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ABSTRACT Molecular motors, such as kinesin, myosin, or dynein, convert chemical energy into mechanical energy by
hydrolyzing ATP. The mechanical energy is used for moving in discrete steps along the cytoskeleton and carrying a molecular
load. High resolution single molecule recordings of motor steps appear as a stochastic sequence of dwells, resembling a
staircase. Staircase data can also be obtained from other molecular machines such as F1-ATPase, RNA polymerase, or
topoisomerase. We developed a maximum likelihood algorithm that estimates the rate constants between different con-
formational states of the protein, including motor steps. We model the motor with a periodic Markov model that reflects the
repetitive chemistry of the motor step. We estimated the kinetics from the idealized dwell-sequence by numerical maximization
of the likelihood function for discrete-time Markov models. This approach eliminates the need for missed event correction. The
algorithm can fit kinetic models of arbitrary complexity, such as uniform or alternating step chemistry, reversible or irreversible
kinetics, ATP concentration and mechanical force-dependent rates, etc. The method allows global fitting across stationary and
nonstationary experimental conditions, and user-defined a priori constraints on rate constants. The algorithm was tested with
simulated data, and implemented in the free QuB software.

INTRODUCTION

Processive motor proteins, such as kinesin, myosin, or

dynein, convert chemical energy into mechanical energy by

hydrolyzing ATP. The mechanical energy is used for moving

in discrete steps along the cytoskeleton and carrying a

molecular load (1). The mechano-chemistry of molecular

motors is a repetitive chain of identical reaction units (2).

Each unit corresponds to all the conformations—including

ATP binding states—taken by the protein at each position.

The reaction units in the chain are connected by motor step

transitions, corresponding to forward or backward steps

taken by the motor along its track. Myosin V, for example, is

a dimeric motor protein walking with a hand-over-hand

mechanism along actin filaments, taking a 37-nm step per

ATP hydrolyzed. In the hand-over-hand motion, the motor

alternately moves its heads to walk: first, the rear head moves

74 nm and becomes the leading head; next, the other head

moves 74 nm and takes the lead position, and so on (3,4)

(Fig. 1 A).
The motor movement can be visualized by attaching a

fluorescent probe to the molecule. Single-molecule record-

ings of motor steps appear as a stochastic sequence of dwells

(3,5,6) resembling a staircase (Fig. 1 C). Each dwell cor-

responds to a defined position of a single motor. The duration

of each dwell is random, with an exponential distribution

determined by the kinetics. Generally, two consecutive

dwells correspond to a step between two consecutive posi-

tions. However, due to the finite time resolution, the motor

protein may take more than one step within the sampling

interval, resulting in missed events. We developed a maxi-

mum likelihood idealization algorithm to provide the dwell-

sequence for kinetic analysis (7). This procedure finds the

motor’s most likely position for each data point (implicitly

detecting jump points), and estimates the step-size distribu-

tion and transition probabilities. The idealization was tested

successfully with different types of staircase data: uniform or

alternating small and large steps, constant or variable step

size, and reversible or irreversible kinetics.

Staircase data can be obtained from other molecular

machines at the single-molecule level. A typical example is

the F1-ATPase, which is a rotary molecular motor (Fig. 1 B).
Unidirectional rotation of the central g-subunit is powered

by ATP hydrolysis at three catalytic sites arranged 120�
apart. At high resolution, each 120� step can be resolved into
an 80� substep, driven by ATP binding, and another 40�
substep (8,9). Tracking the RNA polymerase position on the

DNA template (10), or tracking the topoisomerase activity

(11) also generates staircase data. What all these experiments

have in common is the observation of a process with periodic

chemistry through an increasing stochastic variable (i.e.,

position or rotational angle). In contrast, other single mole-

cule data, such as the patch-clamp recording of the current

flowing through a single ion channel (12), observe a non-

periodic stochastic variable with only a few states.
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Stochastic data cannot be analyzed by fitting the mean.

Instead, one must fit probability distributions, or maximize

the likelihood. The simplest way to analyze dwell-sequences

is to construct a dwell-time histogram (13) and fit it with a

sum of exponentials, or directly with the probability density

function (PDF). However, there are a few critical disadvan-

tages to histogram fitting. Most importantly, the information

provided by the correlation between dwell-times is not

utilized. For a model with NS states, at equilibrium, a

maximum number of 2NS–1 parameters can be extracted by

histogram fitting: the time constant and the weight for each

exponential component, minus one for the constraint that

weights sum to one.

For example, the model shown in Fig. 2 A has four rate

constants but, since NS ¼ 2, only three parameters can be

uniquely identified by histogram fitting. Thus, while the time

constants of the underlying process can be estimated by

histogram fitting, a detailed kinetic mechanism may be

impossible to derive due to missing information. Further-

more, histogram fitting does not account for missed events,

and requires a large amount of data to avoid counting errors.

This can be a problem for single molecule fluorescence

experiments, where photobleaching is limiting. Some of

these problems are solved by maximizing the likelihood

function. The maximum likelihood method utilizes all the

information contained in the data and its estimates are

asymptotically unbiased (14).

We present a maximum likelihood algorithm (the maxi-

mum idealized point likelihood, or MIP) that estimates the

rate constants of conformation and step transitions, from

dwell-time sequences. We model the molecular motor with

an aggregated periodic Markov model. Each molecular con-

formation is assigned to a state in the model, and transitions

between states are quantified by rate constants. The states of

the Markov model must include not only the finite set of

allosteric conformations, but also the position along the

substrate, which may be large. However, we take advantage

of the periodic chemistry, and reduce the Markov model to

those core states and transitions that fully describe the kinetic

mechanism. To reflect periodicity, certain constraints are

imposed on these core transitions. In the calculation of the

likelihood function, this reduced model is, in effect, recycled

at each data point. Although computation with the truncated

model is only asymptotically exact, the precision can be

improved by increasing the size of the core model. For small

data sets, optimization with the full model is possible (15),

but it becomes too slow and numerically unstable for larger

data sets that may require hundreds of states.

Stochastic single molecule data can be represented either

with discrete-time or with continuous-time Markov models.

