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a b s t r a c t

The aim of this paper is to investigate the error which results from the method of
approximation operators with logarithmic sigmoidal function. By means of the method
of extending functions, a class of feed-forward neural network operators is introduced.
Using these operators as approximation tools, the upper bounds of errors, in uniformnorm,
approximating continuous functions, are estimated. Also, a class of quasi-interpolation
operatorswith logarithmic sigmoidal function is constructed for approximating continuous
functions defined on the total real axis.
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1. Introduction

A function σ defined on R is called a sigmoidal function if the following conditions are satisfied:
lim
x→+∞

σ(x) = 1, lim
x→−∞

σ(x) = 0.

The sigmoidal function is a class of important functions, which takes an important role in the research into neural networks.
It is usually used to take play the role of an activation function in the hidden layer of neural networks.
One of the most familiar sigmoidal functions is the logarithmic type function defined by

s(x) =
1

1+ e−x
, x ∈ R.

In fact, the sigmoidal function s(x) is a logistic model. This model is an important one and has been widely used in biology,
demography and so on (see [1,2]). On the other hand, the function has higher smoothness.
For the logarithmic type function s(x), we define

φ(x) :=
1
2
(s(x+ 1)− s(x− 1)) , x ∈ R.

Then some ‘‘better’’ properties, such as
∫
+∞

−∞
φ(x)dx = 1, the Fourier transforms of φ(x) being equal to 0, and

∑
+∞

k=−∞ φ(x−
k) = 1, will be implied (see Section 2). Our aim, in this paper, is to introduce and study approximation operators with the
function φ(x), i.e., the neural network operators and quasi-interpolation operators. Using these operators as approximation
tools, we will consider the estimates of the rate of approximating continuous functions.
The first main result, Theorem 3 in Section 3, is on the estimations of rates of approximation of the constructed neural

network operators. By using the modulus of continuity as metric, a Jackson type inequality is established, which reveals,
to some extent, the relation between the convergence rates and the topological structure of the networks. The second
one, which is discussed in Section 4, is on the construction and approximation of quasi-interpolation operators with φ(x).
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We will construct a class of quasi-interpolation operators to approximate the continuous function defined on the total real
axis, and the rate of approximation is also estimated.

2. The partition of unity of a logarithmic sigmoidal function

For the logarithmic type sigmoidal function defined by

s(x) =
1

1+ e−x
, x ∈ R

we let

g(x) := s(x+ 1)− s(x− 1), x ∈ R.

It is clear that g(x) is even, and

g(x) = (e− e−1)
e−x

(1+ e−x−1)(1+ e−x+1)

=
e2 − 1
e2

1
(1+ ex−1)(1+ e−x−1)

.

A simple computation gives∫
+∞

−∞

e−x

(1+ e−x−1)(1+ e−x+1)
dx = 2

∫
+∞

0

e−x

(1+ e−x−1)(1+ e−x+1)
dx

=
2e
e2 − 1

,

which implies

1
2

∫
+∞

−∞

g(x) =
e2 − 1
e
·
e

e2 − 1
= 1.

Set

φ(x) :=
1
2
g(x) =

1
2
(s(x+ 1)− s(x− 1)) =

e2 − 1
2e2

1
(1+ ex−1)(1+ e−x−1)

.

Then there exists a constant C , such that

|φ(x)| ≤ C(1+ |x|)2, x ∈ R.

For function f ∈ L(R), its Fourier transforms f̂ are defined by

f̂ (x) :=
∫
+∞

−∞

f (t)e−2π ixtdt.

Noting that φ(x) is even, it follows that for any k ∈ Z

φ̂(k) = φ̂(−k),

and for k ∈ Z and k 6= 0,

φ̂(k)e2π ikx + φ̂(−k)e−2π ikx = 2φ̂(k) cos 2πkx.

We now prove the following result on Fourier transforms.

Theorem 1. For any k ∈ Z and k 6= 0, we have

φ̂(k) = 0.

