and Aβ42 ELISA kits (KHB3481, KHB3441; Invitrogen, LuBioScience
GmbH, Lucerne, Switzerland).
Fig. 1. Cofilin1 inactivation in the frontal cortex of sporadic human Alzheimer's disease.
Changes observed with regard to the Cofilin1 pathway in the frontal cortex of sporadic
Alzheimer's disease subjects (n = 7), relative to their age-matched controls (n = 5).
Top panels: Western blot analyses of total protein extracts. Bottom panels: densitometric
analyses of Western blot protein bands: (a) Total Cofilin1 protein levels; (b) pCofilin1
levels; (c) pCofilin1/Cofilin1 ratio; (d) Total LIMK1 protein levels; (e) pLIMK1 levels;
(f) pLIMK1/LIMK1 ratio; (g) Total SSH1 protein levels; (h) pSSH1 levels; (i) pSSH1/SSH1
ratio. Protein levels were normalized to the loading control β-actin. Densitometric values
shown in the histograms are given as percentage of Control samples set as 100%.Means±
SEM, *P b 0.05 vs Control.
2.6. Statistical analysis

All experiments were performed at least twice with comparable re-
sults, and all data are presented asmeans± SEMof n independent sam-
ples per group. Student's t test was applied for statistical analysis.
P b 0.05 was considered significantly different from the reference value.
3. Results

3.1. The Cofilin1 activation state is altered in AD human brains

Hyperactive cofilin forming rod-shaped cofilin-saturated actin fila-
ment bundles (rods) were previously reported over Aβ plaques in the
hippocampus of AD subjects, suggesting abnormal Cofilin1 aggregation
in response to neurodegenerative stimuli [47,48]. Because of the pivotal
role ofγ-secretase in drivingADpathology and based on a significant in-
crease of its activity in the brain of sporadic AD subjects [49], we ana-
lyzed the Cofilin1 pathway in the frontal cortex of seven sporadic AD
subjects (average age 87.8 ± 1.6 years) and their age-matched controls
(average age 82.6±2.7 years) [33]. As shown in Fig. 1, a significant ~1.6
fold-increase of the pCofilin1/Cofilin1 ratio (Fig. 1-c) is observed in the
frontal cortex of AD subjects with respect to controls, suggesting that
Cofilin1 gets inactivated in diseased brains. To extend our knowledge
about the mechanisms responsible for Cofilin1 inactivation in AD, we
further demonstrated defects in SSH1 activity. As shown in Fig. 1-g, a
~45% significant reduction of total SSH1 protein levels associated with
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unchanged pSSH1 levels led to the significant increase of the pSSH1/
SSH1 ratio (Fig. 1-i). The latter suggests an inactivation of SSH1 in AD
brains. No significant changes were observed for LIMK1 protein levels
and phosphorylation (Fig. 1-d–f). Altogether, these observations sug-
gest that the increased Cofilin1 inactivation observed in our AD samples
could be mediated, at least in part by the loss of SSH1 activity.
3.2. AD pathology-associated inactivation of Cofilin1 in the brain of APP/
PS1 mice

To better understand the altered pattern of expression/activation of
Cofilin1 in AD, we analyzed changes of the Cofilin1 pathway in 1-, 4-,
and 10-months old APP/PS1mice [34], a well-knownmodel of AD char-
acterized by age-associated increase of pathological features including
Aβ senile plaques and cognitive deficits [34]. As shown in Fig. 2A-a,
Cofilin1 protein levels are significantly reduced by ~65% and ~50% at
4- and 10-months of age,with respect to 1month-oldmice. The analysis
of pCofilin1 further revealed a significant ~70% decrease at 4 months of
age, whereas an increase of about 70% was observed at 10 months
(Fig. 2A-b). Interestingly, 10-months old APP/PS1 mice showed a 7-
fold increase in the pCofilin1/Cofilin1 ratio, with respect to the young,
1-month old mice (Fig. 2A-c). In order to assess whether alteration of
Cofilin1 phosphorylation can be explained by modifications of its up-
stream regulators, we next evaluated changes occurring for LIMK1 and
SSH1. As shown in Fig. 2A-d, total LIMK1 did not show any significant
changes at 1-, 4- and 10-months. Conversely, pLIMK1 levels were dras-
tically increased (by ~ 200%) at 10-months of age, with respect to the
1 month-old mice (Fig. 2A-e). Consequently, the pLIMK1/LIMK1 ratio
showed a 3.5-fold increase at 10-months (Fig. 2A-f), suggesting an
overactivation of LIMK1 in agedmice.With regard to SSH1 phosphatase
the most drastic effect was observed for the inactive pSSH1 at 10-
months of age, with an increase of ~ 200% with respect to 1 month-old
mice (Fig. 2A-h). As a consequence, a 3.9-fold increase of the pSSH1/
SSH1 ratio was observed (Fig. 2A-i), suggesting an inactivation of
SSH1 in aged mice.

Finally, in order to evaluate whether the increased phosphorylation/
inactivation of Cofilin1 in 10months-old APP/PS1micewas the result of
AD-related pathology, the Cofilin pathway was examined in APP/PS1
mice and their littermate WT controls. As shown in Fig. 2B, Cofilin1
and pCofilin1 protein levels were respectively reduced by ~ 45%
(Fig. 2B-a) and increased by ~80% (Fig. 2B-b) in AD mice, with respect
to the littermate matched WT controls. As a consequence of these
changes, the pCofilin1/Cofilin1 ratio showed a significant 6-fold in-
crease (Fig. 2B-c), suggesting again an inactivation of Cofilin1 in AD
mice. These lines of evidence parallel with changes observed with re-
gard to LIMK1 and SSH1. Indeed, in APP/PS1 mice both LIMK1 and
SSH1 protein levels were reduced by ~40% (Supplementary Fig. 2-a
and b), while pLIMK1 and pSSH1 levels were significantly increased
by ~40% and ~140%, respectively (Supplementary Fig. 2-b and e). The
drastic increases of both pLIM1/LIMK1 (~2.5-fold, Supplementary
Fig. 2-c) and pSSH1/SSH1 (~5-fold, Supplementary Fig. 2-f) ratios sug-
gest again an activation of LIMK1 and an inactivation of SSH1 in the
brain of 10-months old AD mice.
3.3. Age-dependent Cofilin1 inactivation in the brain of WT mice