A discrete-time algorithm maximizes the likelihood of a se-

quence of data points (16,17), while a continuous-time algo-

rithm maximizes the likelihood of a sequence of intervals

(18,19). Both algorithm types fully utilize the information

contained in the data, and should give statistically equal

estimates. For convenience, the likelihood function to be

maximized by our MIP program is formulated for a discrete-

time Markov model, with the added benefit that a correction

for missed events (20) is no longer necessary.

The algorithm described here has advanced features (as

described in (21)), such as global fitting across experimental

conditions of arbitrary time course, linear constraints on rate

constants (in addition to those reflecting the periodic step

chemistry), etc. The algorithm can handle models with

arbitrary kinetic complexity, including external driving

FIGURE 1 Myosin V and F1-ATPase are typical molecular motors that

convert chemical energy into mechanical energy by hydrolyzing ATP. (A)

Myosin V is a dimeric motor protein, walking with a hand-over-hand

mechanism along the actin filament, with the stalk taking 37-nm steps per

ATP hydrolyzed (3). (B) F1-ATPase is a rotary motor that unidirectionally

turns a rotor (g-subunit) inside a stator (a3b3-complex). The rotor turns in

120� steps, one for each ATP hydrolyzed. Each 120� step consists of an 80�
ATP-driven substep, followed by a 40� substep (8,9). (C) By attaching a

probe to the motor protein, staircase data are constructed from single-

molecule measurements. For a linear motor (myosin V), each dwell in the

staircase data represents the location of the protein at a given position along

its tracks, whereas for a rotary motor (F1-ATPase), each dwell corresponds

to a given number of revolutions taken by the rotor. The duration of each

dwell is random, with exponential distribution determined by kinetics and by

experimental conditions, such as ATP concentration or applied mechanical

force. Due to finite sampling time, more than one step may occur within the

sampling interval, resulting in missed events. At each position, the motor

undergoes transitions between two or more conformations. One of these

transitions is ATP binding.
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forces, such as concentration, force, voltage, etc. The like-

lihood function and its derivatives are calculated analy-

tically, permitting robust and fast (seconds to minutes)

maximization. We tested the algorithm with a variety of

kinetic models and simulated staircase data. Optimization

with MIP was similar to the output from other maximum

likelihood algorithms designed to estimate the rate constants

of nonperiodic Markov models (17,19).

MATERIALS AND METHODS

All the computer work was done with the QuB program (www.qub.buffalo.

edu; SUNY at Buffalo, Buffalo, NY) running MS Windows XP on a 3.0

GHz Intel PC. Staircase and non-staircase noisy data and idealized dwell-

time sequences (subject to finite temporal resolution) were generated with

the SIM routine. The simulator also provides the actual number of transitions

for any pair of states, nij, and the actual time spent in each state, ti. From

these values, the true rate constants are calculated as kij¼ nij/ti. Staircase data
were generated with periodic Markov models, as utilized for processive

molecular motors, while non-staircase data were generated with nonperiodic

Markov models, as utilized for ion channels. For estimation of rate con-

stants, we used the MIP, MPL, and MIL routines. MIP works by optimizing

the discrete-time likelihood of either a staircase or a non-staircase dwell-time

sequence. MPL maximizes the discrete-time likelihood of a data sequence

generated by a nonperiodic Markov model (17). MIL maximizes the

continuous-time likelihood of a dwell-time sequence, and provides first-

order correction of missed events (19). All three algorithms calculate

analytically the gradients of the likelihood function, and maximize the

likelihood function using the same fast variable metric optimizer (dfpmin),
implemented as in Press et al. (22) with modifications.

MODEL AND ALGORITHMS

Markov model

The behavior of a single molecule is well described with

Markov models. At any position p along the substrate, the

motor molecule is assumed to exist in one of NS aggregated

(i.e., experimentally undistinguishable) states. Thus, a stair-

case data set where the motor randomly walks across NP

positions requires a model with NS 3 NP states. Note that,

due to missed events and reversible chemistry, the number of

observed dwells may be different than NP. In general, the rate

constants of a Markov model are expressed as a rate matrix

Q (23). For staircase data, the resulting rate matrix Q has a

dimension (NS 3 NP) 3 (NS 3 NP). The Q matrix has each

off-diagonal element qij equal to the rate constant between

states i/j, and each diagonal element qii equal to the

negative sum of the off-diagonal elements of row i, so that

the sum of each row is zero (this reflects the fact that the

probability of being somewhere is unity). Hence, �1/qij is
equal to the mean lifetime of state i. Each rate constant qij has
the Eyring expression (24)

qij ¼ k
0

ij 3Cij 3 e
k
1
ij3Fij ; (1)

where k0ij is a preexponential factor, Cij is the concentration of

some ligand (such as ATP), and k1ij is an exponential factor

(Arrhenius), multiplied by the magnitude of the driving force

FIGURE 2 Molecular motors can be represented with reduced Markov models. (A) The mechano-chemistry of molecular motors is a repetitive chain of

identical reaction units. Each unit includes the conformations assumed by the protein while located at a given position along the cytoskeleton. The example

shown is for a model with two states per reaction unit. Only transitions between states within different units can be detected experimentally. (B) The rate matrix

Q of the Markov model is block tridiagonal and periodic. Shown is a submatrix Qr copied from the theoretically infinite Q, and its block representation. Note

that the first and last rows are not zero-sum. (C) A truncated transition probability matrix Ar is calculated as Ar ¼ eQ
r3dt. The example is shown for a sampling

interval dt ¼ 0.5 s. Note that Ar is also periodic. (D) Auxiliary matrices (Bi and S) used in the calculation of the discrete-time likelihood function. (E) An

example of likelihood calculation, for either the continuous-time or the discrete-time Markov model (see text for details).
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Fij (e.g., mechanical force). If the rate is not concentration-

dependent, then by definition Cij ¼ 1. Note that including

Cij in Eq. 1 relies on the assumption that Cij is constant, in

which case the kinetics are (pseudo) first-order. The units of

the exponential factor k1ij depend of the units of the driving

force Fij.

