On some properties of doughnut graphs

Md. Rezaul Karim ${ }^{\text {a,*, Md. Jawaherul Alam }}{ }^{\text {b }}$, Md. Saidur Rahman ${ }^{\text {b }}$
${ }^{a}$ Department of Computer Science and Engineering, University of Dhaka, Dhaka-1000, Bangladesh
b Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology(BUET), Dhaka-1000, Bangladesh

Received 15 October 2013; accepted 21 March 2016
Available online 29 June 2016

Abstract

The class of doughnut graphs is a subclass of 5-connected planar graphs. It is known that a doughnut graph admits a straight-line grid drawing with linear area, the outerplanarity of a doughnut graph is 3 , and a doughnut graph is k-partitionable. In this paper we show that a doughnut graph exhibits a recursive structure. We also give an efficient algorithm for finding a shortest path between any pair of vertices in a doughnut graph. We also propose a nice application of a doughnut graph based on its properties. (C) 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Planar graphs; Recursive structure; Hamiltonian; Fault tolerance; Connectivity

1. Introduction

A five-connected planar graph G is called a doughnut graph if G has an embedding Γ such that (a) Γ has two vertex-disjoint faces each of which has exactly p vertices, $p>3$, and all the other faces of Γ has exactly three vertices; and (b) G has the minimum number of vertices satisfying condition (a). Fig. 1(a) illustrates a doughnut graph where F_{1} and F_{2} are two vertex disjoint faces. Faces F_{1} and F_{2} are depicted by thick lines. The name of doughnut graph was chosen in [1] for such a graph since the graph has a doughnut like embedding, as illustrated in Fig. 1(b). The class of doughnut graphs is an interesting class of graphs which was recently introduced in graph drawing literature for it's beautiful area-efficient drawing properties [1-3]. A doughnut graph admits a straight-line grid drawing with linear area $[1,3]$. Any spanning subgraph of a doughnut graph also admits straight-line grid drawing with linear area [2,3]. The outerplanarity of this class is 3 [3].

Given a graph $G=(V, E), k$ natural numbers $n_{1}, n_{2}, \ldots, n_{k}$ such that $\sum_{i=1}^{k} n_{i}=|V|$, we wish to find a k-partition $V_{1}, V_{2}, \ldots, V_{k}$ of the vertex set V such that $\left|V_{i}\right|=n_{i}$ and V_{i} induces a connected subgraph of G for each $i, 1 \leq i \leq k$. The problem of finding a k-partition of a given graph often appears in the load distribution among different power plants and the fault-tolerant routing of communication networks [4,5]. A doughnut graph is k-partitionable [6].

[^0]

Fig. 1. (a) A doughnut graph G, and (b) doughnut embedding of G.
A class of graph has recursive structure if every instance of it can be created by connecting the smaller instances of the same class of graphs. In this paper, we show that any instance of a doughnut graph can be constructed by connecting smaller instances of doughnut graphs. We show that one can find a shortest path between any pair of vertices u and v of a doughnut graph G in $O\left(l_{s}\right)$ time where l_{s} is the length of shortest path between u and v by exploiting its beautiful structure. We study the other topological properties like degree, diameter, connectivity and fault tolerance. We show that it's diameter is $\lfloor p / 2\rfloor+2$. It has maximal fault tolerance, and has ring embedding since it is Hamilton-connected. One may explore the suitability of a doughnut graph as an interconnection network since some of its properties are similar to that of the graph classes usually used for interconnection networks.

The remainder of the paper is organized as follows. In Section 2, we give some definitions and preliminary results. Section 3 provides recursive structure of a doughnut graph. Finding a shortest path between any pair of vertices of doughnut graphs is presented in Section 4. Section 5 summarizes the topological properties of doughnut graphs. Finally Section 6 concludes the paper. An early version of this paper is presented at [7].

