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Abstract

This research proposes cultivation-time recommender system for predicting the best sowing dates for winter cereal crops in the

newly reclaimed lands in Farafra Oasis, The Egyptian Western Desert. The main goal of the proposed system is to support the best

utilization of farm resources. In this research, predicting the best sowing dates for the aimed crops is based on weather conditions

prediction along with calculating the seasonal accumulative growing degree days (GDD) fulfillment duration for each crop. Various

Machine Learning (ML) regression algorithms have been used for predicting the daily minimum and maximum air temperature

based on historical weather conditions data for twenty-five growing seasons (1990/91 to 2014/15). Experimental results showed that

using the M5P and IBk ML regression algorithms have outperformed the other implemented regression algorithms for predicting

the daily minimum and maximum air temperature based on historical weather conditions data. That has been measured based on

the calculated mean absolute error (MAE). Also, obtained experimental results obviously indicated that the best cultivation-time

prediction by the proposed recommender system has been achieved by the M5P algorithm, based on the seasonal accumulative

GDD fulfillment duration, for the coming five growing seasons (2016/17 to 2019/20).
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1. Introduction

Food security has become a pressing challenge due to rapid population growth, climate change, and water short-

ages, especially in developing countries 1,2.
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Despite the fact that wheat production in Egypt for the current season of 2015/16 is estimated to 9 million tonnes,

it remains the world’s largest wheat importer with wheat imports estimated at 11 million tonnes 1,3,4,5. Moreover,

growth ratio of Egyptian imports of other cereal crops, such as barley, for the same season reached around 96.08%

compared to the previous season 3,6. It is noteworthy that climate change is a major reason that causes large variations

in crop yields from decade to decade. Also, as plant development is tightly aligned with weather conditions, especially

temperature, uncertainty in weather creates a risky environment for agricultural production.

Therefore, the cultivation area of winter cereal crops increased in the newly reclaimed lands under various irrigation

systems. Both crops are suitable to be widely grown in the rain-fed areas of the north coastal region. In addition,

the newly reclaimed lands with saline soils in Egypt, such as the newly reclaimed lands in the western desert, are

appropriate to grow both crops 7.

Commonly, people often count on a calendar to predict plant development for making management decisions.

However, as plant development depends on temperature that can vary greatly from year to year, it’s hard to depend on

the calendar days that can be undeniably misleading for predicting plant growth, especially for early stages of crop

growth 8. Therefore, weather forecasting is very important to determine the suitable cultivation dates of various crops

for agricultural development in the newly reclaimed lands, especially the Egyptian western desert.

This paper proposes a cultivation-time recommender system for predicting the best sowing dates and cultivation

times for cereal crops in the newly reclaimed lands. A case study considered two strategic cereal crops in Egypt,

namely winter wheat and barley, has been presented. The scope and focus cultivation location of this research is

the newly reclaimed lands in Farafra Oasis, The Egyptian western desert. The main goal of the proposed system is

to enable the best utilization of farm resources and to support the farmers as well as governmental authorities and

decision makers via predicting the best sowing date for a certain cereal crop during a given (future) cultivation season.

The proposed recommender system consists of two main phases; namely weather prediction and Growing Degree
Days (GDD) based sowing date prediction. In this paper, various Machine Learning (ML) regression algorithms have

been used for predicting the daily minimum and maximum air temperature based on historical weather conditions data.

The predicted daily minimum and maximum air temperature have been used to calculate the seasonal accumulative

GDD fulfillment duration, and to accordingly predict the best sowing dates for the aimed crops.

The rest of this paper is organized as follows. Section 2 presents a brief review of related recent research work.

Section 3 describes the different phases of the proposed recommender system along with briefing the details of the

used prediction methods. Section 4 introduces the tested weather conditions data and the case study location in

addition to depicting and discussing the obtained experimental results. Finally, section 5 presents conclusions and

discusses future work.

2. Related work

Numerous studies have been conducted on cultivation in the Nile delta, however, few researches have addressed

cultivation in the desert region, especially oasis. Moreover, very limited research studies have proposed computational

intelligence based recommender systems for predicting the best planting dates, especially for the newly cultivated

lands, based on the required temperature for crops growth stages. For example, in 1, authors proposed a recom-

mender system, based on the rough mereology theory, for predicting best cultivation dates for wheat in Egyptian Sinai

Peninsula according to the required mean temperature for germination stage.