The occupancy of the NS 3 NP states is represented with a

state probability vector P, of dimension (NS 3 NP). The

Kolmogorov equation describes the dynamics of P,

@PT

t

@t
¼ PT

t 3Q; (2)

where Pt is the state probability vector at time t, and the

superscript T denotes vector transposition. The Chapman-

Kolmogorov solution allows calculation of Pt, given some

initial value P0:

PT

t ¼ PT

03e
Q3t

: (3)

In the same way, the solution of Pt can be advanced over

the sampling interval dt,

PT

t1 dt ¼ PT

t 3A; (4)

where A is the transition probability matrix, of dimension

(NS 3 NP) 3 (NS 3 NP). Each element aij is equal to the

conditional probability that the process is in state j at time

t1dt, given that it was in state i at time t. The A matrix is

A ¼ eQ3dt
: (5)

By definition, the molecule cannot take more than one step

at a time. Thus, the kinetic states at position p are directly

connected only to the kinetic states at position p1 1 (forward

step), and to the kinetic states at position p � 1 (backward

step) (Fig. 2 A). Therefore, Q is block-tridiagonal (Fig. 2 B).
Due to the periodicity of the kinetic model, the Q and A
matrices have the following additional properties:

qij ¼ qi6NS ;j6NS
; (6)

aij ¼ ai6NS ;j6NS
: (7)

These two properties, together with the band-tridiagonal

structure of the Q matrix, make the calculation of any qij
element trivial. However, as further shown, the A matrix is

also required to calculate the likelihood function in the

discrete-time case. Even though the length of the reaction

chain is practically limited by experimental conditions, the

size of the corresponding Markov model could be very large,

with possibly hundreds of states. How does one calculate the

A matrix when Q is large?

Within a sampling interval dt, the motor can maintain

position or can take any number of steps, back and forth.

However, if the position at time t is known, the position at

t 1 dt is expected to be in the neighborhood, and the

probability of finding the motor at a further-away position

decreases exponentially with the distance. If the sampling

interval is short relative to the kinetics, the probability of the

motor having taken more than a small number of steps

approaches zero: aij / 0, for j sufficiently far from i. While

Q is band-tridiagonal, A is periodically banded. The size of

any band of A is equal to NS rows, and any two adjacent

bands are identical but shifted horizontally by NS columns

(Fig. 2 C). For a full representation of A, it is therefore

enough to calculate the elements aij within a band, such that

j is within a certain distance from i, small enough to permit

computation, yet large enough for precision. The other

elements aij, where j is farther from i, can be approximated

as zero. Any other band of A can be constructed simply by

shifting left or right by a multiple of NS columns.

A practical way of calculating the transition probabilities

aij with minimal error is the following: first, a truncated rate

matrix Qr is constructed as if it were copied as a submatrix

from an infinite Q. The size of Qr is (2r 1 1) 3 (2r 1 1)

reaction units, where each unit has NS states. The truncation

order r is chosen to be greater than the highest-order step

detected in the staircase data. A truncated Ar matrix is sub-

sequently obtained from Qr using Eq. 5. We have chosen the

spectral decomposition technique (25,26), which obtains the

Ar matrix as

Ar ¼ +
i

Ai3e
li3t

; (8)

where Ai values are the spectral matrices obtained from the

eigenvectors of Qr, and li are the eigenvalues of Qr. A

submatrix copied from the theoretically infinite A should be

approximately equal to the corresponding submatrix copied

from Ar, if r is sufficiently large. For the example shown in

Fig. 2 C, we found that the approximation error becomes

negligible for r$ 3. Note that since the first and last rows of

Qr do not have zero sum, the Ar matrix is no longer row-

stochastic, i.e., the sum of each row is not one. In conclusion,

all calculations can be done with a truncated model of small

size.

Dwell-time probability density function

The probability density function for the lifetime of an ag-

gregated Markov model in a given class is a sum of ex-

ponentials, with as many components as states in that class

(27). To calculate the PDF, Q is partitioned into submatrices

Qab of dimension (Na 3 Nb), where Na and Nb are the

numbers of states in aggregation classes a and b, respec-
tively. The PDF of the transitions between classes a and b
is given by the matrix Gab(t), as

GabðtÞ ¼ e
Qaa3t3Qab; (9)

whereQaa is the submatrix ofQ that contains only transitions

within class a, and Qab is the submatrix containing tran-

sitions between classes a and b. The matrix eQaa3t represents

the probabilities of transition within class a. The expression
Gab(t)ij is the conditional PDF that the process stays for time t
in class a, given that it entered class a through state i and that

Molecular Motor Kinetic Analysis 1159
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it exited into class b through state j. To calculate the uncon-

ditional PDF, one must take into account the probabilities of

entering through each state of class a, and all possible exit

classes b 6¼ a. Thus, the PDF of dwelling for time t in class a,
denoted fa(t), has the expression (27,28)

faðtÞ ¼ PT

a3e
Qaa3t3 +

b 6¼a

ðQab31Þ; (10)

where the vector Pa (of dimension Na) represents the entry

probabilities in class a, and 1 is a vector of ones, of dimen-

sion matchingQab. With the assumption that the process is at

equilibrium, Pa can be calculated as (27)

PT

a ¼
+
b 6¼a

PT

b;eq3Qba

+
b6¼a

PT

b;eq3Qba31
; (11)

where Pb,eq is a vector of dimension Nb, containing the

equilibrium probabilities for the states in class b. Essentially,
the above expression calculates the entry probabilities into

class a as the equilibrium probabilities in class b 6¼ a mul-

tiplied by the rates between b/a. The role of the denom-

inator is to normalize the resulting probabilities to one. For

a simple two-state model, Eq. 10 reduces to faðtÞ ¼
kab3e�kab3t.