Proof. Since φ(x) is an even function, we have

φ̂(k) =
∫
+∞

−∞

φ(x)e−2π ikxdx

=
e2 − 1
e2

∫
+∞

0

cos 2πkx
(1+ ex−1)(1+ e−x−1)

dx

=
e2 − 1
e2

I.
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Using the method of complex analysis we see that

I =
1
2

∫
+∞

−∞

cos 2πkx
(1+ ex−1)(1+ e−x−1)

dx =
1
2
Re
∫
+∞

−∞

e2π ikx

(1+ ex−1)(1+ e−x−1)
dx.

We now introduce an analytic function defined on the planew = u+ iv:

f (ω) =
e2π ikω

(1+ ew−1)(1+ e−w−1)
.

Clearly, the function has two poles of order 1, w1 = 1 + π i and w2 = −1 + π i, in 0 < Imw < 2π . Consider the rectangle
with the vertices−u2, u2,−u2+2π i and u2+2π i (1 < u2 < +∞). Then the integrate of the function f (w) on the boundary
of the rectangle is∫ u2

−u2

e2π iku

(1+ eu−1)(1+ e−u−1)
du+

∫ 2π

0

e2π ik(u2+vi)

(1+ eu2+vi−1)(1+ e−u2−vi−1)
idv

+

∫
−u2

u2

e2π ik(u+2π i)

(1+ eu+2π i−1)(1+ e−u−2π i−1)
du+

∫ 0

2π

e2π ik(−u2+vi)

(1+ e−u2+vi−1)(1+ eu2−vi−1)
idv

= (1− e−4kπ
2
)

∫ u2

−u2

e2π iku

(1+ eu−1)(1+ e−u−1)
du+ I1 + I2

= 2π i (Res(f (w), 1+ π i)+ Res (f (w),−1+ π i)) .

Also, as u2 →+∞, it holds that I1 → 0, I2 → 0. So,∫
+∞

−∞

e2π iku

(1+ eu−1)(1+ e−u−1)
du =

1

1− e−4kπ2
4π ie−2kπ

2

e−2 − 1
.

Therefore,

I =
1
2
Re

(
1

1− e−4kπ2
·
4π ie−2kπ

2

e−2 − 1

)
= 0.

From this it follows that φ̂(k) = 0. �

From Theorem 1 and the fact that
∫
+∞

−∞
φ(x)dx = 1, it follows that

+∞∑
k=−∞

φ̂(k)e2π ikx = 1.

Using the above result and the fact that |φ(x)| ≤ C(1+ |x|)2 we see that the Poisson summation formula is valid. From this,
the following result follows.

Theorem 2. For the function φ(x), it holds that
+∞∑
k=−∞

φ(x− k) = 1, x ∈ R.

3. The approximation operators of neural networks

Feed-forward neural networks (FNNs) with one hidden layer, the only type that we are concerned with in this paper, are
mathematically expressed as

Nn(x) =
n∑
j=0

cjσ
(
〈aj · x〉 + bj

)
, x ∈ Rs, s ∈ N, (3.1)

where for 0 ≤ j ≤ n, bj ∈ R are the thresholds, aj ∈ Rs are the connection weights, cj ∈ R are the coefficients, < aj · x >
is the inner product of aj and x, and σ is the activation function of the network. In many fundamental network models, the
activation function must be a sigmoidal function.
It is well known that FNNs are universal approximators. Theoretically, any continuous function defined on a compact

set can be approximated to any desired degree of accuracy by increasing the number of hidden neurons. It was proved by
Cybenko [3] and Funahashi [4] that any continuous function can be approximated on a compact set with uniform topology
by a network of the form given in Eq. (3.1), using any continuous, sigmoidal activation function. Hornik et al. in [5] have
shown that anymeasurable function can be approached with such a network. Furthermore, these authors proved in [6] that
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any function of the Sobolev spaces can be approached with all derivatives. Various density results on FNN approximations
of multivariate functions were later established bymany authors using variousmethods, for more or less general situations:
[7] by Leshno et al., [8] by Mhaskar and Micchelli, [9] by Chui and Li, [10] by Chen and Chen, [11] by Hahm and Hong, etc.
Yet these results only give theorems concerning the existence of an approximation. A related and important problem