However, several research works addressed the usage of crop growth models and weather conditions prediction

software for studying the impact of related phenomena. For example, authors, in 9, studied the SIRIUS crop growth

model program under Egyptian climatic conditions in order to investigate the effects of increasing temperature and

Co2 on wheat production and help the decision maker to set mitigation plans for facing climate changes. While, in 10,

authors used the ArcGIS 10.1 software to create classified maps for presenting GDD at ten governorates in the Egyp-

tian Nile Delta considering three selected base temperatures. Prediction equations were implemented to predict annual

accumulative GDD for crop management decisions. In 11, CERES-Wheat simulation model in the DSSAT package

has been used for describing daily phenological development and growth, in response to environmental factors (soils,

weather and management), at three agroclimatic locations in in Nile Valley and Delta, in Egypt. Authors in 12 used

CropSyst crop growth simulation model to quantify a range for calibration parameters for four wheat cultivars grown
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in nine growing seasons at four governorates, in Nile Valley and Delta, in Egypt. Also, authors in 13 used CropSyst

crop growth simulation model to study the effect of climate change on wheat grown under sprinkler irrigation.

In this research, a novel prediction model for the best cultivation time of cereal crops, which tightly relates crop

life cycle to the accumulation of given quantities of heat, calculated as thermal time or GDD, has been proposed. It

utilized various ML regression algorithms for predicting the daily minimum and maximum air temperature based on

historical weather conditions data.

3. The proposed GDD based cultivation-time recommender system

In this research, the proposed cultivation-time recommender system consists of two main phases; namely weather
prediction and Growing Degree Days (GDD) based sowing date prediction. Fig. 1 shows the phases and corresponding

stages of the proposed recommender system.

3.1. Weather prediction

In this phase, various regression ML algorithms; namely, M5Rules 15, M5P 16, Multi-layer Perceptron (MLP)

regressor 17, and IBk 18, have been tested for weather forecasting via predicting the daily minimum and maximum air

temperature based on historical weather conditions data.

3.1.1. M5Rules algorithm
In M5Rules algorithm, a decision list for regression problems is generated using divide-and-conquer (separate-and-

conquer) rule learning. The key idea of this approach is to replace the purity heuristic of the decision tree algorithm

Fig. 1. General structure of the proposed GDD based cultivation-time recommender system
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with a heuristic that measures the reduction in variance. So, in each iteration of progress, a model tree is built using

the M5 model tree and the best leaf is made into a rule. Basically, these model trees are decision trees with linear

models at the leaves 15. Technically, M5Rules algorithm is straightforward method for generating a rules-set from the

M5 model tree inducer 15. Steps of the M5Rules algorithm is shown in Algorithm 1.

Algorithm 1 M5Rules algorithm

1: Apply M5 model tree to the full training dataset and a pruned tree is learned.

2: Select the best leaf and made it into a rule (According to some heuristic) and the tree is discarded.

3: Remove all instances, covered by the rule, from the dataset.

4: Apply the process recursively to the remaining instances.

5: Terminate when all instances are covered by one or more rules (The rules are generated based on an unsmooth

linear models).

3.1.2. M5P algorithm
The M5P is the most widely used algorithm based on decision tree for data prediction 16. It is a multivariate

tree linear model algorithm, which is utilized for noise removal and also used for huge database. M5P algorithm

is advantageous as compared to other algorithms as it is used for both categorical and continuous variables and for

missing values. At each leaf of the tree, a linear regression model predicts the class value of instances that reach the

leaf. It combines a predictable decision tree and the possibility of linear regression functions at the nodes 16. Steps of

the M5P model tree learner algorithm is shown in Algorithm 2.

Algorithm 2 M5P algorithm

1: Construction Construct a tree via splitting the data to minimize intra-subset variation in the class values of

instances down each branch.

2: Pruning For each node, a linear model is computed, then the tree is pruned back from the leaves, as long as the

expected estimated error decreases.