Likelihood function for the continuous-time model

The one-dimensional PDF (Eqs. 9 and 10) can be used to

calculate the joint PDF of a sequence of dwells (t, a) as (29)

f ðt; aÞ ¼ PT

a1
3eQa1 a1

3 t13Qa1a2
3eQa2 a2

3 t23Qa2a3
� � � eQaT aT

3 tT

3 +
b 6¼aT

ðQaTb
31Þ; (12)

where t is the dwell-time sequence t ¼ [t1, t2, . . ., tT], and a
is the class sequence a ¼ [a1, a2, . . ., aT]. The value f(t, a) is
in fact the likelihood of observing the dwell-sequence (t, a),
given the model and its parameter values.

The likelihood function above is formulated for an ideal

dwell-sequence, in which all transitions between different

classes are observed. In practice, due to finite temporal

resolution, some short dwells will always be missed. These

missed events may result in observed steps between

nonconsecutive positions. Notice that the submatrix for

transitions between nonconsecutive positions is zero, which

causes the likelihood to be zero too. Without a correction for

missed events, dwell-times are overestimated, and model

parameters are biased. The distortion caused by missed

events can be corrected by an exact but slow solution

(30,31), or by a fast approximation (19,32). For example, in

the first-order correction (19), the PDF has exactly the same

form, except it uses the matrices eQaa and
eQab, corrected for

missed events, as

eQaa ¼ Qaa �Qaa3 I� e
Qaa3td

� �
3Q�1

aa 3Qaa; ð13Þ

eQab ¼ exp td3Qaa3 I� e
Qaa3td

� �
3Q�1

aa 3Qaa

� �
3 Qab �Qac3 I� e

Qcc3td
� �

3Q�1

cc 3Qcb

� �
;

ð14Þ

where I is the identity matrix and td is the dead-time. The

index value �aa refers to those states that are not in class a, and
c refers to those states that are neither a nor b.
In the case of processive molecular motors, there is

generally only one aggregation class, and its dwell-time PDF

has NS exponentials. The Q matrix can be partitioned using

three submatrices Q0, Q�1, and Q1, as shown in Fig. 2 B.
Thus, Q0 is the submatrix of transitions within the same

reaction unit, while Q�1 and Q1 are the submatrices of tran-

sitions between consecutive units, in the forward or back-

ward direction, respectively. The dwell-time PDF has the

expression

f ðtÞ ¼ PT

03e
Q03t3ðQ�1 1Q1Þ31; (15)

where P0 is the vector of entry probabilities into one unit. P0

can be obtained as

PT

0 ¼
PT

eq3ðQ�1 1Q1Þ
PT

eq3ðQ�1 1Q1Þ31
; (16)

where Peq is the vector of equilibrium probabilities for the

states in one reaction unit. The calculation of Peq deserves

some discussion: the equilibrium probability for any state i
along the chain should be very small, theoretically zero for

an infinite chain. However, since the process is periodic,

dwells are indistinguishable: dwells corresponding to differ-

ent positions have identical PDF. Therefore, the equilibrium

probability for a state i inside a reaction unit, taken sepa-

rately, is obtained by summing the probability of that state

across all reaction units, which is a finite number. Further-

more, the same value is obtained whether the sum is over an

open and infinite chain, or over a circular and finite chain.

Thus, a practical way to calculate Peq is by constructing a

circular model that contains two reaction units connected in a

loop. From the Q matrix of this circular model, equilibrium

probabilities can be calculated with the method described in

Colquhoun and Hawkes (23). From these, Peq,i is obtained as

twice the equilibrium probability of state i in one unit of the

circular model.

The likelihood L of a staircase dwell-sequence can be

written as

L¼ PT

03e
Q03t13Qi1

3e
Q03t23Qi2

� � � eQ03tT3ðQ�1 1Q1Þ31;

(17)

whereQi is equal to eitherQ1 orQ�1, depending on whether

the step between the two consecutive dwells is in the forward

or in the backward direction. An example of how to calculate

the likelihood function for a given dwell-time sequence is

shown in Fig. 2 E. Application of the missed events cor-

rection to staircase data is possible, but for details we refer

the reader to Colquhoun et al. (18) and Qin et al. (19). Note

that, due to the missed events correction, the submatrix for
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transitions between nonconsecutive positions is no longer

zero.

Likelihood function for the discrete-time model

For easier understanding and without loss of generality,

we assume that the maximum step detected in the data is of

order 61, i.e., any two consecutive measurements are not

separated by more than one position. To better illustrate the

method, we also assume the kinetic model is reversible, with

two states per reaction unit, such as shown in Fig. 2 A.
We choose a truncation order r ¼ 1, and thus the model has

2r11 ¼ 3 units (referred to as left, center, and right), and a

total of six states. Hence, the Qr and Ar matrices have a

dimension of 333 units, or 636 elements. Similarly, the

state probability vector P and all other vectors used in the

computation have a dimension of three units. For increased

numerical accuracy, Ar should be obtained from a larger Qr

before truncation.

The likelihood L of a sequence [0. . .T] of idealized

staircase data points is given in matrix form by the expression

L ¼ ðPT

03B03SÞ3ðAr3B13SÞ3ðAr3B23SÞ � � �
ðAr3BT3SÞ31: (18)

The likelihood expression above is similar to that in Qin

et al. (17). The value P0 is the initial state probability

vector. All its entries are zero, except those corresponding

to the center unit, which are nonzero and sum to one. The

value Bt is a diagonal matrix, with entries equal to either 0

or 1 (Fig. 2 D). For data points at the beginning of dwells,

after a forward jump, the entries in the left block are one and

all the others are zero. For points corresponding to a back-

ward jump, the entries in the right block are one and all the

others are zero. For all other points, the entries in the center

block are one and all the others are zero. At each point t, the
appropriate Bt matrix is plugged into the likelihood ex-

pression (Fig. 2 E).
In Qin et al. (17), Bt is also a diagonal matrix, but its

diagonal entries are Gaussian conditional probability densi-

ties. There, these probability densities measure how likely it

is that a noisy data point was obtained while the process was

in a given state. Here, the probability densities are replaced

with zero or one, since the signal is already separated from

noise. Note that with data obtained from motors with high

step variability (e.g., dynein), the step order may be ambig-

uous. In this case,Bt can be modified as to include all possible

jump orders, each with a calculated weight. The value S is a

permutation matrix (Fig. 2 D) that sums, blockwise, the state

probabilities, moves the sum into the center block and clears

the left and right blocks. The role of the Smatrix is to map the

likelihood computation from the theoretically infinite state

space into the finite, small state space of the truncated Ar

matrix. This is permitted by the periodic chemistry and by the

periodic properties of the A matrix (Eq. 7).