We next investigated whether aging, in the absence of AD, plays a
role in the Cofilin pathway alterations observed in AD human/mice
Fig. 2. Alzheimer's disease pathology-associated changes of the Cofilin1 pathway proteins
in the brain of APP/PS1 mice. (A) Age-dependent changes observed with regard to pro-
teins controlling the Cofilin1 pathway, in the brain of 1- (n = 3), 4- (n = 4) and 10-
months old (n= 3) APP/PS1 mice. Top panels: Western blot analyses of total protein ex-
tracts. Bottom panels: densitometric analyses of Western blot protein bands: (a) Total
Cofilin1 protein levels; (b) pCofilin1 levels; (c) pCofilin1/Cofilin1 ratio; (d) Total LIMK1
protein levels; (e) pLIMK1 levels; (f) pLIMK1/LIMK1 ratio; (g) Total SSH1 protein levels;
(h) pSSH1 levels; (i) pSSH1/SSH1 ratio. (B) Decreased total Cofilin1 protein levels and in-
creased pCofilin1 levels in 10-months old APP/PS1 mice (n = 3), with respect to their lit-
termate WT controls (n = 3). Top panels: Western blot analyses of total protein extracts.
Bottom panels: densitometric analyses of Western blot protein bands: (a) Total Cofilin1
protein levels; (b) pCofilin1 levels; (c) pCofilin1/Cofilin1 ratio. Protein levelswere normal-
ized to the loading control β-actin. Densitometric values shown in the histograms are
given as percentage of 1 month-old mice (A) or WT mice (B) set as 100%. Means ±
SEM, *P b 0.05, **P b 0.01 and ***P b 0.001 vs Control (A) or WT (B).
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samples. To do so, we evaluated changes in the Cofilin pathway occur-
ring in the brains of 3-, 8-, 12-, 18- and 26-month old WT mice. When
compared to 3-month oldmice, Cofilin1 protein levels were significant-
ly reduced by ~25% both at 8 and 26 months (Fig. 3-a). Yet, the major
change was observed for pCofilin1, which was increased by ~76% in
the oldest 26months-oldmice (Fig. 3-b), leading to a ~2.3-fold increase
of the pCofilin1/Cofilin1 ratio (Fig. 3-c). No significant differences were
observed for LIMK1 total and phosphorylated protein levels (Fig. 3-d–
e). In contrast, an interesting trendwas observed for pSSH1. After a sig-
nificant reduction at both 8 and 12 months (by ~45% and ~35%, respec-
tively), pSSH1 levels significantly raised (by ~27%) at 26 months (Fig. 3-
h). Together, and despite the drastic increase of both pCofilin1 levels
and pCofilin1/Cofilin1 ratio, no significant changes were found for
both pLIMK1/LIMK1 and pSSH1/SSH1 ratios in 26 months-old mice
(Fig. 3-f and i). At a first glance, the latter observation does not explain
changes observed with regard to Cofilin1. However, an in-depth analy-
sis of the results suggests that 8 months possibly represents a turning
point in the aging process occurring in our mice. Indeed, from 8 to
26 months, a clear increase of pCofilin1 occurs (Fig. 3-b), possibly
caused by an age-dependent inactivation of SSH1 revealed by the rise
of the pSSH1 levels (Fig. 3-h) and the pSSH1/SSH1 ratio (Fig. 3-i) in
the same time frame.
Fig. 3.Age-associated changes of the Cofilin1 pathway in the brain ofWTmice. Age-associated c
3- (n=5), 8- (n=4), 12- (n=5), 18- (n=5) and26-months old (n=4)WTmice. Represent
blot analyses of total protein extracts. Bottom panels: densitometric analyses of Western blot p
ratio; (d) Total LIMK1 protein levels; (e) pLIMK1 levels; (f) pLIMK1/LIMK1 ratio; (g) Total SSH
to the loading control β-actin. Densitometric values shown in the histograms are given as
***P b 0.001 vs 3-months old mice; †P b 0.05, ††P b 0.01 and †††P b 0.001 vs 8-months old mic
3.4. Inactivation of Cofilin1 during neuronal maturation in vitro

We next assessed whether changes in the Cofilin1 pathway could
be observed during neuronal maturation, in mouse PCNs cultured for
5, 10, 15 and 20 days. These time points were selected because (i) an
increase of synaptic density [50], (ii) a linear increase of Aβ produc-
tion [51] and (iii) a shift with regard to γ-secretase activity towards
more amyloidogenic pathways [20] occur within this time frame. Also,
primary neuronal cultures undergo a whole series of morphological
and functional maturation processes that reflect at least partially
those of their counterparts in vivo [20,36,37,41,42,52]. As shown in
Fig. 4-a and b, Cofilin1 and pCofilin1 protein levels were respectively re-
duced and increased in an age-dependent manner from 5 to 20 DIV
(Fig. 4-a). These changes led to age-dependent increases in the
pCofilin1/Cofilin1 ratio, starting at 10 DIV (~2.6 fold), increasing at 15
DIV (~3.3 fold) and reaching the maximum at 20 DIV (~4.5 fold), with
respect to 5 DIV (Fig. 4-c). Similarly, changes of total LIMK1 (Fig. 4-d)
and pLIMK1 (Fig. 4-e) protein levels lead to an age-dependent increase
in the pLIMK1/LIMK1 ratio, reaching about 75% at 20 DIV (Fig. 4-f). In-
terestingly, significant and age-associated increases in SSH1 and
pSSH1 protein levels were also observed (Fig. 4-g and h), causing a
marked increase in the pSSH1/SSH1 ratio both at 15 DIV (~1.9-fold)
hanges observedwith regard to proteins implicated in the Cofilin1 pathway, in the brain of
ative gels obtainedwith 3 blind selected samples per group are shown. Top panels:Western
rotein bands: (a) Total Cofilin1 protein levels; (b) pCofilin1 levels; (c) pCofilin1/Cofilin1
1 protein levels; (h) pSSH1 levels; (i) pSSH1/SSH1 ratio. Protein levels were normalized
percentage of 3 months-old mice set as 100%. Means ± SEM, *P b 0.05, **P b 0.01 and
e.
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Fig. 4. Cofilin1 pathway changes during mouse primary cortical neurons (PCNs) matura-
tion in vitro. Age-associated changes of proteins from the Cofilin1 pathway in mouse
PCNs at 5, 10, 15, and 20 days in vitro (DIV) (n = 3 independent cultures/group). Top
panels: Western blot analyses of total protein extracts. Bottom panels: densitometric anal-
yses of Western blot protein bands: (a) Total Cofilin1 protein levels; (b) pCofilin1 levels;
(c) pCofilin1/Cofilin1 ratio; (d) Total LIMK1 protein levels; (e) pLIMK1 levels;
(f) pLIMK1/LIMK1 ratio; (g) Total SSH1 protein levels; (h) pSSH1 levels; (i) pSSH1/SSH1
ratio. Protein levels were normalized to the loading control β-actin. Densitometric values
shown in the histograms are given as percentage of 5 DIV PCNs set as 100%.Means±SEM,
*P b 0.05, **P b 0.01 and ***P b 0.001 vs 5 DIV.
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and at 20 DIV (~2.7-fold), in comparison to the younger 5 DIV neurons
(Fig. 4-i). Altogether, both LIMK1 activation (Fig. 4-f) and SSH1 inactiva-
tion (Fig. 4-i) with age are very consistentwith the observed Cofilin1 in-
activation (Fig. 4-c).
3.5. γ-Secretase is a negative regulator of Cofilin1 activation