is that of complexity: determining the number of neurons required to guarantee that all functions (belonging to a certain
class) can be approximated to the prescribed degree of accuracy ε. For example, a classical result of Barron [12] shows
that if the function is assumed to satisfy certain conditions expressed in terms of its Fourier transform, and if each of
the neurons evaluates a sigmoidal activation function, then at most O(ε−2) neurons are needed to achieve the order
of approximation ε. Previously, some authors have published similar results on the complexity of FNN approximations:
Mhaskar and Micchelli [13], Suzuki [14], Maiorov and Meir [15], Makovoz [16], Ferrari and Stengel [17], Xu and Cao [18],
Anastassiou [19], and Cao et al. [20], etc.
To aid our description, we introduce some notation. For a function f ∈ C[a,b], themodulus of continuity is defined by

ω(f , t) = sup
0<h≤t

max
x,x+h∈[a,b]

|f (x)− f (x+ h)|.

This modulus is usually used as a tool for measuring approximation error. It is also used to measure the smoothness of
a function and its accuracy in approximation theory and Fourier analysis (see [21–23]). The function f is called (M, α)-
Lipschitz continuous (0 < α ≤ 1). It can be written as f ∈ Lip(M, α) if and only if there exists a constantM > 0 such that

ω(f , δ) ≤ Mδα.

For given n ∈ N, the fact that
+∞∑
k=−∞

φ(x− k) = 1,

gives
+∞∑
k=−∞

φ(nx− k) = 1.

So, for f ∈ C[−1,1], d ∈ N and d ≤ n, we construct the feed-forward neural networks

Gn,d(f , x) =
2(n+d)∑
j=0

cjφ(nx− j+ (n+ d)), (3.2)

where

cj =


f (−1), 0 ≤ j ≤ d− 1;

f
(
j− (n+ d)

n

)
, d ≤ j ≤ 2n+ d;

f (1), 2n+ d+ 1 ≤ j ≤ 2(n+ d).

We now establish the following approximation results.

Theorem 3. Let f ∈ C[−1,1]. For the neural networks approximation operators Gn,d(f , x) defined by (3.2), the following estimate
of approximation degree holds:

‖f − Gn,d(f )‖∞ ≤ ω
(
f ,
1
√
n

)
+ 16‖f ‖∞

(
e−d + e−

√
n
)
,

where ‖f ‖∞ = max−1≤t≤1 |f (t)|.

Clearly, the density results are implied by the above result. In fact, for any ε > 0, using the monotonically decreasing
property of the modulus of smoothness, we can choose n and d large enough that

‖f − Gn,d(f )‖∞ < ε,

which shows that for any f ∈ C[−1,1] the constructed networks Gn,d(f , x) can approximate functions f (x) to arbitrary
precision. On the other hand, the results reveal the relationships between approximation speed, the number of hidden
neurons 2(n+ d), and the smoothness of the target functions to be approximated. We can conclude that the approximation
speed of the FNNs depends not only on the number of the hidden neurons, but also on the smoothness of the target function.
So in a certain sense, the results obtained gave a solution for the complexity of approximation by FNNs. In particular, for the
(M, α)-Lipschitz continuous function class Lip(M, α), the approximation speed is directly proportional both to the number
of hidden neurons and to the smoothness exponents of the target function α.
Our approach in this paper is constructive, mainly based on an extending function method. This approach is easily

realizable in computations. Naturally, the primary targets approximated by FNNs should be multivariate functions. In the
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development of this paper, we shall consider the difficult problem of how to extend our method to the case of multiple
inputs. We will discuss this question further in other papers.
We now turn to beginning the proof of Theorem 3. For f ∈ C[−1,1], we can extend f (x) from [−1, 1] to [−2, 2]:

F(x) =

{f (−1), x ∈ [−2,−1);
f (x), x ∈ [−1, 1];
f (1), x ∈ (1, 2].