In short, the likelihood function in Eq. 18 propagates the

state probabilities through the time sequence, according to

Eq. 4, but it also compares the theoretical prediction with the

data. The calculation starts with the initial state probabilities

P0, which represent the a priori knowledge about the initial

state occupancies. Then, for each time t, Pt11 is first pre-

dicted by post-multiplying Pt with theA
r matrix (as in Eq. 4).

The prediction is then corrected by the evidence contained in

the data, i.e., by post-multiplication with the diagonal matrix

Bt11. This correction leaves unmodified the entries in the state

probability vector corresponding to those states that match the

actual data, while it zeroes all the others. The correctedPt11 is

the a posteriori estimate. The corrected state probabilities are

then reset by post-multiplication with the permutation matrix

S, so that only the states in the center block are occupied and
the others are zero. Although the same result can be achieved

without explicitly using the Smatrix, this formulation permits

a consistent matrix form of the likelihood function and of its

derivatives, as shown below. Consequently, only the relative

difference in position between two consecutive data points is

used. Note that the S matrix is strictly necessary only at the

beginning of dwells and has no effect otherwise. Finally, the a

posteriori state probabilities at the last data point are summed

over all states, by post-multiplication with a column vector of

ones. This sum is equal to the likelihood. The more the

prediction matches the actual data, the higher the likelihood.

An example of how to calculate the likelihood for a point

sequence is shown in Fig. 2 E.

Maximization of the likelihood function

The objective is to find the parameter set uML that maximizes

the likelihood L, or, equivalently, the log-likelihood LL:

u
ML ¼ argmax

u

LL: (19)

Either the continuous-time or the discrete-time likelihood

function can bemaximized. Here, we have chosen the discrete-

timecase, for twomain reasons: it is a simpler computation, and

it does not require correction for missed events. The likelihood

function is maximized numerically. For details of implementa-

tion, we refer the interested reader to Milescu et al. (21). The

parameters to be estimated are the preexponential and the

exponential factors k0ij and k1ij, for each rate constant qij. A
transformation of variable enforces the constraint of positive

preexponential factors k0ij (21). Other constraints are the model

periodicity (Eq. 6), and those derived from a priori knowledge

(21), such as fixed or scaled rates, or microscopic reversibility

of cycles. We implemented an efficient mechanism for

imposing these constraints using the singular value decompo-

sition, as previously reported (17,21). The algorithm optimizes

a set x of free parameters, fromwhich the kinetic parameters k0ij
and k1ij are subsequently calculated. Each constraint reduces

by one the number of free parameters.
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The likelihood is computed using recursive forward and

backward vector variables a and b, initialized and calculated
as (17)

a
T

0 ¼ PT

03B03S; (20)

a
T

t11 ¼ a
T

t 3ðA3Bt113SÞ; (21)

bT ¼ 1; (22)

bt ¼ ðA3Bt113SÞ3bt11: (23)

Numerical underflow is avoided by using the scaling

factors st to calculate the normalized probabilities ă and b̆,
as

s0 ¼ a031; (24)

st11 ¼ ă
T

t 3ðA3Bt113SÞ31; (25)

ă
T

0 ¼ a
T

0=s0; (26)

ă
T

t11 ¼ ă
T

t 3ðA3Bt113SÞ=st11; (27)

b̆T ¼ bT; (28)

b̆t ¼ ðA3Bt113SÞ3b̆t11=st11: (29)

Note that ăT
t 3b̆t ¼ 1, since the same scaling factors were

used for both a and b. Hence, LL can be conveniently

calculated using the scaling factors st, while its derivatives

@LL/@qij can be calculated using the chain rule of matrix

differentiation, as

LL ¼ +
T

t¼0

ln st; (30)

@LL

@qij

¼ @PT

0

@qij

3B03S3b̆0 1 +
T�1

t¼0

ă
T

t 3
@A
@qij

3Bt113S3b̆t11

� �
:

(31)

The derivatives @PT
0=@qij, @A/@qij, @Q/@qij, and the A

matrix itself are calculated as in Milescu et al. (21), with the

mention that @Q/@qij takes into account the periodic

chemistry (Eq. 6). The derivative of LL with respect to a

free parameter xk is calculated with the chain rule, as

@LL

@xk
¼ +

i;j

@LL

@qij

@qij

@vij

@vij
@xk

1
@qij

@k
1

ij

@k1ij
@xk

 !" #
; (32)

where vij ¼ lnk0ij, @qij=@vij ¼ qij, and @qij=@k
1
ij ¼ Fij3qij are

obtained as in Milescu et al. (21). In the above calculation, A
and Q are the truncated matrices. The indexes i and j are for
the off-diagonal entries in the Q matrix corresponding to

nonzero rates in the kinetic model. Note that the likelihood

function can be maximized without its analytical derivatives,

but their availability allows for a significantly faster and more

precise maximization. The optimization routine we used

calculates the covariance matrix of the free parameters x.
From this, we calculate the error estimates of the rates (21).

We accelerated the computation of the likelihood function

and its derivatives by precomputing multiplications of iden-

tical terms in the likelihood function (Eq. 18). For example, a

dwell of length 73 points can be represented in the likeli-

hood calculation either as a product of 73 identical terms, or

more efficiently as a smaller product of powers, such as the

following:

L ¼ � � � ðA3B3SÞ643ðA3B3SÞ83ðA3B3SÞ � � � : (33)

Note that the sum of the exponents 64 1 8 1 1 ¼ 73.

These exponents can be conveniently chosen as powers of

two, e.g., 1, 2, 4, 8. . ., etc. Thus, one can first calculate the

power with exponent one, which by multiplication with itself

gives the power with exponent two, and so on. It is therefore

enough to calculate the term A 3 B 3 S and then its 2nd,

4th, 8th. . . powers. Thus, K terms in the series (A3 B3 S)2
k

can be calculated in only K matrix multiplications, and only

once for the whole data set. This treatment, applied to the

likelihood function and its derivatives, results in a consid-

erable speed improvement.

