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Let ¢ > 1, and let E be a real g-uniformly smooth Banach space. Let T: E = E
be a Lipschitz ¢-strongly accretive operator and suppose the equation Tx = f,
f € E, has a solution. It is proved that under suitable conditions on the real
sequences {a,);_, and { B,);_,, the iteration process

xg €EE
yn = (1 - Bn)xn + :Bn(f+ (1 - T)xn)’ nz 0

Xn+1 = (1 - an)xn + an(f+ (1 - T)yn)’ n =0
converges strongly to the unique solution of the equation 7x = f. A related result
deals with the approximation of fixed points of ¢-hemicontractive operators—a
class of operators which is much more general than the important class of strongly
pseudocontractive operators.  © 1996 Academic Press, Inc.

INTRODUCTION

Let E be a real Banach space and let ¢ > 1. We denote by J, the
generalized duality mapping from E into 22" given by

T(x) = {f € E*:{x, f*) = llxI” and || /]l = llxlI7"*},

where E* denotes the dual of £ and {:,:) denotes the generalized
duality pairing. In particular, J =J, is called the normalized duality
mapping and J, (x) = lx]17~2J(x) if x # 0. E is uniformly smooth if and
only if J, is single-valued and uniformly continuous on any bounded subset
of E. In the following we shall denote the single-valued generalized duality
mapping by j,.

An operator T with domain D(T) and range R(T) in E is called
strongly accretive if for all x, y € D(T), there exist j(x —y) € J(x — y) and
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a constant k& > 0 such that

(Tx — Ty, j(x —y)) = kllx — ylI%. (1)

Without loss of generality we may assume k € (0,1). T is called accretive
if for all x, y € D(T), there exists j(x —y) € J(x — y) such that

(Tx — Ty j(x —y)) > 0. )

T is called ¢-strongly accretive (see for example [9]) if for all x,y € D(T)
there exist j(x —y) € J(x —y) and a strictly increasing function
¢:[0,%) — [0, ») with ¢(0) = 0 such that

(Tx = Ty, j(x —y)) = &(llx = yl)llx = yll. (3

Every strongly accretive operator is ¢-strongly accretive with
¢:[0,) — [0, ) defined by ¢(s) = ks. The following example shows that
the class of strongly accretive operators is a proper subset of the class of
¢-strongly accretive operators.

ExampLE. Let E = R (the reals with the usual norm) and let K =
[0, ). Define T: K — K by

X
1+x’

Tx =x —

It is easy to verify that T is ¢-strongly accretive with ¢:[0, ) — [0, »)
defined by ¢(s) = s?/(1 + s). However, given any k € (0, 1), if we choose
x €K such that 0 < x < k/(1 — k) and y = 0 then

(Ix = Ty, (x —y)) <klx —y|2.

Hence T is not strongly accretive.

Closely related to the class of accretive operators is the class of pseudo-
contractive operators. An operator T with domain D(T) and range R(T)
in E is called strongly pseudocontractive if for all x,y € D(T), there exist
j(x —y) € J(x —y) and a constant ¢ > 1 such that

1
(Ix = Ty, j(x —y)) < 7||X—||2- (4)

If t =1in (4), then T is called pseudocontractive.
We call T ¢-strongly pseudocontractive if for all x, y € D(T) there exist
j(x —y) e J(x —y) and a strictly increasing function ¢:[0, ) — [0, )
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with ¢(0) = 0 such that

(Tx = Ty, j(x —y)) < llx = ylI> = ¢(llx = yl)llx =yl (5

T is called ¢-hemicontractive if F(T) = {x € D(T): Tx = x} = & and for
all x € D(T), x* € F(T), there exist j(x — x*) € J(x — x*) and a strictly
increasing function ¢:[0, %) — [0, %) with ¢(0) = 0 such that

(Tx — x*, j(x —x%)) < llx —x*1> — ¢(llx — x*)llx —x*.  (6)

Every strongly pseudocontractive operator is ¢-strongly pseudocontractive,
and every ¢-strongly pseudocontractive operator with a nonempty fixed
point set is ¢-hemicontractive. If E, K, and T are as defined in the
example above, and I denotes the identity operator, then the operator
(I —T). K — K is ¢-strongly pseudocontractive but not strongly pseudo-
contractive. For an example of an operator which is ¢-hemicontractive but
not ¢-strongly pseudocontractive, the reader may consult [11].