In agreement with previous results [20], we observed in our PCNs
cultures that increased secreted Aβ42 and Aβ40 levels (Supplementary
Fig. 3A) are associated with changes of the Aβ42/Aβ40 ratio, from 5 to
20 DIV (Supplementary Fig. 3B). These changes include a switch to-
wards the production of the more amyloidogenic Aβ42 peptides, possi-
bly suggesting age-dependent modifications of the γ-secretase specific
activity. Because of that observation, we further hypothesized that γ-
secretase activity can affect the Cofilin1 pathway, possibly in an age-
dependent manner. To challenge this hypothesis, 5, 10, 15 and 20 DIV
mouse PCNs were treated for 24 h with 10 μM of CpdE, a potent γ-
secretase inhibitor. First, we found that DMSO alone did not affect
Cofilin-1 protein levels and phosphorylation changes observed in un-
treated neurons with age (Fig. 5A-a–c). Conversely, inhibition of γ-
secretase activity promotes a significant decrease (by about 35%) of
total Cofilin1 levels, only at 20 DIV with respect to DMSO-treated
PCNs (Fig. 5A-a). Importantly, pCofilin1 levels were reduced at 10, 15
and 20 DIV (by ~40%, ~50% and ~50, respectively) in CpdE-treated neu-
rons, reaching statistical significance at 15 DIV and 20 DIV (Fig. 5A-b).
Together, a significant decrease of the pCofilin1/Cofilin1 ratio was ob-
served in CpdE-treated neurons at 10 DIV (~1.5 fold), 15 DIV (~1.4
fold) and 20 DIV (~1.3 fold) (Fig. 5A-c). Since we observed a γ-
secretase dependent reduction of both total Cofilin1 and pCofilin1 pro-
tein levels only in 20DIV neurons, and since older PCNs showed a signif-
icant increase in the Aβ42/Aβ40 ratio (Supplementary Fig. 3B), we
decided to further evaluate the effect of γ-secretase activity on LIMK1
and SSH1 in 20 DIV PCNs. As shown in Figs. 5B-d,e, inhibition of γ-
secretase did not affect LIMK1 protein levels or phosphorylation. Con-
versely, we observed a drastic ~50% decrease of pSSH1 levels in CpdE-
treated neurons, with respect to DMSO-treated cells (Fig. 5B-h). The
consistent reduction of pSSH1 levels together with no changes of
SSH1 levels resulted in a strong ~1.6-fold reduction of the pSSH1/
SSH1 ratio (Fig. 5B-i). Altogether, these results suggest that γ-
secretase activity could induce Cofilin1 phosphorylation through the in-
hibition of SSH1. To exclude any off-target phenotype caused by the use
of a chemical γ-secretase inhibitor, we next analyzed the Cofilin path-
way in MEFDKO cells characterized by a complete genetic inhibition of
γ-secretase activity, caused by the knock-out of both PS1 and PS2 cata-
lytic subunits [44,45]. In this cell line, and with respect to MEFs WT, we
found decreased total Cofilin1 (~50%, Fig. 5C-a) and pCofilin-1 (~70%,
Fig. 5C-b) levels, as well as a reduced pCofilin1/Cofilin1 ratio (~1.4-
fold, Fig. 5C-c). A significant decrease was also observed for SSH1 pro-
tein levels (~30%, Fig. 5C-d) and phosphorylation (~45%, Fig. 5C-e), as
well as for pLIMK1 (~35%, Supplementary Fig. 4B-b). To confirm that
changes observed in MEFDKO cells were indeed dependent on γ-
secretase activity, we took advantage of the MEFDKO + hγ-secretase stable
cell line previously generated in our laboratory [46], and that is charac-
terized by a rescued γ-secretase activity via the overexpression of
human γ-secretase. When compared to MEFDKO cells, restored γ-
secretase activity triggers a significant increase of pCofilin1 (~80%,
Fig. 5C-b), to levels comparable to those of the control MEFs WT cell
line. Furthermore, both SSH1 total protein levels and phosphorylation
were rescued in MEFDKO + hγ-secretase (Fig. 5C-d and C-e) and a net in-
crease of the pSSH1/SSH1 ratio with respect to MEFDKO cells was ob-
served (Fig. 5C-f). These results are in good agreement with those
obtained in mouse PCNs treated with CpdE and suggest a role for γ-
secretase in SSH1-mediated regulation of Cofilin1 phosphorylation/
inactivation.
4. Discussion

Themechanisms by which Cofilin1 regulates cognitive processes re-
main quite controversial, as either an excessive activation [47,48,53–56]
or inactivation [27,31,57–61] have been reported to contribute to the
actin-dependent impairment of synaptic plasticity, and thus learning.

Here we provide new data about changes in the Cofilin1 pathway
with age and AD. The significant increase of the pCofilin1/Cofilin1
ratio (Figs. 1, 2A-c and B-c) suggest that Cofilin1 gets inactivated in
the brain of AD patients and APP/PS1 mice as a consequence of AD pa-
thology. Furthermore, the age-associated changes observed in WT
mice (Fig. 3) andmouse PCNs (Fig. 4), indicate that Cofilin1 inactivation
could also be an age-dependent event. To unravel if Cofilin1 inactivation
is a cause or a consequence of AD pathology needs further investigation.
So far, based on our data, the significant increase of pCofilin1/Cofilin1
ratio in the brain of 10-months old APP/PS1mice compared to the litter-
mateWT controls (Fig. 2B-c), suggests that AD pathology could acceler-
ate the aging process via Cofilin1 phosphorylation.

image of Fig.�4
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Yet, Kim et al. recently reported a decrease of the pCofilin1/Cofilin1
ratio in the frontal cortex of sporadic AD patients [56]. Interestingly,
and possibly explaining this apparent discrepancy, an in-depth analysis
of the latter study revealed a major difference with regard to our work,
concerning the age of the subjects analyzed. Indeed, brain samples ana-
lyzed in the Kim study came from younger patients (average age;
Controls: 59.6 ± 4.4; AD: 62.5 ± 0.6), when compared to the cortical
samples characterized in our study, and collected from older patients
(Controls: 87.8 ± 1.6 years; AD: 82.6 ± 2.7 years). Because the same
antibodies were used in both studies for the analysis by Western blot
of Cofilin1 levels, the apparent discrepancy cannot be attributed to the
use of different technical approaches (Supplementary Fig. 5), thus
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reinforcing our findings supporting a role of both age and AD pathology
in the Cofilin1 pathway regulation.

Interestingly, increased pCofilin1 was also observed in maturing
mouse PCNs (Fig. 4-b,c), consistent (i) with the role of Cofilin1 in den-
dritic spine maturation [25,27,28,62] and (ii) the observed increase of
synapses density from 5 to 21 DIV [50,63]. Because either loss or inacti-
vation of Cofilin1 is associated with spine morphology alteration and
impaired associative learning and extinction memory [27,29,59,63,64]
as well as inhibition of long-term depression (LTD) of the N-methyl-D-
aspartate (NMDA) receptors [58], it is conceivable that an aberrant inac-
tivation of Cofilin1 observed in human AD brain and both agedWT and
APP/PS1mice (Figs. 1–3) could be responsible for thenegative effects on
synaptic plasticity and cognition [27,29,59,60,64–67]. This would repre-
sent an intriguing link between age and AD pathology (Fig. 6).