3: Smoothing To compensate for sharp discontinuities that occur between linear models at the leaves of the pruned

tree, a smoothing procedure is used.

3.1.3. MLP regressor
The most widely used model in time series prediction is the MLP network for regression. It is a front-forward

neural network model. It can be used from one hidden layer to multiple layers. Each hidden layer is fully connected

to the succeeding layer 17.

The MLP maps sets of input data onto a set of appropriate outputs using historical data, so that the model can be

used to produce the output when the desired output is not identified. The MLP regressor is implemented by equation

(1).

Yj = f (
∑

i

wi jXi j) (1)

Where Yj is node j output, wi j is the connection weight between node j and node i in the lower layer, and Xi is

the input signal from the node i in the lower layer. The function f () is the transfer function. It trains a multilayer

perceptron with one hidden layer.

3.1.4. IBk: k-nearest neighbor learner algorithm
The IBk is a k-nearest neighbor (k-NN) classifier, which is an instance based learning (IBL) method that imple-

ments the k-NN algorithm 18,19. The IBk classifier is used for regression and classification problems. Instead of

building a model, IBk algorithm provides the closest k entries of the training dataset that have the highest similarity

to the test sample using a similarity metric; such as Euclidean distance. Then, a majority vote is performed among

the selected k entries to determine the property value of the test sample 18,19. Steps of the k-NN algorithm is shown in

Algorithm 3.



114   Nashwa El-Bendary et al.  /  Procedia Computer Science   96  ( 2016 )  110 – 119 

Algorithm 3 k-nearest neighbor (k-NN) algorithm

1: Determine a positive integer k (the number of nearest neighbors), along with a new sample.

2: Compute the similarity measure between the training entries and the testing sample.

3: Sort all training entries according to the similarity values.

4: Use a majority vote for the class labels of k nearest neighbors, and assign it as a prediction value of the testing

sample.

3.2. GDD based sowing date prediction

During this phase, the predicted daily maximum (Tmax) and minimum (Tmin) air temperature data, resulted from

the first weather prediction phase, has been used to calculate the seasonal accumulative growing degree days (GDD)

for the aimed crops, as shown in equation (2) 8. The GDD is a heat driven development model, based on actual

temperatures, is used as an alternative to provide the potential plant stage, represents a simple and accurate way to

predict when a certain plant stage will occur 8.

GDD =
∑

n

[(Tmax + Tmin)/2] − Tb (2)

Where n represents the number of days in each growth stage throughout the growing season, Tmax and Tmin are the

maximum and minimum daily temperature, and Tb is the crop base temperature (the temperature below which plant

development stops). The resulting thermal time could more consistently predict when a certain plant growth stage will

occur. Accordingly, the seasonal accumulative GDD of the aimed crop is resulted when the calculated thermal times

(GDD values) of the plant growth stages are summed together.

Moreover, for concluding the best sowing date recommendations of the aimed crops, other parameters for each

specific crop, such as: the number of days for plant initiation growth stage till emergence completion, the needed tem-
perature range for emergence completion 20, and the total GDD range 8, are required to be identified. It’s noteworthy

to mention that, according to the Food and Agriculture Organization (FAO) 5, sowing winter wheat and barley starts

in November to early December. Whereas, for both crops, harvesting starts from mid-April. Also, for winter wheat

and barley, the number of days for plant initiation growth stage till emergence completion is around two weeks (15

days), the needed temperature range for emergence completion is generally within the range of [5◦ to 25◦] 20, and the

total GDD range of winter wheat and barley are [1538-1665] and [1269-1522] 8, respectively.

4. Experimental results and discussion

Experiments implemented in this research have been conducted using the WEKA open source software 21 in addi-

tion to additional calculations programming performed in the Java environment. As previously stated, four ML algo-

rithms have been tested in this research for daily temperature prediction of the coming five growing seasons (2016/17

to 2019/20) based on the climatic parameters; namely daily maximum and minimum temperatures, for twenty-five

growing seasons (1990/91 to 2014/15) at the Farafra Oasis, New Valley Governorate, Western Desert, Egypt (near

latitude 27.06 ◦ North and longitude 27.97 ◦ East) 22.