It follows from inequalities (1)—(5) that T is pseudocontractive (respec-
tively, strongly pseudocontractive, ¢-strongly pseudocontractive) if and
only if (I — T) is accretive (respectively, strongly accretive, ¢-strongly
accretive), so that the mapping theory for accretive operators (respectively,
strongly accretive operators, ¢-strongly accretive operators) is intimately
connected with the fixed point theory of pseudocontractive operators
(respectively, strongly pseudocontractive operators, ¢-strongly pseudocon-
tractive operators).

The accretive operators were introduced independently in 1967 by
Browder [3] and Kato [17]. Interest in accretive operators stems mainly
from their firm connection with the existence theory for nonlinear evolu-
tion equations in Banach spaces. It is well known that many physically
significant problems can be modeled in terms of an initial value problem
of the form

du
7 Tu, u(0) = u,, (7)
where T is strongly accretive, accretive, or ¢-strongly accretive in an
appropriate Banach space. Typical examples of how such evolution equa-
tions arise are found in models involving the heat, the wave, or the
Schradinger equation (see for example [31]).

An early fundamental result in the theory of accretive operators due to
Browder [3] states that the initial value problem (7) is solvable if T is
locally Lipschitzian and accretive on E—a result which was subsequently
generalized by Martin [19] to the continuous accretive operators. As a
consequence of the result of Martin [19] (see also Morales [20]), if
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T: E — E is strongly accretive and continuous, then T is surjective, so that
the equation

Tx = f ®)

has a solution for any given f € E. It is easy to verify from inequality (1)
that if T is strongly accretive in any Banach space E and Eg. (8) has a
solution, then the solution is unique.

If T: E — E is strongly accretive and (8) has a solution, methods for
approximating the solution have been investigated by several researchers
(see for example Chidume [7], Chidume and the author [10], Deng [13, 14],
and Tan and Xu [28]). In [7] Chidume proved that if E =L, (or [p),
p=2,and T: E — E is a Lipschitz strongly accretive operator, then an
iteration process of the type introduced by Mann [18] can be used to
approximate the solution of (8). As a consequence of this result he proved
that if C is a nonempty closed convex and bounded subset of E and
T:C — C is a Lipschitz strongly pseudocontractive operator, then the
Mann iteration process converges strongly to the unique fixed point of T.
These results of Chidume have been generalized and extended in several
ways by several researchers (see for example [10, 13, 14, 28]). In [13] Deng
extended the results to the Ishikawa iteration method. Recently, Tan and
Xu [28] extended the results of both Chidume [7] and Deng [13] to the
more general real Banach spaces which are g-uniformly smooth, 1 < g < 2
(see the definition below). These results of Tan and Xu have recently been
extended to all real g-uniformly smooth Banach spaces, g > 1 (see
Chidume and the author [10] and Deng [14]).

Let ¢ > 1, and let E be a real g-uniformly smooth Banach space. It is
our purpose in this paper to prove that if 7: E — E is Lipschitz and
¢-strongly accretive and Eq. (8) has a solution, then the Mann and
Ishikawa iteration methods converge strongly to the unique solution.
Furthermore, we prove that if 7: F — E is Lipschitz and ¢-
hemicontractive, then the Mann and Ishikawa iteration methods converge
strongly to the unique fixed point of 7. Our results will thus extend the
results of Chidume [7], Chidume and the author [10], Deng [13], and Tan
and Xu [28], and Theorems 1 and 2 of Deng [14] to the more general
classes of operators considered here.

PRELIMINARIES

We start by defining the two fixed point iteration methods which will be
needed in the following.

(@) The Ishikawa Iteration Process (see for example [16, 25]) is defined as
follows: For K a convex subset of a Banach space E, and T a mapping of
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K into itself, the sequence {x,);_, is defined by

x, €K
yn:(l_Bn)xn+BnTxn1 nZO
Xnr1 = (1 - an)xn + anTy,,, n = 0,

where {a,)_, and { B,};_, are real sequences satisfying () 0 < a, < B, <
1, (i) lim, .. B, = 0, and (i) ¥*_, a, B, = .

(b) The Mann Iteration Process (see for example [18, 25]) is defined as
follows: With K and T as in (a) the sequence {x,},_, is defined by

x, €K
Xpi1=1—¢c)x, +c,Tx,, n>0

where () 0 < ¢, <1, (i) lim,_, . ¢, = 0, and (iii) X _, ¢, = %. In some
applications, condition (iii) is replaced by > _ ¢,(1 — ¢,) = . This change
will be reflected in the following.