2. Preliminaries

In this section we give some definitions.
Let $G=(V, E)$ be a connected simple graph with the vertex set V and the edge set E. Throughout the paper, we denote by n the number of vertices in G, that is, $n=|V|$, and denote by m the number of edges in G, that is, $m=|E|$. An edge joining the vertices u and v is denoted by (u, v). The degree of a vertex v, denoted by $d(v)$, is the number of edges incident to v in G. We denote by $\Delta(G)$ the maximum of the degrees of all vertices in G. G is called r-regular if every vertex of G has degree r. We call a vertex v a neighbor of a vertex u in G if G has an edge (u, v). The connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph or a single-vertex graph K_{1}. G is called k-connected if $\kappa(G) \geq k$. A path in G is an ordered list of distinct vertices $v_{1}, v_{2}, \ldots, v_{q} \in V$ such that $\left(v_{i-1}, v_{i}\right) \in E$ for all $2 \leq i \leq q$. The vertices v_{1} and v_{q} are the end-vertices of the path $v_{1}, v_{2}, \ldots, v_{q}$. The length of a path is one less than the number of vertices on the path. A path is called a u, v-path if its two end-vertices are u and v, respectively. The shortest path between two vertices u and v of G is a u, v-path of G with the least length. The distance from u to v, denoted by $d(u, v)$, is the length of a shortest u, v-path. The diameter of G is $\max _{u, v \in V(G)} d(u, v)$.

A graph is planar if it can be embedded in the plane so that no two edges intersect geometrically except at a vertex to which they are both incident. A plane graph is a planar graph with a fixed embedding. A plane graph G divides the plane into connected regions called faces. Each of the bounded regions is called an inner face and the unbounded region is called the outer face. Let $v_{1}, v_{2}, \ldots, v_{l}$ be all the vertices in the clockwise order on the contour of a face f in G. We often denote f by $f\left(v_{1}, v_{2}, \ldots, v_{l}\right)$. For a face f in G we denote by $V(f)$ the set of vertices of G on the boundary of face f. We call two faces F_{1} and F_{2} vertex-disjoint if $V\left(F_{1}\right) \bigcap V\left(F_{2}\right)=\emptyset$.

A maximal planar graph is one to which no edge can be added without losing planarity. Thus in any embedding of a maximal planar graph G with $n \geq 3$, each faces of G is triangulated, and hence an embedding of a maximal planar graph is a triangulated plane graph. It can be derived from the Euler's formula for planar graphs that if G is a maximal planar graph with n vertices and m edges then $m=3 n-6$, for more details see [8].

Let G be a 5-connected planar graph, let Γ be any planar embedding of G and let p be an integer such that $p>3$. We call G a p-doughnut graph if the following Conditions $\left(d_{1}\right)$ and $\left(d_{2}\right)$ hold: $\left(d_{1}\right) \Gamma$ has two vertex-disjoint faces

Fig. 2. (a) A p-doughnut graph G where $p=4$, and (b) doughnut embedding of G.
each of which has exactly p vertices, and all the other faces of Γ have exactly three vertices; and $\left(d_{2}\right) G$ has the minimum number of vertices satisfying Condition (d_{1}). In general, we call a p-doughnut graph for $p>3$ a doughnut graph. The following result is known for doughnut graphs [1].

Lemma 1. Let G be a p-doughnut graph. Then G is 5-regular and has exactly $4 p$ vertices. Furthermore, G has three vertex-disjoint cycles C_{1}, C_{2} and C_{3} with $p, 2 p$ and p vertices, respectively, such that $V\left(C_{1}\right) \cup V\left(C_{2}\right) \cup V\left(C_{3}\right)=$ $V(G)$.

For a cycle C in a plane graph G, we denote by $G(C)$ the plane subgraph of G inside C excluding C. Let C_{1}, C_{2} and C_{3} be the three vertex-disjoint cycles of a p-doughnut graph G with $p, 2 p$ and p vertices, respectively, such that $V\left(C_{1}\right) \cup V\left(C_{2}\right) \cup V\left(C_{3}\right)=V(G)$. Then we call a planar embedding Γ of G a doughnut embedding of G if C_{1} is the outer face and C_{3} is an inner face of $\Gamma, G\left(C_{1}\right)$ contains C_{2} and $G\left(C_{2}\right)$ contains C_{3}. We call C_{1} the outer cycle, C_{2} the middle cycle and C_{3} the inner cycle of Γ. Fig. 2(b) illustrates the doughnut embedding of the doughnut graph in Fig. 2(a).

The following results on doughnut embeddings are known for doughnut graphs [1].
Lemma 2. A p-doughnut graph always has a doughnut embedding.
Lemma 3. Let Γ be a doughnut embedding of a p-doughnut graph G and let C_{1}, C_{2} and C_{3} be the outer cycle, the middle cycle and the inner cycle of Γ, respectively. Then either condition (a) or condition (b) holds for any vertex u of C_{2}.
(a) The vertex u has exactly two consecutive neighbors on C_{1} and exactly one neighbor on C_{3}.
(b) The vertex u has exactly two consecutive neighbors on C_{3} and exactly one neighbor on C_{1}.