The mechanisms driving Cofilin1 activation or phosphorylation/in-
activation may be different and dependent, at least in part, on Aβ levels
and aggregation state [53–57]. Most importantly, soluble and fibrillary
Aβ may differentially affect Cofilin1 by promoting either its activation
[53] or its inactivation [57]. Whether these events could happen simul-
taneously or sequentially still remains unclear. Based on our results in
APP/PS1 mice, it seems that — with the progression of AD pathology
an activation of Cofilin1 occurs at 4 months of age (Fig. 2A-b and
Supplementary Fig. 6B-b) followed by a strong inactivation at
10 months (Fig. 2A-b,c and B-c), probably associated with the different
pattern of Aβ deposition in the brain of these mice [34]. From a molec-
ular point of view, Aβ peptides can differentially impact LIMK1 [30,68]
whose activity was found dysregulated in AD and other neurodegener-
ative disorders [57,69,70]. The novelty of our work is to show for the
first time the inactivation of SSH1 in AD brain (Figs. 1-i, 2A-h,i and B-
c), thus strengthening the hypothesis that the equilibrium between
LIMK1 and SSH1 activities is disrupted in AD.Within that frame, the sig-
nificant correlations found between pCofilin1 or pCofilin1/Cofilin1 ratio
and (i) SSH1 inactivation or (ii) LIMK1 activation in APP/PS1 (Supple-
mentary Fig. 7A-a–g) and WT mice (Supplementary Fig. 8-a–d), as
well as in mouse PCNs (Supplementary Figs. 9-a–c and 4A-a–d) likely
account for a main role of these two upstream effectors in mediating
Cofilin1 dysregulation.

To better understand the molecular mechanisms underlying the ob-
served increase of Cofilin1 phosphorylation both in vivo and in vitro, we
assessed the involvement of γ-secretase (one of the main proteins re-
sponsible of Aβ production) in these processes. A striking finding was
that both chemical and genetic inhibition of γ-secretase activity promot-
ed a significant decrease of pCofilin1 and pCofilin1/Cofilin1 ratio, and that
this effect was associated with a reduction of SSH1 inhibition (Fig. 5A, B
and C). This finding was further supported by the observation that over-
expression of humanγ-secretase inMEFDKO rescued the observed pheno-
type (Fig. 5C-b,c and C-e,f), suggesting that γ-secretase activity might
promote Cofilin1 phosphorylation through SSH1 inactivation. These
changes could result from the reduced processing of one or more γ-
secretase substrates whose cleavage products, in turn, regulate cell fate
decision [19]. In this regard, APP represents a good candidate substrate.
Indeed, the significant decrease of both pCofilin1 and relative pCofilin1/
Cofilin1 ratio observed in APPKO mice versus WT mice (Supplementary
Fig. 10A-a and B-a) resemble the results obtained following chemical in-
hibition of γ-secretase activity in mouse PCNs (Fig. 5A and B), or genetic
Fig. 5. Chemical and genetic inhibition of γ-secretase activity is associatedwith Cofilin1 activation
tivation inmouse PCN at 10, 15 and 20 DIV (n= 3 independent cultures/group). A representative
sitometric analyses ofWestern blot protein bands: (a) Total Cofilin1 protein levels; (b) pCofilin1 lev
following γ-secretase activity inhibition with 10 μMCompound E (CpdE) in mouse PCN at 20 DIV
phosphorylation. A representativeWB is shown. Top left panels: Western blot analyses of total pro
(a) Total Cofilin1 protein levels; (b) pCofilin1 levels; (c) pCofilin1/Cofilin1 ratio; (d) Total LIMK
(h) pSSH1 levels; (i) pSSH1/SSH1 ratio. (C) Cofilin1 protein levels and phosphorylation are decrea
units of the γ-secretase complex (MEFDKO). These changes parallel with a decrease of SSH1 protei
cells (MEFDKO + hγ-secretase) rescues Cofilin1 phosphorylation (pCofilin1) through the increase of SS
yses of total protein extracts. Right panels: densitometric analyses ofWestern blot protein bands: (a
protein levels; (e) pSSH1 levels; (f) pSSH1/SSH1 ratio. Protein levels were normalized to the loadin
DIV PCNs (Aa–Ac), untreated Control PCNs (Ba–Bi) and uninfected WT MEF (Ca–Cf) set as 100%.
inhibition γ-secretase in MEFDKO cells (Fig. 5C). Similarly, the increase of
both Cofilin1 and SSH1 phosphorylation/inactivation following APP over-
expression inMEF cells (Supplementary Fig. 11) recall what we observed
in AD brain (Figs. 1 and 2). To unravel whether these changes are directly
linked to the loss (APPKO mice) or to an increase (MEF overexpressing
APP) of the γ-secretase-dependent cleavage of APP needs further investi-
gations, especially because no significant changes were observed with
regard to LIMK1 (Supplementary Fig. 10A-b and B-b), SSH1 (Supplemen-
tary Fig. 10A-c and B-c) or Chronophin phosphatase (Supplementary
Fig. 10A-d and B-d) in APPKO mice.

Finally, early-onset familial Alzheimer's disease (FAD)-linked PS1
mutants have been reported to cause a drastic loss of γ-secretase activ-
ity in cell-free [46], cell-based [71] and in vivo [15] experiments. As pre-
viously observed in vivo [72,73], this loss-of-function is asymmetrical as
all FAD-linked PS1 mutants seem to generate higher Aβ42/Aβ40 ratio
compared to PS1-WT. It consequently causes an increased production
of the longer and more hydrophobic Aβ species, namely Aβ, that accu-
mulates and aggregates early in the course of the disease. Thus, one
could anticipate that FAD-linked PS1 mutants would promote Cofilin1
phosphorylation, in line with (i) the observation that fibrillary Aβ pro-
motes Cofilin1 phosphorylation [57], and (ii) our preliminary results
showing that PS1-L166P promotes Cofilin1 phosphorylation (see Sup-
plementary Fig. 12).
5. Conclusions