RESULTS

Fig. 3 shows a few examples of kinetic models that can be

modeled by our algorithm. For each model, only motor steps

can be observed (transitions between different units) but not

transitions between states inside the same reaction unit. All

models implicitly include ATP binding and mechanical

force-dependent steps. In Fig. 3, only model E is formulated

with explicit ATP binding, to emphasize its special charac-

teristic of having alternating steps with different chemistry.

This model describes the two substeps of the F1-ATPase: an

80� ATP binding substep and a 40� substep (8,9). Alternat-

ing steps are handled by our method, with the simple modi-

fication that the permutation matrix S is applied only after a

repeating pair of two alternating units. An illustration of the

need for constraints on rate constants is model C, which
describes a molecular motor, such as myosin V (3), with the

fluorescent probe attached to the motor head. In this case,

only every other motor step can be observed. Consequently,

there are twice as many states per reaction unit but, due to

constraints, the number of free parameters remains the same

as for model B. Notice how dwell-time histograms are

truncated, since dwells shorter than the sampling interval

(as shown, dt ¼ 500 ms) are missed.

Solving models with one state per reaction unit (Fig. 3 A)
is trivial: the two rates can be calculated by hand simply

by dividing the number of forward and backward jumps

(including missed events) by the length of the data. Although

trivial, single-state models are informative about possible

bias in the maximum likelihood estimates. We tested the

algorithm with both reversible and irreversible data gener-

ated by single-state models. The rates obtained by the maxi-

mum likelihood algorithm were equal (within numerical

precision) to the rates obtained by hand calculation. These

results validate the algorithm, and show that the estimates are

unbiased.
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Next, we tested the algorithm with a nontrivial model with

two states per reaction unit, as shown in Fig. 2 A. First, data
simulated with the two-state model were fit with either the

correct model, or with a single-state model (Fig. 4 A). The
estimates obtained with the correct model are virtually identical

to the true rates used by the simulator. Furthermore, the

difference between the true and the estimated rates, however

small, is well within the standard deviation of the estimates, as

calculated by the optimizer. The two models have nearly

identical PDFs (shown overlapped on the dwell-time histo-

gram), but their log-likelihoods are very different: �79,561.27

(two-state model) versus �83,254.93 (one-state model).

Clearly, the correct model is favored by the likelihood function.

In contrast, the histogram fitting, which ignores correlations in

time, is not capable of distinguishing the two models.

Is the increase in likelihood for larger models spurious,

simply the result of having more fitting parameters? The

correct model has four parameters while the single-state

model has only two. To estimate the role of an increasing

number of parameters on the increase in likelihood, we used

the Akaike (AIC) (33) and the Bayesian (BIC) (34) informa-

tion criteria, defined as

AIC ¼ �2ðLL� kÞ; (34)

BIC ¼ �2ðLL� 0:53k3 lnNÞ; (35)

where k is the number of free parameters and N is the number

of data points. For our example, both AIC and BIC favor the

correct model by a large margin. We also simulated data with

the single-state model and fit them with both models (Fig.

4 B). In this case, the log-likelihoods are virtually identical,

and likewise the PDF curves. This indicates that the larger

model is overfitting. Also indicative of overfitting is the large

standard deviation of the estimates.

Statistical distributions of kinetic estimates

To determine the statistical properties of the estimates, we

simulated staircase data with the two-state model shown in

FIGURE 3 Molecular motor kinetics can be represented by a variety of models. Shown are a few examples of kinetic models and their simulated staircase

data and dwell-time histograms. These models have one state per reaction unit (A and E), or two states (B and C), and have reversible (A, B, and D), or

irreversible (C and E) kinetics. Even when not explicitly stated, all models include an ATP binding state, and mechanical force-dependent transitions. Model D

corresponds to, e.g., myosin V experiments where the fluorescent probe is attached to the motor head, resulting in double steps of 74 nm. The apparent kinetics

are slower, as a single dwell consists of two consecutive steps. Model E corresponds to F1-ATPase experiments, with an 80� ATP binding substep, followed by

a 40� substep. Notice how the lifetime of those dwells after a 40� substep becomes shorter at higher ATP concentration. Due to finite sampling, some unitary

steps are missed (e.g., the double step in trace A, marked with a star). Missed events could, in principle, occur anywhere between two samples. Notice the effect

of missed events on dwell-time histograms.
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Fig. 3 A. We found that the estimates for all rates have

Gaussian distributions (Fig. 5 A). However, obtaining a

meaningful rate estimate requires that sufficient information

about that transition is contained in the data. For example, kB
had a large variance and it was bimodal when only two data

traces were globally fit (Fig. 5 A, upper graphs). A large

fraction of the estimates consisted of zero values (in the

optimization, we constrained kB $ 1 3 10�5 s�1), while the

remaining fraction consisted of finite values, loosely centered

on the true (simulated) value. The explanation is simple: in

the simulated data file used for analysis, the following

transitions were counted: Bi/Ai ¼ 5315; Ai/Bi ¼ 98,532;

Bi/Ai11¼ 131,627; and Ai11/Bi¼ 39,477. As the file had

1000 segments of 5000 points each, the Bi/Ai transition

(quantified by kB) occurred approximately once per trace.

While some traces had one or a few Bi/Ai transitions, others

had none. This shortage of information explains the poor

quality of kB estimates (Fig. 5 A, upper graphs). In

comparison, the distribution of the kB estimates improved

considerably when 20 segments were globally fit (Fig. 5 A,
lower graphs).
We also observed a lack of cross-correlation between

different pairs of estimates (Fig. 5 B), which implies that the

parameters are rather orthogonal. All four rate constants were

estimated without bias (Fig. 5 C, left graph) if at least 10
traces were globally fit. The standard error of all estimates

was ,10% (Fig. 5 C, right graph) if the analyzed data

contained at least a few hundred events of each transition.