Clearly,
‖F‖∞ ≤ ‖f ‖∞, ω(F , δ) = ω(f , δ), δ > 0.

From the definition of the neural network operators, we can rewrite Gn,d(f , x): as

Gn,d(f , x) =
−n−1∑
k=−n−d

f (−1)φ(nx− k)+
n∑

k=−n

f
(
k
n

)
φ(nx− k)+

n+d∑
k=n+1

f (1)φ(nx− k).

Therefore, for x ∈ [−1, 1], we have

|f (x)− Gn,d(f , x)| =

∣∣∣∣∣ +∞∑
k=−∞

f (x)φ(nx− k)−
n+d∑

k=−n−d

F
(
k
n

)
φ(nx− k)

∣∣∣∣∣
=

∣∣∣∣∣ +∞∑
k=−∞

F(x)φ(nx− k)−
n+d∑

k=−n−d

F
(
k
n

)
φ(nx− k)

∣∣∣∣∣
≤

n+d∑
k=−n−d

∣∣∣∣F(x)− F ( kn
)∣∣∣∣φ(nx− k)+ ∑

|k|≥n+d+1

|F(x)|φ(nx− k)

:= ∆1 +∆2.

Next, we estimate∆1 and∆2, respectively. From |x| ≤ 1 and |k| ≥ n+ d+ 1, it follows that |nx− k| ≥ d+ 1. Let

ψ(x) =
1

(1+ ex−1)(1+ e−x−1)
.

Then

ψ ′(x) = −
ex − e−x

e(1+ ex−1)2(1+ e−x−1)2
≤ 0, x ≥ 0.

Therefore,
∆2 ≤ ‖f ‖∞

∑
|k|≥n+d+1

φ(nx− k)

≤
e2 − 1
e2
‖f ‖∞

∫
+∞

d

1
(1+ ex−1)(1+ e−x−1)

dx

≤
e2 − 1
e
‖f ‖∞e−d

≤ 3‖f ‖∞e−d.
For∆1, we have

∆1 =
∑

|x− kn |≤
1√
n

∣∣∣∣F(x)− F ( kn
)∣∣∣∣φ(nx− k)+ ∑

|x− kn |>
1√
n

∣∣∣∣F(x)− F ( kn
)∣∣∣∣φ(nx− k)

≤ ω

(
F ,
1
√
n

) +∞∑
k=−∞

φ(nx− k)+ 2‖F‖∞
∑

|nx−k|>
√
n

φ(nx− k)

≤ ω

(
f ,
1
√
n

)
+ 16‖f ‖∞e−

√
n.

Collecting the estimates of∆1 and∆2 gives

‖f − Gn,d(f )‖∞ ≤ ω
(
f ,
1
√
n

)
+ 16‖f ‖∞

(
e−d + e−

√
n
)
.

This finishes the proof of Theorem 2.

Remark 1. From

φ(nx− k) =
1
2
[s(nx− k+ 1)− s(nx− k− 1)]
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we can represent the neural network operators Gn,d(f , x) as

Gn,d(f , x) =
−n−1∑
k=−n−d

f (−1)
2
s(nx− k+ 1)+

−n−1∑
k=−n−d

(
−
f (−1)
2

)
s(nx− k− 1)+

n∑
k=−n

f
( k
n

)
2
s(nx− k+ 1)

+

n∑
k=−n

(
−
f
( k
n

)
2

)
s(nx− k− 1)+

n+d∑
k=n+1

f (1)
2
s(nx− k+ 1)+

n+d∑
k=n+1

(
−
f (1)
2

)
s(nx− k− 1).

Remark 2. From the result
+∞∑
k=−∞

φ(nx− k) = 1,

it can be seen that for any n ∈ N∣∣∣∣∣1− n∑
k=−n

φ(nx− k)

∣∣∣∣∣ = −n−1∑
k=−∞

φ(nx− k)+
+∞∑
k=n+1

φ(nx− k).