Furthermore, for any two consecutive vertices u and v on C_{2}, if u holds condition (a) then v holds condition (b) or vice-versa.

Before going further we need some definitions. Let Γ be a doughnut embedding of G and let C_{1}, C_{2} and C_{3} be the outer cycle, middle cycle and the inner cycle of Γ, respectively. Let z_{i} be a vertex on C_{2}. Without loss of generality, by Lemma 3 we assume that z_{i} has exactly two consecutive neighbors on C_{1}. Let x and x^{\prime} be the two neighbors of z_{i} on C_{1} such that x^{\prime} is the counter clockwise next vertex to x on C_{1}. We call x the left neighbor of z_{i} on C_{1} and x^{\prime} the right neighbor of z_{i} on C_{1}. Similarly we define the left neighbor and the right neighbor of z_{i} on C_{3} if a vertex z_{i} on C_{2} has two neighbors on C_{3}. Let $z_{1}, z_{2}, \ldots, z_{2 p}$ be the vertices of C_{2} in counter clockwise order such that z_{1} has exactly one neighbor on C_{1}. Let x_{1} be the neighbor of z_{1} on C_{1}, and let $x_{1}, x_{2}, \ldots, x_{p}$ be the vertices of C_{1} in the counter clockwise order. Let $y_{1}, y_{2}, \ldots, y_{p}$ be the vertices on C_{3} in counter clockwise order such that y_{1} and y_{p} are the right neighbor and the left neighbor of z_{1}, respectively. Fig. 2(b) illustrates the labeling of vertices of a doughnut embedding Γ of G in Fig. 2(a) as mentioned above. In the rest of the paper, we consider a doughnut embedding Γ of a doughnut graph G such that the vertices of cycles C_{1}, C_{2} and C_{3} are labeled as mentioned above. We now have the following lemmas from [1].

Lemma 4. Let G be a p-doughnut graph and let Γ be a doughnut embedding of G. Let z_{i} be a vertex of C_{2}. Then the following conditions hold.

Fig. 3. (a) A doughnut embedding of a p-doughnut graph G where $p=4$, and (b) illustration for four partition of edges of G.
(a) The vertex z_{i} has exactly two neighbors on C_{1} and exactly one neighbor on C_{3} if i is even. The neighbors of z_{i} on C_{1} are x_{p} and x_{1} in a counter clockwise order if $i=2 p$, otherwise the neighbors of z_{i} on C_{1} are $x_{i / 2}$ and $x_{i / 2+1}$ in a counter clockwise order. The neighbor of z_{i} on C_{3} is $y_{i / 2}$.
(b) The vertex z_{i} has exactly two neighbors on C_{3} and exactly one neighbor on C_{1} if i is odd. The neighbors of z_{i} on C_{3} are y_{1} and y_{p} in a counter clockwise order if $i=1$, otherwise the neighbors of z_{i} on C_{3} are $y_{[i / 2\rceil-1}$ and $y_{[i / 2\rceil}$ in a counter clockwise order. The neighbor of z_{i} on C_{1} is $x_{\lceil i / 2\rceil}$.

Lemma 5. Let G be a p-doughnut graph and let Γ be a doughnut embedding of G. Let x_{i} be a vertex of C_{1}. Then x_{i} has exactly three neighbors $z_{2 p}, z_{1}, z_{2}$ on C_{2} in a counter clockwise order if $i=1$, otherwise x_{i} has exactly three neighbors $z_{2 i-2}, z_{2 i-1}, z_{2 i}$ on C_{2} in a counter clockwise order.

Lemma 6. Let G be a p-doughnut graph and let Γ be a doughnut embedding of G. Let y_{i} be a vertex of C_{3}. Then y_{i} has exactly three neighbors $z_{2 p-1}, z_{2 p}, z_{1}$ in a counter clockwise order if $i=p$, otherwise y_{i} has exactly three neighbors $z_{2 i-1}, z_{2 i}, z_{2 i+1}$ on C_{2} in a counter clockwise order.