We emphasize that the source of this variance is the sto-

chastic nature of the dwell-sequence, and not the optimiza-

tion program. One should regard these results as a measure

of how much the estimates obtained from experimental data

FIGURE 4 Maximum likelihood can select the correct model. Staircase data were simulated with the two-state model shown in panel A, or with the single-

state model shown in panel B, sampled at dt¼ 0.5 s. For each simulation model, the true rate constants are given, calculated as kij¼ nij/Ti, where nij is the actual

number of transitions i/j, and Ti is the actual time spent in state i, as randomly chosen by the simulation routine. Each simulation was then maximum

likelihood-fit with either model. The PDF curves for the ML estimates are shown overlapped on the dwell-time histograms, without correction for missed

events. In panel A, the log-likelihood LL is significantly greater for the correct model, even considering the additional two free parameters, while the PDF lines

overlap almost perfectly. In panel B, the two models have virtually identical LL and PDF. Notice that estimates obtained with the correct model are very

accurate. In panel B, estimates obtained with the wrong model have a very large standard deviation. Notice how, due to missed events, the histogram appears to

be slightly shifted to the right relative to the ideal PDF curve.
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may depart from the true parameters of the generating pro-

cess, under conditions of limited data.

We also tested the algorithm with irreversible data, gen-

erated with the same model but with either kB ¼ 0, or jB ¼ 0

(see Fig. 3 C). As before, we constrained the estimated rates

to be$13 10�5 s�1, to avoid numerical problems. The data

were analyzed in groups of 20 segments, with the zero rate

(kB or jB) as a free parameter, or constrained to 1 3 10�5. In

both cases, we obtained statistically correct estimates (results

not shown). Data simulated with jB ¼ 0 contain direct

evidence for a zero jB, i.e., they lack backward steps. Thus,

the algorithm theoretically should have obtained all jB
estimates equal to 1 3 10�5. In practice, the optimizer

estimated jB as 2.01 3 10�5 6 4.02 3 10�5 (max ¼ 4.6 3
10�4), close to the expected value. In contrast, data simulated

with kB ¼ 0 do not contain direct evidence for a zero kB.
Although ideally kB should also have been estimated as

1 3 10�5, in practice jB was estimated as 2.2 3 10�4 6
8.63 10�4 (max ¼ 13 10�2), a fairly good approximation.

Comparison between MIP and other
kinetic algorithms

The MIP algorithm may be applied to data generated by

nonperiodic Markov models, such as single-channel data,

with the removal of the S matrix from Eq. 18. We compared

MIP against the MIL (19) and MPL (17) maximum

likelihood algorithms used for single channel analysis. We

simulated data with a three-state, closed-open-closed model.

To test the effect of missed events, we intentionally chose

two of the four rate constants to be comparable to the

sampling time (2 s�1 and 5 s�1, versus a sampling time dt ¼
0.1 s). Fig. 6 A shows that the three methods are equivalent,

and their estimates are statistically equal. As expected, the

cross-correlation is almost perfect between MIP and MPL,

as they are both point methods designed for discrete-time

Markov models, as opposed to MIL, which is interval-based

and designed for continuous-time Markov models.

The experiment also showed that it is legitimate to replace

the Gaussian densities in the likelihood function with hard

probabilities of zero and one, when the data are already ide-

alized. MIL estimates seem to have greater variance thanMIP

or MPL estimates, which suggests that MIP requires less data

to achieve the same precision. More importantly, the experi-

ment demonstrates that a discrete-time method implicitly

handlesmissed events aswell as, or better than, the continuous-

time method which explicitly requires correction for missed

events. MIL estimates may depend critically on the choice of

the dead-time parameter (19). For this experiment, we found

the best value to be�1.6 times the sampling interval (Fig. 6B),
but the dead-time is a function of the model and data.

The convergence time of the three programs (using a MIP

premultiplication order of 16) scaled approximately as 1

(MIL): 1.6 (MIP): 8 (MPL). MIL is clearly the fastest, as it

operates with dwells and not points (there are fewer dwells

FIGURE 5 Statistical distribution of maximum-likelihood kinetic esti-

mates. Five-thousand dwell-sequences, each 5000 points long, sampled at

dt ¼ 0.5 s, were simulated with the model shown in Fig. 2 A and were

globally fit in groups of 2. . .1000. (A) Rate constants are Gaussian-

distributed with a width proportional to the number of data points globally fit

(two traces in A1, and 20 traces in A2). The distribution of kB has much

higher variance, and is bimodal when only two traces were fit (A1). This is
explained by the scarcity of kB transitions: only �1 per segment, compared

to .10 per segment for all other rates. (B) There is no apparent cross-

correlation between the estimates of different parameters. The example

shown is for the global fit of 20 traces. The implication is that if one

parameter cannot be reliably estimated (i.e., kB), it will not lower the

precision of the other estimates. The solid circles mark the correct values.

(C) All four rate constants were estimated without bias, when at least 10

traces were globally fit, i.e., at least 10. . .100 transitions for each rate. The

standard error of all but kB estimates was below 10%, when at least 10 traces

were globally fit. Considering the actual number of simulated transitions, all

parameters are estimated with similar precision.
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than points), but MIP is close. Thus, the potentially slower

computation of point-based methods is no longer a problem.

For example, fitting a two-state model to a data set with

;100 dwells converged in seconds. Fitting a model with

four states to a few thousands of dwells takes minutes. All

three programs converged in approximately the same number

of iterations.

DISCUSSION

Molecular motors are mechano-chemical systems that in

vivo may depart from simple (pseudo-) first-order kinetics.

However, under the right in vitro experimental setup their

intrinsic kinetics can be studied using Markov models, which

can include dependence on external stimuli, such as ATP

used to convert chemical into mechanical energy, or the

generation of mechanical motion and force (2). The param-

eters thus obtained can be incorporated into more compre-

hensive in vivo models. In this article, we showed that:

1. The potentially very large but periodic Markov model

can be reduced to a small, truncated version.

2. The likelihood function of the stochastic staircase dwell-

sequence can be formulated in a compact form, for

chemistry of arbitrary complexity.