The iteration processes (a) and (b) have been employed by various
researchers to approximate solutions of several nonlinear operator equa-
tions in Banach spaces (see for example [6-11, 13, 14, 16, 18, 25, 26—28,
30]). Moreover, it is well known that the two processes may exhibit
different behaviour for different classes of nonlinear mappings (see for
example [25] for a detailed comparison of the two processes).

Let £ be a Banach space. The modulus of smoothness of E is the
function

p:[0,0) = [0, )
defined by

pe(t) = sup{3(llx +yll + llx — yll) — L:llxll < 1,1Iyll < ¢}.

E is uniformly smooth if lim,_, .( p,(¢) /1) = 0.

Let g > 1; E is said to be g-uniformly smooth (or to have a modulus of
smoothness of power type q > 1) if there exists a constant ¢ > 0 such that
pe(t) < ct’. Hilbert spaces, L, (or /,) spaces, and the Sobolev spaces W7
are g-uniformly smooth. Hilbert spaces are 2-uniformly smooth while

p-uniformly smooth ifl <p <2

.
L, (ori,) or Wi is {z-uniformly smooth if p > 2
In the following we shall need

THEOREM HKS [29, Corollary 1’, p. 1130]. Let ¢ > 1 and E be a real
Banach space. Then E is qg-uniformly smooth if and only if there exists a
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constant d 0> 0 such that
L + Y19 < xll? + g<y, jy(x)) + d, Iyl (9)

forallx,y € E.
LEMMA TX (Tan and Xu [27, p. 303]).  Suppose that {a,},_, and {b,},_,
are two sequences of nonnegative numbers such that

a,.,<a,+b, Vn=>1,

If ¥7_1b, converges, then lim a, exits.

n— o

MAIN RESULTS

THEOREM 1. Let g > 1, and let E be a real g-uniformly smooth Banach
space. Let T: E — E be a Lipschitz ¢-strongly accretive operator. Suppose the
equation Tx = f has a solution for each f € E. Let {a,),_, and { B,};_, be
real sequences satisfying

(i 0<a,<1,n=>=0,

(i) 0<B,<af"',n=0
(i) T, a1 — a)i ! =,
(V) T, af <.

Then the sequence {x,);_, generated from any x, € E by
Yo=@=B)x, +B,(f+(I~-T)x,), n=0 (10)
Xpnv1 = (1 - an)xn + an(f+ (I - T)yn)' n =0, (11)

converges strongly to the solution of the equation Tx = f.

Proof. It follows from inequality (3) that if Tx = f has a solution then
the solution is unique. Let x* denote the unique solution and L the
Lipschitz constant of T. Define S: E — E by

Sx=f+ (1 -T)x.

Then x* is a fixed point of S and S is Lipschitz with Lipschitz constant
L, =1+ L. Furthermore,

(Sx = Sy, j(x —y)> <lx —ylI> = &(llx —yDllx —yll.  (12)
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Using the inequalities (9)-(12) we obtain
x, 1 =¥ =1 — a,)(x, —x*) + a,(Sy, —x*)
<(1-a,)llx, — x4+ ga,(1 — a,)"""
X {Sy, —x*,j,(x, —x*)) + af quISyn — x*||9
< (l - an)q”xn _X*”q + qan(l - an)q_l
XSy, —x*,j,(x, —x*)) + ald, L%y, —x*7. (13)
Observe that
<Syn _x*’jq(xn _x*)> = <Syn - an’jq(xn _x*)>
+ (8, —x*,j,(x, —x*))
<18y, — Sx, |l llx, —x*7""
+llx, = x*17 = o(llx, — x*)llx, — 2177
<[B.Li(1+Ly)+1llx, — x4

— ¢(llx, —x*)lx, — 177" (14)
Furthermore,

ly, =x*1" = I(1 = B,)(x, = x*) + B,(Sx, —x*)II
<(1-8)"Nx, —x*" +qB,21-B,)""
X (8x, —x*, j(x, —x*)) + BId,IlISx, — x*
<[(1-B)"+gB.(1—B) "+ B d, L% ]lx, — 2
—qB,(1 = B)" "d(llx, — x*)llx, —x*17"
<[ -B)"+qB.1-B)" "+ Bl d,L%]lx, — 24",
(15)
Using (14) and (15) in (13) we obtain
ey =201 < [(1 = @,)" + g, (1 — @)
+qa, B, (1 — a,) 'L,(1+L,)
+ald, L ((1-B,)" +qB,(1-B)""
+ 7 d, L% )|l — el