3. Recursive structure of doughnut graphs

A class of graphs has a recursive structure if every instance of it can be created by connecting the smaller instances of the same class of graphs. We now show that the doughnut graphs have a recursive structure. We now need some definitions. Let D be a straight-line grid drawing of a p-doughnut graph G with linear area as illustrated in Fig. 3(a). We partition the edges of D as follows. The left partition consists of the edges-(i) $\left(x_{1}, x_{p}\right)$, (ii) $\left(z_{1}, z_{2 p}\right)$, (iii) $\left(y_{1}, y_{p}\right)$, (iv) $\left(x_{1}, z_{2 p}\right)$ and (v) $\left(z_{1}, y_{p}\right)$; and the right partition consists of the edges-(i) $\left(z_{p}, z_{p+1}\right)$, (ii) the edge between the two neighbors of z_{p} on C_{1} if z_{p} has two neighbors on C_{1} otherwise the edge between the two neighbors of z_{p+1} on C_{1}, (iii) the edge between the two neighbors of z_{p} on C_{3} if z_{p} has two neighbors on C_{3} otherwise the edge between the two neighbors of z_{p+1} on C_{3}, (iv) the edge between z_{p} and its right neighbor on C_{1} if z_{p} has two neighbors on C_{1} otherwise the edge between z_{p+1} and its left neighbor on C_{1}, and (v) the edge between z_{p} and its right neighbor on C_{3} if z_{p} has two neighbors on C_{3} otherwise the edge between z_{p+1} and its left neighbor on C_{3}. The graph G is divided into two connected components if we delete the edges of the left and the right partitions from G. We call the connected component that contains vertex x_{p} the top partition of edges and we call the connected component that contains vertex x_{1} the bottom partition of edges. Fig. 3(b) illustrates four partitions of edges (indicated by dotted lines) of a p-doughnut graph G in Fig. 3(a) where $p=4$.

We now construct a $\left(p_{1}+p_{2}\right)$-doughnut graph G from a p_{1}-doughnut graph G_{1} and a p_{2}-doughnut graph G_{2}. We first construct two graphs G_{1}^{\prime} and G_{2}^{\prime} from G_{1} and G_{2}, respectively, as follows. We partition the edges of G_{1} into left, right, top and bottom partitions. Then we identify the vertex x_{i+1} of the top partition to the vertex y_{i} of the right partition, the vertex $z_{p_{1}+1}$ of the top partition to the vertex $z_{p_{1}}$ of the right partition, and the vertex y_{i+1} of the top partition to the vertex x_{i} of the right partition. Thus we construct G_{1}^{\prime} from G_{1}. Fig. 4(c) illustrates G_{1}^{\prime} which is constructed from G_{1} in Fig. 4(a) where $p_{1}=4$. In case of construction of G_{2}^{\prime}, after partitioning (left, right, top, bottom) the edges of G_{2} we identify the vertex $y_{p_{2}}^{\prime}$ of left partition to the vertex x_{1}^{\prime} of the bottom partition, vertex

Fig. 4. Illustration for construction of a $\left(p_{1}+p_{2}\right)$-doughnut graph G from a p_{1}-doughnut graph G_{1} and a p_{2}-doughnut graph G_{2} where $p_{1}=4$ and $p_{2}=5$.
$z_{2 p_{2}}^{\prime}$ of the left partition to the vertex z_{1}^{\prime} of the bottom partition, and the vertex $x_{p_{2}}^{\prime}$ of left partition to the vertex y_{1}^{\prime}. Fig. 4(f) illustrates G_{2}^{\prime} which is constructed from G_{2} in Fig. 4(d) where $p_{2}=5$. We finally construct a ($p_{1}+p_{2}$)doughnut graph G as follows. We identify the vertices $y_{i+1}, z_{p_{1}+1}, x_{i+1}$ of G_{1}^{\prime} to the vertices of $x_{p_{2}}^{\prime}, z_{2 p_{2}}^{\prime}, y_{p_{2}}^{\prime}$ of G_{2}^{\prime}, respectively; and identify the vertices of $y_{i}, z_{p_{1}}, x_{i}$ of G_{1}^{\prime} to the vertices of $x_{1}^{\prime}, z_{1}^{\prime}, y_{1}^{\prime}$ of G_{2}^{\prime}, respectively. Clearly the resulting graph G is a $\left(p_{1}+p_{2}\right)$-doughnut graph as illustrated in Fig. 4(h).

We thus have the following theorem.

Theorem 1. Let G_{1} be a p_{1}-doughnut graph and let G_{2} be a p_{2}-doughnut graph. Then one can construct ($p_{1}+p_{2}$)doughnut graph G from G_{1} and G_{2}.

4. Finding a shortest path

In this section, we present a simple efficient algorithm to find a shortest path between any pair of vertices. We have the following theorem.