In conclusion, our work demonstrates an age-dependent increase of
Cofilin1 phosphorylation, both in maturating PCNs and in WT mice,
which resembles the Cofilin1 phenotype observed in sporadic human
AD brain. γ-Secretase seems to play a fundamental role in the proposed
mechanism by enhancing Cofilin1 phosphorylation via SSH1 inhibition
(Fig. 6). The implication of these results on understanding themolecular
mechanisms leading to impaired synaptic plasticity both during aging
and AD are profound, and offer a molecular bridge connecting age, AD
and the activity of γ-secretase. They further have the possibility to im-
pact the development of therapies to treat AD.
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Fig. 6.Model for Age, Alzheimer's disease and γ-secretase-dependent Cofilin1 inactivation.
In this model, we propose that γ-secretase activity, which controls the production of Aβ
peptides, is also regulating the phosphorylation/inactivation of the protein phosphatase
Slingshot1 (pSSH1). Reduced SSH1 phosphatase activity promotes an increase of Cofilin1
phosphorylation/inactivation (pCofilin1). Similarly, inactive pSSH1 is no longer able to pro-
mote the dephosphorylation/inactivation of the LIMK1 protein kinase (LIMK1), thus con-
tributing both directly and indirectly to maintaining elevated inactive pCofilin1 levels.
Finally, the decreased pCofilin1 levels observed in mice lacking APP suggests that APP
could promote Cofilin1 phosphorylation/inactivation. Whether the decrease of pCofilin1
observed in APPKOmice is directly linked to the loss of the γ-secretase-dependent cleavage
of APP needs further investigation (?). Altogether, increased pCofilin1 could be responsible
for (i) synapse morphology alteration; (ii) impaired AMPA receptors trafficking and AMPA
receptors-mediated responses; and (iii) decreased NMDA receptors-induced long term de-
pression (LTD),which all together negatively affect cognitive processes. Arrow: stimulation;
Red arrow: pathways found altered in our study.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
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References

[1] H.W. Querfurth, F.M. LaFerla, Alzheimer's disease, N. Engl. J. Med. 362 (2010)
329–344.

[2] A. Kern, C. Behl, The unsolved relationship of brain aging and late-onset Alzheimer
disease, Biochim. Biophys. Acta 1790 (2009) 1124–1132.

[3] A.Y. Hsia, E. Masliah, L. McConlogue, G.Q. Yu, G. Tatsuno, K. Hu, D. Kholodenko, R.C.
Malenka, R.A. Nicoll, L. Mucke, Plaque-independent disruption of neural circuits in
Alzheimer's diseasemousemodels, Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 3228–3233.

[4] K. Hsiao, P. Chapman, S. Nilsen, C. Eckman, Y. Harigaya, S. Younkin, F. Yang, G. Cole,
Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic
mice, Science 274 (1996) 99–102.

[5] L.F. Lue, Y.M. Kuo, A.E. Roher, L. Brachova, Y. Shen, L. Sue, T. Beach, J.H. Kurth, R.E.
Rydel, J. Rogers, Soluble amyloid beta peptide concentration as a predictor of synap-
tic change in Alzheimer's disease, Am. J. Pathol. 155 (1999) 853–862.

[6] C.A. McLean, R.A. Cherny, F.W. Fraser, S.J. Fuller, M.J. Smith, K. Beyreuther, A.I. Bush,
C.L. Masters, Soluble pool of Abeta amyloid as a determinant of severity of neurode-
generation in Alzheimer's disease, Ann. Neurol. 46 (1999) 860–866.

[7] R. Medeiros, M.A. Chabrier, F.M. LaFerla, Elucidating the triggers, progression, and
effects of Alzheimer's disease, J. Alzheimers Dis. 33 (Suppl. 1) (2013) S195–S210.

[8] J. Hardy, The amyloid hypothesis for Alzheimer's disease: a critical reappraisal, J.
Neurochem. 110 (2009) 1129–1134.

[9] D.J. Selkoe, Alzheimer's disease is a synaptic failure, Science 298 (2002) 789–791.
[10] S. Varadarajan, S. Yatin, M. Aksenova, D.A. Butterfield, Review: Alzheimer's amyloid

beta-peptide-associated free radical oxidative stress and neurotoxicity, J. Struct. Biol.
130 (2000) 184–208.

[11] D.A. Butterfield, J. Drake, C. Pocernich, A. Castegna, Evidence of oxidative damage in
Alzheimer's disease brain: central role for amyloid beta-peptide, Trends Mol. Med. 7
(2001) 548–554.

[12] D.A. Butterfield, The 2013 SFRBM discovery award: Selected discoveries from the
butterfield laboratory of oxidative stress and its sequela in brain in cognitive disor-
ders exemplified by Alzheimer disease and chemotherapy induced cognitive im-
pairment, Free Radic. Biol. Med. 74C (2014) 157–174.

[13] W.L. Klein, Synaptotoxic amyloid-beta oligomers: amolecular basis for the cause, di-
agnosis, and treatment of Alzheimer's disease? J. Alzheimers Dis. 33 (Suppl. 1)
(2013) S49–S65.

[14] C. Haass, A.Y. Hung, M.G. Schlossmacher, T. Oltersdorf, D.B. Teplow, D.J. Selkoe, Nor-
mal cellular processing of the beta-amyloid precursor protein results in the secre-
tion of the amyloid beta peptide and related molecules, Ann. N. Y. Acad. Sci. 695
(1993) 109–116.

[15] C.A. Saura, S.Y. Choi, V. Beglopoulos, S. Malkani, D. Zhang, B.S. Shankaranarayana
Rao, S. Chattarji, R.J. Kelleher 3rd, E.R. Kandel, K. Duff, A. Kirkwood, J. Shen, Loss of
presenilin function causes impairments of memory and synaptic plasticity followed
by age-dependent neurodegeneration, Neuron 42 (2004) 23–36.

[16] Y. Mitani, J. Yarimizu, K. Saita, H. Uchino, H. Akashiba, Y. Shitaka, K. Ni, N. Matsuoka,
Differential effects between gamma-secretase inhibitors and modulators on cogni-
tive function in amyloid precursor protein-transgenic and nontransgenic mice, J.
Neurosci. Off. J. Soc. Neurosci. 32 (2012) 2037–2050.

[17] S.H. Nam, S.J. Seo, J.S. Goo, J.E. Kim, S.I. Choi, H.R. Lee, I.S. Hwang, S.W. Jee, S.H. Lee,
C.J. Bae, J.Y. Park, H.S. Kim, S.B. Shim, D.Y. Hwang, Pen-2 overexpression induces
Abeta-42 production, memory defect, motor activity enhancement and feeding be-
havior dysfunction in NSE/Pen-2 transgenic mice, Int. J. Mol. Med. 28 (2011)
961–971.

[18] B.P. Imbimbo, G.A. Giardina, gamma-secretase inhibitors and modulators for the
treatment of Alzheimer's disease: disappointments and hopes, Curr. Top. Med.
Chem. 11 (2011) 1555–1570.

[19] A. Haapasalo, D.M. Kovacs, The many substrates of presenilin/gamma-secretase, J.
Alzheimers Dis. 25 (2011) 3–28.

[20] F.X. Guix, T. Wahle, K. Vennekens, A. Snellinx, L. Chavez-Gutierrez, G. Ill-Raga, E.
Ramos-Fernandez, C. Guardia-Laguarta, A. Lleo, M. Arimon, O. Berezovska, F.J.
Munoz, C.G. Dotti, B. De Strooper, Modification of gamma-secretase by nitrosative
stress links neuronal ageing to sporadic Alzheimer's disease, EMBO Mol. Med. 4
(2012) 660–673.