— qa, (1 — @) o(llx, — x*)llx, —x*|7"
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Since ¢ — 1 > 0, condition (ii) implies
b,y =241 < [(1 = @) + gay(1 = @,)" " + qadL, (1+L,)
+ald,L((1-B) +qB,(1—B)""
+d, 14 )]llx, = 11

— qa,(1 = a,)" ' ¢(lx, —xH)lx, — x| (16)

Consider the function f:[0,%) — [0, ) defined for each x  [0,%) by
f(x) = (1 + x)4. Then there exists ¢ € (0, x) such that

£(x) = £(0) + f(0)x f() .

Since f"(¢) > 0, we obtain
f(0) + 1 (0)x < f(x). (17)
Setting x = «, /(1 — «,) in (17) we obtain
(1-a) +qa,(l —a)’ " <1. (18)
Similarly setting x = 8,/(1 — B,) in (17) we obtain
(1-B)" +aB(1-B)" " <1 (19)
Using (18) and (19) in (16) we obtain
%00 = x*17 < [1+ qafL, (1 + L)
+afd, L% (1 +d, L% )]lx, —x*I
= qa,(1 = a,)" "(llx, = x*lx, =217
=[1+ Ma?]llx, —x*[|
—qa,(1 = a,)" " (llx, = x*)lx, —x*17"" (20)
where M =qL,(1+L,)+d,L%1 +d, L%). It follows from inequality
(20) and condition (iv) that {llx, — x*|I;_, is bounded. Suppose
llx, —x*|I? < K, for all n > 0. Then (20) implies that

llx, . —x* < llx, — x*1? + MK/

—qa,(1 = a,)" "p(llx, = x*)lx, —x*177". (21)
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Thus (lx,.; —x*? < llx, — x*II? + MKaJ, and condition (iv) and an
application of Lemma TX imply that lim|lx, —x*| exists. Suppose
lim |lx, —x*[| = 6 > 0. We show that & = 0. Suppose § > 0. Let N > 0 be
an integer such that [|x, — x*|| > 6/2 for all n > N. Then

5
liminf ¢(llx, — x*/) > qﬁ(E) > 0. (22)

From inequality (21) we obtain

N
“1
lxyes =X <llxg —x*7—q Y, a,(1—a,)?
n=0

N
Xp(lx, = x*Nlx, —x*197" + MK Y, af.

n=0

As N — o, using condition (iv) we obtain

o

Y (=) o (llx, — 2 D)llx, —x 77 < o,

n=0
Condition (iii) and the assumption that ||x, — x*|| = & > 0 imply that
liminf ¢(llx, —x*I) =0,

contradicting (22). Thus, & = 0, completing the proof of Theorem 1.

CoROLLARY 1. Letq > 1, and let E be a real q-uniformly smooth Banach
space. Let T: E — E be a Lipschitz strongly accretive operator. Let {a,},_,
and { B,Y;_, be real sequences satisfying conditions ()—(iv). Then the sequence
{x,)°_, generated from any x, € E by (10) and (11) converges strongly to the
solution of the equation Tx = f.

Proof. The existence of a solution follows from Martin [19] (see also
Morales [20]) and the result follows from Theorem 1.

COROLLARY 2. Let E and T be as in Theorem 1. Suppose the equation
Tx = f has a solution for each f € E. Let {a,),_, be a real sequence satisfying
conditions (i), (iii), and (iv). Then the sequence {x,}:_, generated from any
X, € E by

X1 = 1 —a)x, +a,(f+(I-T)x,), n=>0

converges strongly to the solution of the equation Tx = f.
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Proof. Obvious from Theorem 1.

Since

. [ p-uniformly smooth ifl <p <2
L, (orl,) s {2-uniformly smooth if p > 2;

it follows that the following corollaries are immediate consequences of
Theorem 1.

CoroLLARY 3. LetE =1L, (or lp), p =2, and T: E — E be a Lipschitz
¢-strongly accretive operator. Suppose the equation Tx = f has a solution for
each f € E. Let {a,f,_, and { B,},_, be real sequences satisfying

(M 0<eq,<1,n=0,

(i) 0<B,<a,n=>0,

(i) X, _5a,d - a,) =x,

(v) Xo_,a? <
Then the sequence {x,},_, generated from any x, € E by (10) and (11)
converges strongly to the solution of the equation Tx = f.