Theorem 2. Let G be a p-doughnut graph and let Γ be a doughnut embedding of G. Let C_{1}, C_{2} and C_{3} be the three vertex disjoint cycles of Γ such that C_{1} is the outer cycle, C_{2} is the middle cycle and C_{3} is the inner cycle. Then the shortest path between any pair of vertices u and v of G can be found in $O\left(l_{s}\right)$ time where l_{s} is the length of the shortest path between u and v.
To prove the theorem, we need the following lemmas.
Lemma 7. Let G be a p-doughnut graph and let Γ be a doughnut embedding of G. Let C_{1}, C_{2} and C_{3} be the three vertex disjoint cycles of Γ such that C_{1} is the outer cycle, C_{2} is the middle cycle and C_{3} is the inner cycle. Then the shortest path between any two vertices on $C_{1}\left(C_{3}\right)$ contains only the vertices of $C_{1}\left(C_{3}\right)$, respectively.

Proof. We only prove for the case where both of the vertices are on C_{1} since the proof is similar if both of the vertices are on C_{3}. Let x_{i} and x_{j} be two vertices of C_{1}. For contradiction, we assume that P is a shortest path between x_{i} and x_{j} which contains vertices other than the vertices of cycle C_{1}. Then (i) G would have a non-triangulated face other than F_{1} and F_{2} or (ii) a vertex of C_{2} would have degree more than five or (iii) the graph G would be non-planar, a contradiction to the properties of a doughnut graph. Therefore the shortest path between any two vertices of C_{1} contains only the vertices of C_{1}.

Lemma 8. Let G be a p-doughnut graph and let Γ be a doughnut embedding of G. Let C_{1}, C_{2} and C_{3} be the outer, the middle and the inner cycle of Γ, respectively. Let z_{i} and z_{j} be two non-adjacent vertices on C_{2} and the length of the shorter (between clockwise and counter clockwise) path between them along C_{2} is l. Then the length of any path between z_{i} and z_{j} is at least $\lceil l / 2\rceil+1$.
Proof. Without loss of generality we assume that $i<j$ and the shortest path between z_{i} and z_{j} along C_{2} is in the counter clockwise direction. We prove the claim by induction on l. Since z_{i} and z_{j} are non-adjacent, then $l \geq 2$. The claim is true for $l=2$ where $j=i+2$, and the shortest path between these two vertices has length $\lceil 2 / 2\rceil+1=2$.

Assume that $l>2$ and the claim is true for all pairs of vertices of C_{2} with the shorter distance $l^{\prime}<l$ between them along C_{2}. In this case $j=i+l$. Let P be any path between z_{i} and z_{j}. We now show that the length of P is at least $\lceil l / 2\rceil+1$.

We first consider the case where P contains some vertex z_{k} of cycle C_{2} such that $i<k<j$. If z_{k} is adjacent to z_{i}, then by induction hypothesis, the length of any path between z_{k} and z_{j} has length $\lceil(l-1) / 2\rceil+1$ and therefore the length of P is at least $1+\lceil(l-1) / 2\rceil+1 \geq\lceil l / 2\rceil+1$. From the same line of reasoning, we can show that if z_{k} is adjacent to z_{j}, then the length of P is at least $\lceil l / 2\rceil+1$. Thus we assume that z_{k} is adjacent to neither z_{i} nor z_{j}. Then from induction hypothesis, the length of any path between z_{i} and z_{k} is at least $\lceil(k-i) / 2\rceil+1$ and the length of any path between z_{k} and z_{j} is at least $\lceil(j-k) / 2\rceil+1$. Therefore the length of P is at least $\lceil l / 2\rceil+1$. Hence, no path containing vertices of the cycle C_{2} other than z_{i} and z_{j} has length less than $\lceil l / 2\rceil+1$.

Thus we assume that P does not contain any vertices of C_{2} other than z_{i} and z_{j}. Therefore there are only two different paths to consider for each pair of vertices z_{i} and z_{j}, one containing only vertices of C_{1} and the other containing only vertices of C_{3} other than z_{i} and z_{j}. If P contains only the vertices of C_{1} other than z_{i} and z_{j}, then by Lemma 4, the rightmost (or only) neighbor of z_{i} and the leftmost (or only) neighbor of z_{j} on C_{1} are $x_{\lfloor i / 2\rfloor+1}$ and $x_{\lceil j / 2\rceil}$, respectively. Therefore the length of P is at least $1+\lceil j / 2\rceil-\lfloor i / 2\rfloor-1+1 \geq\lceil l / 2\rceil+1$ as illustrated in Fig. 5(a) and (b). On the other hand, if P contains only the vertices of C_{3} other than z_{i} and z_{j}, then by Lemma 4, the rightmost (or only) neighbor of z_{i} and the leftmost (or only) neighbor of z_{j} on C_{3} are $y_{\lfloor i / 2\rfloor}$ and $y_{\lceil j / 2\rceil}$, respectively. Therefore the length of P is at least $1+\lceil j / 2\rceil-\lfloor i / 2\rfloor+1 \geq\lceil l / 2\rceil+1$ as illustrated in Fig. 5(c) and (d).