[21] I. Benilova, E. Karran, B. De Strooper, The toxic Abeta oligomer and Alzheimer's dis-
ease: an emperor in need of clothes, Nat. Neurosci. 15 (2012) 349–357.

[22] D.M. Hartley, D.M.Walsh, C.P. Ye, T. Diehl, S. Vasquez, P.M. Vassilev, D.B. Teplow, D.J.
Selkoe, Protofibrillar intermediates of amyloid beta-protein induce acute electro-
physiological changes and progressive neurotoxicity in cortical neurons, J. Neurosci.
Off. J. Soc. Neurosci. 19 (1999) 8876–8884.

[23] D.M. Walsh, I. Klyubin, J.V. Fadeeva, W.K. Cullen, R. Anwyl, M.S. Wolfe, M.J. Rowan,
D.J. Selkoe, Naturally secreted oligomers of amyloid beta protein potently inhibit
hippocampal long-term potentiation in vivo, Nature 416 (2002) 535–539.

[24] J.P. Cleary, D.M. Walsh, J.J. Hofmeister, G.M. Shankar, M.A. Kuskowski, D.J. Selkoe,
K.H. Ashe, Natural oligomers of the amyloid-beta protein specifically disrupt cogni-
tive function, Nat. Neurosci. 8 (2005) 79–84.

[25] K. Okamoto, T. Nagai, A. Miyawaki, Y. Hayashi, Rapid and persistent modulation of
actin dynamics regulates postsynaptic reorganization underlying bidirectional plas-
ticity, Nat. Neurosci. 7 (2004) 1104–1112.

[26] Y. Fukazawa, Y. Saitoh, F. Ozawa, Y. Ohta, K.Mizuno, K. Inokuchi, Hippocampal LTP is
accompanied by enhanced F-actin content within the dendritic spine that is essen-
tial for late LTP maintenance in vivo, Neuron 38 (2003) 447–460.

[27] M.B. Rust, C.B. Gurniak, M. Renner, H. Vara, L. Morando, A. Gorlich, M. Sassoe-
Pognetto, M.A. Banchaabouchi, M. Giustetto, A. Triller, D. Choquet, W. Witke, Learn-
ing, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated
actin dynamics, EMBO J. 29 (2010) 1889–1902.

http://dx.doi.org/10.1016/j.bbadis.2014.10.004
http://dx.doi.org/10.1016/j.bbadis.2014.10.004
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0005
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0005
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0010
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0010
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0015
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0015
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0015
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0020
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0020
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0020
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0025
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0025
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0025
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0030
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0030
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0030
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0035
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0035
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0040
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0040
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0045
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0050
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0050
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0050
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0055
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0055
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0055
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0060
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0060
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0060
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0060
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0065
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0065
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0065
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0070
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0070
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0070
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0070
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0075
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0075
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0075
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0075
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0080
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0080
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0080
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0080
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0085
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0085
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0085
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0085
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0085
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0360
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0360
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0360
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0090
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0090
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0095
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0095
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0095
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0095
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0095
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0100
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0100
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0105
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0105
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0105
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0105
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0110
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0110
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0110
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0115
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0115
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0115
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0120
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0120
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0120
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0125
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0125
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0125
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0130
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0130
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0130
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0130
image of Fig.�6


2509E. Barone et al. / Biochimica et Biophysica Acta 1842 (2014) 2500–2509
[28] J.J. Bravo-Cordero, M.A. Magalhaes, R.J. Eddy, L. Hodgson, J. Condeelis, Functions
of cofilin in cell locomotion and invasion, Nat. Rev. Mol. Cell Biol. 14 (2013)
405–415.

[29] J. Gu, C.W. Lee, Y. Fan, D. Komlos, X. Tang, C. Sun, K. Yu, H.C. Hartzell, G. Chen, J.R.
Bamburg, J.Q. Zheng, ADF/cofilin-mediated actin dynamics regulate AMPA receptor
trafficking during synaptic plasticity, Nat. Neurosci. 13 (2010) 1208–1215.

[30] M. Van Troys, L. Huyck, S. Leyman, S. Dhaese, J. Vandekerkhove, C. Ampe, Ins and
outs of ADF/cofilin activity and regulation, Eur. J. Cell Biol. 87 (2008) 649–667.

[31] G.C. Bellenchi, C.B. Gurniak, E. Perlas, S. Middei, M. Ammassari-Teule, W. Witke, N-
cofilin is associated with neuronal migration disorders and cell cycle control in the
cerebral cortex, Genes Dev. 21 (2007) 2347–2357.

[32] K. Mizuno, Signaling mechanisms and functional roles of cofilin phosphorylation
and dephosphorylation, Cell. Signal. 25 (2013) 457–469.

[33] C.M. Hulette, K.A. Welsh-Bohmer, B. Crain, M.H. Szymanski, N.O. Sinclaire, A.D.
Roses, Rapid brain autopsy. The Joseph and Kathleen Bryan Alzheimer's Disease Re-
search Center experience, Arch. Pathol. Lab. Med. 121 (1997) 615–618.

[34] R. Radde, T. Bolmont, S.A. Kaeser, J. Coomaraswamy, D. Lindau, L. Stoltze, M.E.
Calhoun, F. Jaggi, H. Wolburg, S. Gengler, C. Haass, B. Ghetti, C. Czech, C. Holscher,
P.M. Mathews, M. Jucker, Abeta42-driven cerebral amyloidosis in transgenic mice
reveals early and robust pathology, EMBO Rep. 7 (2006) 940–946.

[35] M.E. Calhoun, P. Burgermeister, A.L. Phinney, M. Stalder, M. Tolnay, K.H.
Wiederhold, D. Abramowski, C. Sturchler-Pierrat, B. Sommer, M. Staufenbiel,
M. Jucker, Neuronal overexpression of mutant amyloid precursor protein results
in prominent deposition of cerebrovascular amyloid, Proc. Natl. Acad. Sci. U. S. A.
96 (1999) 14088–14093.

[36] M.G. Martin, S. Perga, L. Trovo, A. Rasola, P. Holm, T. Rantamaki, T. Harkany, E.
Castren, F. Chiara, C.G. Dotti, Cholesterol loss enhances TrkB signaling in hippocam-
pal neurons aging in vitro, Mol. Biol. Cell 19 (2008) 2101–2112.

[37] A.O. Sodero, L. Trovo, F. Iannilli, P. Van Veldhoven, C.G. Dotti, M.G. Martin, Regulation
of tyrosine kinase B activity by the Cyp46/cholesterol loss pathway inmature hippo-
campal neurons: relevance for neuronal survival under stress and in aging, J.
Neurochem. 116 (2011) 747–755.

[38] A.O. Sodero, C. Weissmann, M.D. Ledesma, C.G. Dotti, Cellular stress from excitatory
neurotransmission contributes to cholesterol loss in hippocampal neurons aging
in vitro, Neurobiol. Aging 32 (2011) 1043–1053.