3. Unbiased kinetic parameters can be estimated by numer-

ical maximization of the likelihood function.

Continuous-time versus discrete-time models

The discrete-time likelihood function makes no assumption

about what happens between sampling points, and therefore

does not miss events. In contrast, in the continuous-time

model, it is assumed that the process does not change class

during a dwell. Since this is not actually the case, a correc-

tion for missed events is necessary (19,30–32). MIP does not

require correction for missed events and thus has the

potential of being more accurate than interval-based algo-

rithms that have to deal with missed events (18,19). It does

not mean, however, that a point method such as MIP will

work at any temporal resolution. Thus, when the sampling is

too slow relative to the kinetics, the process will reach

equilibrium between samples, and information about transi-

tions will simply be lost. Neither MIP nor any other method

can extract useful estimates in this case.

The rate estimates are unbiased and Gaussian

The maximum likelihood rate estimates are intrinsically

unbiased, but the confidence level depends on the amount of

available data (Fig. 5). Thus, a rate cannot be properly

estimated when the corresponding transition occurs rarely. In

this case, the distribution of the estimate may appear biased,

or bimodal (Fig. 5 A, upper graphs). While this is generally

not a problem with single-channel data which usually

contain a large number of events, it can be a serious factor

with data limited by photobleaching or by short substrate

filaments. We recommend testing algorithm performance

using simulated data to explore the errors in particular cases.

We emphasize that this variability is determined by the

stochastic nature of single-molecule data and not due to the

algorithm.

Parameter identifiability and model selection

Although the likelihood function (Eq. 18) fully utilizes the

information contained in the data, any modeling study must

answer two important questions: for a given model, how

many kinetic parameters can be uniquely identified? Second,

can two models be distinguished, according to some

FIGURE 6 Comparisonbetweendiscrete-

time and continuous-time maximum-

likelihood algorithms. One-hundred data

sets, each 100-s long, sampled at 10 Hz,

were simulatedwith thenonperiodicmodel

closed-open-closed (k12 ¼ 0.1 s�1, k21 ¼
0.05 s�1, k23¼ 5.0 s�1, and k32¼ 2.0 s�1),

and were maximum likelihood-fit individ-

ually.We tested the following algorithms:

MIP (discrete-time, presented in this arti-

cle), MPL (discrete-time) (17), and MIL

(continuous-time, first-order missed events

correction) (19). (A) Cross-correlation

plots show that estimates obtained with

MIP (x axis) match almost perfectly the

estimates obtained from the same data set

with MPL (y axis), and are well correlated

with the estimates obtained with MIL

(y axis). Notice that MIL’s estimates have

greater variance than those obtained with the other two algorithms. (B) Estimates obtained with MILmay depend critically on the choice of dead-time parameter

for missed event correction. In the example shown, the best values were obtained with a dead-time�1.63 dt, where dt is the sampling interval. MIP and MPL

do not require missed event correction. The dotted lines mark the true parameter values.
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objective criterion? Regarding the first question, it is known

that the maximum number of parameters that can be

estimated from equilibrium single channel data is 2 3 NC

3 NO (29,35), where NC and NO are the numbers of closed

and open states, respectively. How do we define closed and

open in the case of staircase data? In a sense, the molecular

motor model has only one aggregation class; however, jump

transitions can be observed. Therefore, a minimal represen-

tation of the periodic model presented in Fig. 2 A can be

formulated with four state transitions (denoted by kF, kB, jF,
and jB) connecting three states (e.g., Ai, Bi, and Ai11) that can

be partitioned in two conductance classes: states Ai and Bi are

closed, and Ai11 is open. From such a model, a maximum of

four kinetic parameters should be uniquely identifiable. Our

analysis (see Figs. 4 and 5) confirmed this prediction: all four

rate constants were uniquely identified.

In practice, the maximum number of parameters that can

be determined is a function of the kinetic model, the ex-

perimental protocol (stationary versus nonstationary, local

versus global fitting, etc.), and the availability of an adequate

amount of data (see Fig. 5). If more complex models are to be

studied, the parameter identifiability may be improved by

manipulation of experimental conditions, e.g., global fitting

across different ATP concentrations or mechanical force

values (21). The algorithm presented here was implemented

with this need in mind, and can globally model data obtained

under different experimental protocols, including nonsta-

tionary stimuli (21).

With respect to model identifiability, it is known that two

Markov models that are related by a similarity transform give

identical likelihood (36,37) and thus cannot be distinguished.

In this case, global fitting across different conditions or using

nonstationary stimuli will improve identifiability. Further-

more, due to the stochastic nature of the data, the likelihood

estimator has an intrinsic variance proportional to the number

of data points. When there are few data points, the likelihood

distributions for two different models may overlap. In the

example shown in Fig. 4, the two models were correctly

selected because we used a relatively large amount of data.

Again, we recommend using simulations to check the

statistical separation between likelihood distributions. Note

that when models of different size are compared, their

likelihoods must be scaled for the number of free parameters

and for the amount of data, as shown in Results.

Reversible models and truncated matrices do
not pose numerical problems

Two kinds of numerical errors may in principle affect the

kinetics algorithm. First, irreversible models may easily

result in confluent (i.e., degenerate)Qmatrix eigenvalues. In

this case, the transition matrix A cannot be calculated using

the convenient spectral decomposition (25,26). A simple yet

effective solution is to set a lower limit on rates, for example

constraining the rates to.1/data length. Although this could

potentially introduce bias in estimates, we found this bias to

be negligible in practice.

The second source of numerical error is computing the

truncated transition probability matrix Ar. The error between

the truncated and the theoretical A matrices decreases with

the truncation order. However, since the computational speed

scales quadratically with the size of the model, the truncation

order is chosen as a compromise between accuracy and speed.

We found that a model with 2r11 ¼ 7. . .9 units runs

reasonably fast (seconds to minutes) and has an error that is

negligible relative to the intrinsic variance of the estimates.

Note that when the analyzed data lack backward steps (i.e.,

they are irreversible), the model can be simplified to only r11

units, since the left block states will never be occupied in the

likelihood chain.
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