We are now ready to prove Theorem 2.
Proof. The vertices of G lie on three vertex disjoint cycles C_{1}, C_{2} and C_{3} where C_{1} is the outer cycle, C_{2} is the middle cycle and C_{3} is the inner cycle. We have four cases to consider.

Case 1: Both u and v are either on C_{1} or on C_{3}.

Fig. 5. Illustration of shortest path between two vertices on C_{2} of a doughnut graph.

Fig. 6. Illustration for Case 1.

Without loss of generality, we assume that both the u and v are on C_{1}, since the case is similar where both of u and v are on C_{3}. Let $x_{i}=u$ and $x_{j}=v$. Without loss of generality, we may assume that $i<j$. Let us take the path $P_{1}=x_{i}, x_{i+1}, \ldots, x_{j}$ if $(j-i)<\lceil p / 2\rceil$ otherwise $P_{1}=x_{i}, x_{i-1}, \ldots, x_{j}$. By Lemma $7, P_{1}$ is the shortest path between x_{i} and x_{j}. Fig. 6 illustrates the case where (i) $u=x_{3}$ and $v=x_{5}$, and (ii) $u=x_{2}$ and $v=x_{5}$.

Case 2: Both u and v are on C_{2}.
We assume that $z_{i}=u$ and $z_{j}=v$, respectively. The shortest path between z_{i} and z_{j} consists of edge $\left(z_{i}, z_{j}\right)$ if z_{i} and z_{j} are adjacent. We thus assume that z_{i} and z_{j} are not adjacent. Without loss of generality, we also assume that $i<j$. We now define a path between z_{i} and z_{j}. We have the following four types of paths to consider - (i) we take path $P_{2}=z_{i}, x_{i / 2+1}, \ldots, x_{j / 2}, z_{j}$ if both i and j are even; (ii) we take path $P_{2}=z_{i}, y_{\Gamma i / 2\rceil}, \ldots, y_{\Gamma j / 2\rceil-1}, z_{j}$ if both i and j are odd; (iii) we take path $P_{2}=z_{i}, x_{i / 2+1}, \ldots, x_{\Gamma j / 2\rceil}, z_{j}$ if i is even and j is odd; (iv) we take path $P_{2}=z_{i}, x_{[i / 2\rceil}, \ldots, x_{j / 2}, z_{j}$ if i is odd and j is even. The paths of Types (i), (iii) and (iv) contain vertices of C_{1} and C_{2}. By Lemma 4, $x_{i / 2+1}$ and $x_{\lceil i / 2\rceil}$ are neighbors of z_{i} and by Lemma $5, z_{j}$ is a neighbor of $x_{j / 2}$ and $x_{\lceil j / 2\rceil}$. The path of Type (ii) contains vertices of C_{2} and C_{3}. By Lemma 4, $y_{[i / 2\rceil}$ is a neighbor of z_{i} and by Lemma $6, z_{j}$ is a neighbor

Fig. 7. Illustration for case 3.
of $y_{\lceil j / 2\rceil}$. It is easy to verify that each of the paths P_{2} as mentioned above has length $\lceil l / 2\rceil+1$ and by Lemma 8 , these paths are the shortest paths between z_{i} and z_{j}.