[39] M. Pikkarainen, T. Kauppinen, I. Alafuzoff, Hyperphosphorylated tau in the occipital
cortex in aged nondemented subjects, J. Neuropathol. Exp. Neurol. 68 (2009)
653–660.

[40] K. Tomobe, Y. Nomura, Neurochemistry, neuropathology, and heredity in SAMP8: a
mouse model of senescence, Neurochem. Res. 34 (2009) 660–669.

[41] M.V. Aksenova, M.Y. Aksenov, W.R. Markesbery, D.A. Butterfield, Aging in a dish:
age-dependent changes of neuronal survival, protein oxidation, and creatine kinase
BB expression in long-term hippocampal cell culture, J. Neurosci. Res. 58 (1999)
308–317.

[42] N.M. Porter, O. Thibault, V. Thibault, K.C. Chen, P.W. Landfield, Calcium channel den-
sity and hippocampal cell death with age in long-term culture, J. Neurosci. Off. J. Soc.
Neurosci. 17 (1997) 5629–5639.

[43] C. Lesuisse, L.J. Martin, Long-term culture of mouse cortical neurons as a model for
neuronal development, aging, and death, J. Neurobiol. 51 (2002) 9–23.

[44] A. Herreman, D. Hartmann, W. Annaert, P. Saftig, K. Craessaerts, L. Serneels, L.
Umans, V. Schrijvers, F. Checler, H. Vanderstichele, V. Baekelandt, R. Dressel, P.
Cupers, D. Huylebroeck, A. Zwijsen, F. Van Leuven, B. De Strooper, Presenilin 2 defi-
ciency causes a mild pulmonary phenotype and no changes in amyloid precursor
protein processing but enhances the embryonic lethal phenotype of presenilin 1 de-
ficiency, Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 11872–11877.

[45] A. Herreman, G. Van Gassen, M. Bentahir, O. Nyabi, K. Craessaerts, U. Mueller, W.
Annaert, B. De Strooper, gamma-Secretase activity requires the presenilin-
dependent trafficking of nicastrin through the Golgi apparatus but not its complex
glycosylation, J. Cell Sci. 116 (2003) 1127–1136.

[46] M. Cacquevel, L. Aeschbach, J. Houacine, P.C. Fraering, Alzheimer's disease-linked
mutations in presenilin-1 result in a drastic loss of activity in purified gamma-
secretase complexes, PLoS One 7 (2012) e35133.

[47] L. Zhao, Q.L. Ma, F. Calon, M.E. Harris-White, F. Yang, G.P. Lim, T. Morihara, O.J.
Ubeda, S. Ambegaokar, J.E. Hansen, R.H. Weisbart, B. Teter, S.A. Frautschy, G.M.
Cole, Role of p21-activated kinase pathway defects in the cognitive deficits of
Alzheimer disease, Nat. Neurosci. 9 (2006) 234–242.

[48] L.S. Minamide, A.M. Striegl, J.A. Boyle, P.J. Meberg, J.R. Bamburg, Neurodegenerative
stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function,
Nat. Cell Biol. 2 (2000) 628–636.

[49] A.R. Gwon, J.S. Park, T.V. Arumugam, Y.K. Kwon, S.L. Chan, S.H. Kim, S.H. Baik, S.
Yang, Y.K. Yun, Y. Choi, S. Kim, S.C. Tang, D.H. Hyun, A. Cheng, C.E. Dann 3rd, M.
Bernier, J. Lee, W.R. Markesbery, M.P. Mattson, D.G. Jo, Oxidative lipid modification
of nicastrin enhances amyloidogenic gamma-secretase activity in Alzheimer's dis-
ease, Aging Cell 11 (2012) 559–568.

[50] M.S. Kayser, M.J. Nolt, M.B. Dalva, EphB receptors couple dendritic filopodia motility
to synapse formation, Neuron 59 (2008) 56–69.
[51] W.T. Kimberly, J.B. Zheng, T. Town, R.A. Flavell, D.J. Selkoe, Physiological regulation
of the beta-amyloid precursor protein signaling domain by c-Jun N-terminal kinase
JNK3 during neuronal differentiation, J. Neurosci. Off. J. Soc. Neurosci. 25 (2005)
5533–5543.

[52] M.J. Kim, S.J. Oh, S.H. Park, H.J. Kang, M.H. Won, T.C. Kang, J.B. Park, J.I. Kim, J. Kim, J.Y.
Lee, Neuronal loss in primary long-term cortical culture involves neurodegeneration-
like cell death via calpain and p35 processing, but not developmental apoptosis or
aging, Exp. Mol. Med. 39 (2007) 14–26.

[53] M.T. Maloney, L.S. Minamide, A.W. Kinley, J.A. Boyle, J.R. Bamburg, Beta-secretase-
cleaved amyloid precursor protein accumulates at actin inclusions induced in neu-
rons by stress or amyloid beta: a feedforward mechanism for Alzheimer's disease,
J. Neurosci. Off. J. Soc. Neurosci. 25 (2005) 11313–11321.

[54] A. Mendoza-Naranjo, E. Contreras-Vallejos, D.R. Henriquez, C. Otth, J.R. Bamburg,
R.B. Maccioni, C. Gonzalez-Billault, Fibrillar amyloid-beta1-42 modifies actin organi-
zation affecting the cofilin phosphorylation state: a role for Rac1/cdc42 effector pro-
teins and the slingshot phosphatase, J. Alzheimers Dis. 29 (2012) 63–77.

[55] J.A.Woo, A.R. Jung, M.K. Lakshmana, A. Bedrossian, Y. Lim, J.H. Bu, S.A. Park, E.H. Koo,
I. Mook-Jung, D.E. Kang, Pivotal role of the RanBP9-cofilin pathway in Abeta-
induced apoptosis and neurodegeneration, Cell Death Differ. 19 (2012) 1413–1423.

[56] T. Kim, G.S. Vidal, M. Djurisic, C.M. William, M.E. Birnbaum, K.C. Garcia, B.T. Hyman,
C.J. Shatz, Human LilrB2 is a beta-amyloid receptor and its murine homolog PirB reg-
ulates synaptic plasticity in an Alzheimer's model, Science 341 (2013) 1399–1404.

[57] L. Heredia, P. Helguera, S. de Olmos, G. Kedikian, F. Sola Vigo, F. LaFerla, M.
Staufenbiel, J. de Olmos, J. Busciglio, A. Caceres, A. Lorenzo, Phosphorylation of
actin-depolymerizing factor/cofilin by LIM-kinase mediates amyloid beta-induced
degeneration: a potential mechanism of neuronal dystrophy in Alzheimer's disease,
J. Neurosci. Off. J. Soc. Neurosci. 26 (2006) 6533–6542.

[58] W. Morishita, H. Marie, R.C. Malenka, Distinct triggering and expression mecha-
nisms underlie LTD of AMPA and NMDA synaptic responses, Nat. Neurosci. 8
(2005) 1043–1050.