CorOLLARY 4. Let E=L, (or 1), 1<p <2 and T:E > E be a
Lipschitz ¢-strongly accretive operator. Suppose the equation Tx = f has a
solution for each f € E. Let {a,),_, and { B,},_, be real sequences satisfying

(i 0<q,<1,n=>0,

(i) 0<B,<af ' ,n=0,

(i) 5, a,l— a)f ! =m0,

(iv) Xo_,af <o
Then the sequence {x,},_, generated from any x, € E by (10) and (11)
converges strongly to the solution of the equation Tx = f.

THEOREM 2. Let g > 1, and let E be a real g-uniformly smooth Banach
space. Let K be a nonempty closed convex subset of E and T: K — K be a
Lipschitz ¢-hemicontractive operator. Let {a, ). _, and {B,Y._, be real se-
quences satisfying

(i) 0<a,<1,n=0,

(i) 0<B,<af" ' n=>0,
(i) X7_, e, — @)t =,
(iv) X,_oaf <o
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Then the sequence {x,},_, generated from any x, € K by
Yo =1 =8)x, +B,Tx,, n=0 (23)
%pin = (L a)x, + aly,, 120 (24)
converges strongly to the fixed point of T.

Proof. Inequality (6) implies that F(T) is singleton. Let x* denote the
fixed point of T and L the Lipschitz constant of 7. Then using (9), (23),
and (24) we obtain

lx, 1 =¥ = I(1 — a,)(x, —x*) + a,(Ty, —x*)II
<(1-a,)lx, = x4 + ga, (1 — a,)" "
X Ty, —x*,j,(x, —x*)) + o d Ty, — x*||
<[ - )"+ ge,(1 - @) iz, — 24
+qa,(1 — a,)" KTy, — Tx,, j,(x, —x*))
—qa,(1 - a,)" "¢(llx, — x*)lx, —x*"
+ af quqllyn — x*||?
<[1-a) +qa,(1-a) " +qa,8,(1—a,)""
XL(1+L) + afd,L((1 - B)" +qB,(1—B,)"
+ B¢ d,L9)|lx, — x*11°
—qa,(1— )" P(lx, — x*)lx, —x*|?*
<[1+ (gL +L)+d,L9(1 +d,L7))af]lx, — x|
—qa,(1— )"  P(lx, — x*)lx, —x*177".
Thus
lx,. 1 — 2% < [1 + Ma?]llx, —x*? - ga,(1 - an)q_l
X p(llx, — x*)lx, — 1771,

where M =qL(1 + L) +d, L1 + d,L?). The rest of the argument now
follows as in the Proof of Theorem 1 to yield that x, — x* as n — .

COROLLARY 5.  Let g > 1, and let E be a real gq-uniformly smooth Banach
space. Let K be a nonempty closed convex subset of E, and T: K — K a
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Lipschitz strongly pseudocontractive mapping. Let {o,},_o and {B,Y,_, be
real sequences satisfying conditions (i)—(iv). Then the sequence {x,)._, gener-
ated from any x, € K by (23) and (24) converges strongly to the fixed point
of T.

Proof. The existence of a fixed point follows from Deimling [12]. Since
F(T) +# &, T is ¢-hemicontractive and hence the result follows from
Theorem 2.

COROLLARY 6. Let E, K, and T be as in Theorem 2 and let {a,);_, be a
real sequence satisfying (i), (iii), and (iv). Then the Mann iteration process

x, €K
Xpy1 = (1 - an)xn + anTxn
converges strongly to the fixed point of T.

Remark. Theorems 1 and 2 of our results extend the results of Chidume
and the author [10] and Tan and Xu [28], Theorems 1 and 2 of Deng [14],
and several other results from the class of strongly accretive operators and
the class of strongly pseudocontractive operators to the more general
classes of operators considered here. Furthermore, Corollaries 1 and 5
which are varied for all g-uniformly smooth Banach spaces, g > 1, are
improvements of the results of Tan and Xu which are varied for only
g-uniformly smooth Banach spaces, 1 < g < 2.

Prototypes of our sequences are

1 0 ) 1
o, = , n=0, T T a—1
(1+n)"!
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