Case 3: One of u and v is on C_{2}, and the other one is on C_{1} or C_{3}.
We assume that u is on C_{2} and the v is on C_{1}. Let $z_{i}=u$ and $x_{j}=v$. We also assume that $\lceil i / 2\rceil<j$. For odd value of i, we take $P_{3}=z_{i}, x_{\lceil i / 2\rceil}, x_{\lceil i / 2\rceil+1}, \ldots, x_{j}$ if $j-\lceil i / 2\rceil<\lceil p / 2\rceil$ otherwise $P_{3}=z_{i}, x_{\lceil i / 2\rceil}, x_{\lceil i / 2\rceil-1}, \ldots, x_{j}$. For even value of i, we take $P_{3}=z_{i}, x_{i / 2}, x_{i / 2+1}, \ldots, x_{j}$ if $j-\lceil i / 2\rceil<\lceil p / 2\rceil$ otherwise $P_{3}=z_{i}, x_{i / 2}, x_{i / 2-1}, \ldots, x_{j}$. Each of the paths P_{3} contain vertices of C_{2} and C_{1}. By Lemma 4, $x_{i / 2}$ and $x_{[i / 2\rceil}$ are neighbors of z_{i}. We can prove that both of the paths are the shortest path since each of them are the subpaths of the shortest path of Subcase 2(b) and the length of the shortest path between z_{i} and y_{j} is $j-\lceil i / 2\rceil+1$. Fig. 7(a) illustrates an example where $z_{4}=u$ and $x_{5}=v$. The shortest path $P_{3}=z_{4}, x_{3}, x_{4}, x_{5}$. Fig. 7(b) illustrates an example where $z_{3}=u$ and $x_{4}=v$. The shortest path $P_{3}=z_{3}, x_{2}, x_{3}, x_{4}$.

Case 4: One of u and v is on C_{1}, and the other one is on C_{3}.
We assume that u is on C_{1} and v is on C_{3}. Let $x_{i}=u$ and $y_{j}=v$. Without loss of generality, we assume that $i<j$. Let us take the path $P_{4}=x_{i}, z_{2 i}, y_{i}, y_{i+1}, \ldots, y_{j}$ if $j-i<\lceil p / 2\rceil$ otherwise let us take path $P_{4}=x_{i}, z_{2 i-2}$, $y_{i-1}, y_{i-2}, \ldots, y_{j}$. Each of the paths P_{4} contain vertices of C_{1}, C_{2} and C_{3}. By Lemma 5, $z_{2 i}$ and $z_{2 i-2}$ are neighbors of x_{i}, and by Lemma 4, y_{i} is a neighbor of $z_{2 i}$ and y_{i-1} is a neighbor of $z_{2 i-2}$. We now prove that P_{4} is the shortest path between x_{i} and y_{j}. We prove only for the case where y_{j} is to the counter clockwise direction of x_{i}. Let $l=j-i$. Since the length of P_{4} is $l+2$, it is sufficient to prove that the length of the shortest path between x_{i} and y_{j} is at least $l+2$. The claim is obvious for $l=0$. We thus assume that $l>0$ and the claim is true for any value of $j-i<l$. Assume for contradiction that there is a shortest path P^{\prime} between x_{i} and y_{j} with length less than $l+2$. Since y_{j} is to counter clockwise direction from x_{i}, the second vertex of the shortest path P^{\prime} is either x_{i+1} or $z_{2 i}$. If x_{i+1} is the second vertex then by induction hypothesis, the shortest path between x_{i+1} and y_{j} has length $l+1$ and the length of P^{\prime} is at least $l+2$ which contradicts our assumption. Thus we assume that the second vertex is $z_{2 i}$. Since P_{4} contains the shortest path between $z_{2 i}$ and y_{j} by Case 3, the length of P^{\prime} cannot be less than P_{4} in this case also. Fig. 8(a) illustrates an example where $x_{2}=u$ and $y_{4}=v$. The shortest path $P_{4}=x_{2}, z_{4}, y_{2}, y_{3}, y_{4}$. Fig. 8(b) illustrates an example where $x_{2}=u$ and $y_{5}=v$. The shortest path $P_{4}=x_{2}, z_{2}, y_{1}, y_{5}$.

Thus we can find a shortest path between any pair of vertices of a doughnut graph. One can see that the shortest path between any pair of vertices can be found in $O\left(l_{s}\right)$ time where l_{s} is the length of the shortest path between u and v.

5. Topological properties of doughnut graphs

Let G be a p-doughnut graph. By Lemma 1 , the number of vertices of G is $4 p$ where $p(>3)$ is an integer. A p doughnut graph is maximal fault tolerant since it is 5 -regular by Lemma 1. By Lemma 2, every p-doughnut graph G has a doughnut embedding Γ where vertices of G lie on three vertex disjoint cycles C_{1}, C_{2} and C_{3} such that C_{1} is the outer cycle containing p vertices, C_{2} is the middle cycle containing $2 p$ vertices and C_{3} is the inner cycle containing p vertices. Then one can easily see that the diameter of a p-doughnut graph is $\lfloor p / 2\rfloor+2$. Moreover, a doughnut graph admits a ring embedding since a doughnut graph is Hamilton-connected [6].