Taking x = 1 gives∣∣∣∣∣1− n∑
k=−n

φ(nx− k)

∣∣∣∣∣ > φ(1),

which shows that the error of the networks

Gn,0(f , x) =
n∑

k=−n

f
(
k
n

)
φ(nx− k)

approximating the function f ≡ 1 is ‖1 − Gn,0(1)‖∞ > φ(1). This forms our main motivation for introducing parameter d
in the network operators.

4. The quasi-interpolation operators

In this section, we introduce and study a class of quasi-interpolation operators with function φ(x).
Let f ∈ C0(R) (the set of continuous and bounded functions defined on R). We define quasi-interpolation operators:

Gn(f , x) :=
+∞∑
k=−∞

f
(
k
n

)
φ(nx− k). (4.1)

The main result of this section is as follows.

Theorem 4. If f ∈ C0(R), then for Gn(f ) defined by (4.1), it holds that

|f (x)− Gn(f , x)| ≤ ω
(
f ,
1
√
n

)
+ 16‖f ‖∞e−

√
n.

Furthermore, if {f ( kn )}
+∞

k=−∞ is monotone increasing, then so is Gn(f , x).

Proof. By definition (4.1) we have

f (x)−
+∞∑
k=−∞

f
(
k
n

)
φ(nx− k) =

+∞∑
k=−∞

(
f (x)− f

(
k
n

))
φ(nx− k)

=

∑
∣∣∣x− kn ∣∣∣≤ 1√

n

(
f (x)− f

(
k
n

))
φ(nx− k)+

∑
∣∣∣x− kn ∣∣∣> 1√

n

(
f (x)− f

(
k
n

))
φ(nx− k)

:= ∆4 +∆5.

Noting that

|∆4| ≤ ω

(
f ,
1
√
n

) ∑
∣∣∣x− kn ∣∣∣≤ 1√

n

φ(nx− k) ≤ ω
(
f ,
1
√
n

)
,
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and

|∆5| ≤ 2‖f ‖∞
∑

|nx−k|>
√
n

φ(nx− k) ≤ 16‖f ‖∞e−
√
n.

we get∣∣∣∣∣f (x)− +∞∑
k=−∞

f
(
k
n

)
φ(nx− k)

∣∣∣∣∣ ≤ ω
(
f ,
1
√
n

)
+ 16‖f ‖∞e−

√
n.

This competes the proof of the first conclusion of Theorem 4. Next we prove the second one. In fact, for given x ∈ R, and
0 < n∆x < 1, there exists k0 ∈ Z such that

nx− k0 ≤ 0 < nx− k0 + 1.

Then for k ≥ k0 + 1,

φ(n(x+∆x)− k)− φ(nx− k) ≥ 0.

And for k ≤ k0 − 1,

φ(n(x+∆x)− k)− φ(nx− k) ≤ 0.

Hence,

Gn(f , x+∆x)− Gn(f , x) =
+∞∑
k=−∞

f
(
k
n

)
(φ(nx+ n∆x− k)− φ(nx− k))

=

k0−1∑
k=−∞

f
(
k
n

)
(φ(nx+ n∆x− k)− φ(nx− k))

+ f
(
k0
n

)
(φ(nx+ n∆x− k0)− φ(nx− k0))

+

+∞∑
k=k0+1

f
(
k0
n

)
(φ(nx+ n∆x− k)− φ(nx− k0))

≥

k0−1∑
k=−∞

f
(
k0
n

)
(φ(nx+ n∆x− k)− φ(nx− k0))

+ f
(
k0
n

)
(φ(nx+ n∆x− k0)− φ(nx− k0))

+

∞∑
k=k0+1

f
(
k0
n

)
(φ(nx+ n∆x− k)− φ(nx− k))

= f
(
k0
n

) +∞∑
k=−∞

(φ(nx+ n∆x− k)− φ(nx− k))

= 0,

which shows that for given n, Gn(f , x) is a monotone increasing function in x. The proof of Theorem 4 is completed. �
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