[59] Y. Wang, Q. Dong, X.F. Xu, X. Feng, J. Xin, D.D. Wang, H. Yu, T. Tian, Z.Y. Chen, Phos-
phorylation of cofilin regulates extinction of conditioned aversive memory via
AMPAR trafficking, J. Neurosci. Off. J. Soc. Neurosci. 33 (2013) 6423–6433.

[60] E.Y. Yuen, W. Liu, T. Kafri, H. van Praag, Z. Yan, Regulation of AMPA receptor chan-
nels and synaptic plasticity by cofilin phosphatase Slingshot in cortical neurons, J.
Physiol. 588 (2010) 2361–2371.

[61] Q.L. Ma, F. Yang, F. Calon, O.J. Ubeda, J.E. Hansen, R.H. Weisbart, W. Beech, S.A.
Frautschy, G.M. Cole, p21-activated kinase-aberrant activation and translocation in
Alzheimer disease pathogenesis, J. Biol. Chem. 283 (2008) 14132–14143.

[62] B.W. Bernstein, J.R. Bamburg, ADF/cofilin: a functional node in cell biology, Trends
Cell Biol. 20 (2010) 187–195.

[63] Y. Shi, C.G. Pontrello, K.A. DeFea, L.F. Reichardt, I.M. Ethell, Focal adhesion kinase acts
downstream of EphB receptors to maintain mature dendritic spines by regulating
cofilin activity, J. Neurosci. Off. J. Soc. Neurosci. 29 (2009) 8129–8142.

[64] L.Y. Chen, C.S. Rex, M.S. Casale, C.M. Gall, G. Lynch, Changes in synaptic morphology
accompany actin signaling during LTP, J. Neurosci. Off. J. Soc. Neurosci. 27 (2007)
5363–5372.

[65] A.C. Paula-Lima, J. Brito-Moreira, S.T. Ferreira, Deregulation of excitatory neurotrans-
mission underlying synapse failure in Alzheimer's disease, J. Neurochem. 126
(2013) 191–202.

[66] N.W. Hu, T. Ondrejcak, M.J. Rowan, Glutamate receptors in preclinical research on
Alzheimer's disease: update on recent advances, Pharmacol. Biochem. Behav. 100
(2012) 855–862.

[67] S. Camandola, M.P. Mattson, Aberrant subcellular neuronal calcium regulation in
aging and Alzheimer's disease, Biochim. Biophys. Acta 1813 (2011) 965–973.

[68] M.T. Maloney, J.R. Bamburg, Cofilin-mediated neurodegeneration in Alzheimer's dis-
ease and other amyloidopathies, Mol. Neurobiol. 35 (2007) 21–44.

[69] Q.L. Ma, F. Yang, S.A. Frautschy, G.M. Cole, PAK in Alzheimer disease, Huntington dis-
ease and X-linked mental retardation, Cell. Logist. 2 (2012) 117–125.

[70] S. Bellani, A. Mescola, G. Ronzitti, H. Tsushima, S. Tilve, C. Canale, F. Valtorta, E.
Chieregatti, GRP78 clustering at the cell surface of neurons transduces the action
of exogenous alpha-synuclein, Cell Death Differ. (2014), http://dx.doi.org/10.1038/
cdd.2014.111 (in press).

[71] M. Bentahir, O. Nyabi, J. Verhamme, A. Tolia, K. Horre, J. Wiltfang, H. Esselmann, B.
De Strooper, Presenilin clinical mutations can affect gamma-secretase activity by
different mechanisms, J. Neurochem. 96 (2006) 732–742.

[72] M. Citron, D. Westaway, W. Xia, G. Carlson, T. Diehl, G. Levesque, K. Johnson-Wood,
M. Lee, P. Seubert, A. Davis, D. Kholodenko, R. Motter, R. Sherrington, B. Perry, H.
Yao, R. Strome, I. Lieberburg, J. Rommens, S. Kim, D. Schenk, P. Fraser, P. St George
Hyslop, D.J. Selkoe, Mutant presenilins of Alzheimer's disease increase production
of 42-residue amyloid beta-protein in both transfected cells and transgenic mice,
Nat. Med. 3 (1997) 67–72.

[73] K. Duff, C. Eckman, C. Zehr, X. Yu, C.M. Prada, J. Perez-tur, M. Hutton, L. Buee, Y.
Harigaya, D. Yager, D. Morgan, M.N. Gordon, L. Holcomb, L. Refolo, B. Zenk, J.
Hardy, S. Younkin, Increased amyloid-beta42(43) in brains of mice expressing mu-
tant presenilin 1, Nature 383 (1996) 710–713.

http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0135
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0135
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0135
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0140
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0140
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0140
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0145
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0145
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0150
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0150
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0150
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0155
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0155
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0160
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0160
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0160
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0165
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0165
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0165
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0165
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0170
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0170
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0170
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0170
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0170
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0175
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0175
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0175
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0180
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0180
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0180
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0180
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0185
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0185
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0185
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0190
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0190
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0190
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0195
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0195
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0200
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0200
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0200
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0200
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0205
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0205
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0205
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0210
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0210
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0215
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0215
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0215
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0215
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0215
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0215
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0365
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0365
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0365
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0365
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0220
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0220
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0220
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0225
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0225
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0225
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0225
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0230
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0230
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0230
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0235
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0235
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0235
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0235
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0235
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0240
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0240
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0245
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0245
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0245
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0245
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0250
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0250
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0250
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0250
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0255
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0255
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0255
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0255
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0260
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0260
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0260
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0260
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0265
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0265
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0265
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0270
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0270
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0270
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0275
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0275
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0275
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0275
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0275
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0280
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0280
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0280
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0285
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0285
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0285
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0290
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0290
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0290
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0295
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0295
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0295
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0300
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0300
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0305
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0305
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0305
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0310
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0310
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0310
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0315
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0315
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0315
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0320
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0320
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0320
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0325
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0325
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0330
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0330
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0335
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0335
http://dx.doi.org/10.1038/cdd.2014.111
http://dx.doi.org/10.1038/cdd.2014.111
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0345
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0345
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0345
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0375
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0375
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0375
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0375
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0375
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0375
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0355
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0355
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0355
http://refhub.elsevier.com/S0925-4439(14)00310-X/rf0355

	Inactivation of brain Cofilin-�1 by age, Alzheimer's disease and γ-�secretase
	1. Introduction
	2. Materials and methods
	2.1. Human tissues
	2.2. Animals
	2.3. Cell culture and treatments
	2.4. Western Blot
	2.5. Aβ quantification
	2.6. Statistical analysis

	3. Results
	3.1. The Cofilin1 activation state is altered in AD human brains
	3.2. AD pathology-associated inactivation of Cofilin1 in the brain of APP/PS1 mice
	3.3. Age-dependent Cofilin1 inactivation in the brain of WT mice
	3.4. Inactivation of Cofilin1 during neuronal maturation in vitro
	3.5. γ-Secretase is a negative regulator of Cofilin1 activation

	4. Discussion
	5. Conclusions
	Disclosure statement
	Acknowledgements
	Appendix A. Supplementary data
	References