Fig. 8. Illustration for Case 4.

Table 1
Topological comparison of doughnut graphs with various Cayley graphs.

Topology	Number of nodes	Diameter	Degree	Connectivity	Fault tolerance	Hamiltonian
n-cycle	n	$\lfloor n / 2\rfloor$	2	2	Maximal	Yes
Cube-connected-cycle [10]	$d 2^{d}$	$\lfloor 5 d / 2\rfloor-2$	3	3	Maximal	Yes
Wrapped around butterfly graph [11]	$d 2^{d}$	$\lfloor 3 d / 2\rfloor$	4	4	Maximal	Yes
d-Dimensional hypercube [12]	2^{d}	d	d	d	Maximal	Yes
p-doughnut graphs [1]	$4 p$	$\lfloor p / 2\rfloor+2$	5	5	Maximal	Yes

6. Conclusion

In this paper, we have studied recursive structure of doughnut graphs. We have proposed an efficient algorithm to find shortest path between any pair of vertices which exploit the structure of the graph. We have also found that doughnut graph has smaller diameter, higher degree and connectivity, maximal fault tolerance and ring embedding. There are several parameters like connectivity, degree, diameter, symmetry and fault tolerance which are considered for building interconnection networks [9]. Table 1 presents the topological comparison of various Cayley graphs, which are widely used as interconnection networks, with doughnut graphs. The table shows that topological properties of doughnut graphs are very much similar to interconnection networks. One of the limitation is the diameter which is linear but the coefficient is $1 / 8$. We may have an efficient routing scheme using shortest path finding algorithm. We can have a scalable interconnection network using doughnut graphs since the degree of a vertex of a doughnut graph does not change with the size of the graph. This is also important for VLSI implementation point of view as well as applications where the computing nodes in an interconnection networks only have fixed number of I/O ports. Thus doughnut graphs may find nice applications as interconnection networks.

References

[1] M.R. Karim, M.S. Rahman, Straight-line grid drawings of planar graphs with linear area, in: Proceedings of Asia-Pacific Symposium on Visualisation 2007, IEEE, 2007, pp. 109-112.
[2] M.R. Karim, M.S. Rahman, Four-connected spanning subgraphs of doughnut graphs, in: Proceedings of Workshop on Algorithms and Computation, 2008, in: Lect. Notes in Computer Science, 4931, Springer, 2008, pp. 132-143.
[3] M.R. Karim, M.S. Rahman, On a class of planar graphs with straight-line grid drawings on linear area, J. Graph Algorithms Appl. 13 (2) (2009) 153-177.
[4] Shin-ichi Nakano, Md. Saidur Rahman, Takao Nishizeki, A linear-time algorithm for four-partitioning four-connected planar graphs, Inform. Process. Lett. 62 (1997) 315-322.
[5] Sayaka Nagai, Shin-ichi Nakano, A linear-time algorithm for five-partitioning five-connected internally triangulated plane graphs, IEICE Trans. Fundam. E84-A (9) (2001) 2330-2337.
[6] M.R. Karim, K.M. Nahiduzaman, M.S. Rahman, A linear-time algorithm for k-partitioning doughnut graphs, INFOCOMP 8 (1) (2009) 8-13.
[7] M.R. Karim, M.J. Alam, M.S. Rahman, On some properties of doughnut graphs (Extended Abstract), in: Proceedings of International Workshop on Combinatorial Algorithms, 2012, in: Lect. Notes in Computer Science, 7643, Springer, 2012, pp. 60-64.
[8] T. Nishizeki, M.S. Rahman, Planar Graph Drawing, World Scientific, Singapore, 2004.
[9] J. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht, 2001.
[10] F.P. Preparata, J. Vuillemin, The cube-connected-cycles: A versatile network for parallel computation, Commun. ACM 24 (1981) $300-309$.
[11] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays-trees-hypercubes, Morgan Kaufmann Publishers, Inc., San Mateo, 1992.
[12] L. Bhuyan, D.P. Agarwal, Generalized hypercube and hyperbus structure for a computer network, IEEE Trans. Comput. 33 (1984) $323-333$.

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail addresses: rkarim@univdhaka.edu (Md.R. Karim), jawaherul@yahoo.com (Md.J. Alam), saidurrahman@cse.buet.ac.bd (Md.S. Rahman).