The meteorological data that has been used for validating the proposed cultivation-time recommender system was

obtained from the NASA project for Prediction of Worldwide Energy Resource (POWER) as Climatology Resource

for Agroclimatology 23.

Moreover, four years; namely 2000, 2004, 2008 and 2012, have been used for testing and validating the perfor-

mance of each implemented algorithm via calculating the Mean Absolute Error (MAE) measure, as shown in equation

(3). The MAE measure is defined as the average of the difference between the predicted and the actual values.

MAE =
|a1 − c1| + |a2 − c2| + · · · + |an − cn|

n
=

∑n
i=1 |ai − ci|

n
(3)

Where a is the actual value, c is the calculated (predicted) value, and n is the total number of values.
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Table 1 shows the performance MAE measure of the M5Rule, M5P, MLP regressor, and IBk algorithms for the

daily temperature prediction.

Table 1. Mean Absolute Error (MAE) of the implemented ML regression algorithms

Year
M5Rules M5p MLP regressor IBK

MAE (Tmax) MAE (Tmin) MAE (Tmax) MAE (Tmin) MAE (Tmax) MAE (Tmin) MAE (Tmax) MAE (Tmin)

2000 2.269 1.714 2.281 1.713 1.835 1.832 2.785 2.149

2004 2.57 1.767 2.57 1.767 2.575 2.136 3.607 2.254

2008 2.735 1.694 2.735 1.694 3.57 1.882 3.701 2.253

2012 2.242 1.531 2.242 1.531 3.427 1.723 2.694 2.291

For each of the testing years, used for validating the proposed weather conditions prediction system, the following

observations have been concluded.

Firstly, in some cases, it has been observed that there is an inverse relationship between the calculated MAE for

the whole year and the trend of predicted maximum daily temperature. For example, when high maximum daily

temperature values have been predicted, whereas the average MAE value calculated for the whole year has been

observed to be within a limited range of values. That leads to the observation of the occurrence of unusual temperatures

in some days of that year.

Also, that explains the performance of the MLP and the M5Rules algorithms. So, when applying the MLP regres-

sor algorithm, the highest MAE was for the daily maximum temperature prediction of the validation year 2012 ranges

as [1.4336 to 4.5049]. Similarly, when applying the M5Rules algorithm, the highest MAE for the daily maximum

temperature prediction has been also obtained for the year 2012 as [1.4849 to 3.7468].

On the other hand, in other cases, it has been observed that there is a direct relationship between the calculated

MAE for the whole year and the trend of predicted maximum daily temperature. So, this reflects the case that when

applying the IBk and M5P algorithms, the highest MAE for the daily maximum temperature prediction has been ob-

tained for the year 2008 as [2.7457 to 7.8] and [1.6019 to 6.3295], respectively.

These observations fairly explains the curves depicted in Fig. 2 (a), (b), (c), and (d), which show the trend of the

average daily minimum temperature (Tmin) and maximum temperature (Tmax) values of the years (1990 to 2020)

obtained by the M5Rules, M5P, MLP regressor, and IBk prediction algorithms, respectively. The shaded area in the

figures highlighting the predicted average daily Tmin and Tmax values of the coming five years (2016 to 2020).

Also, considering the tested weather conditions dataset, results showed that the M5P and the IBk regression algo-

rithms have achieved the best sowing date prediction, based on the predicted average daily Tmin and Tmax values of

the coming five years (2016 to 2020). Moreover, the same prediction algorithms, using the maximum and minimum

temperature of four validation years (2000, 2004, 2008, 2012), have achieved MAE ranges as [2.242 to 2.735] and

[2.694 to 3.607], respectively, for the Tmax and ranges as [1.531 to 1.767] and [2.149 to 2.254], respectively, for the

Tmin.

Table 2, 3, 4, and 5 show the recommended sowing times for the aimed crops during the coming five growing

seasons (2016/17 to 2019/20), using the M5Rules, M5P, MLP regressor, and IBk prediction algorithms, respectively.

Generally, obtained experimental results obviously indicated that the best recommendation for the cultivation-time

by the proposed recommender system has been achieved by the M5P algorithm, based on the seasonal accumulative

growing degree days (GDD) fulfillment duration, for the coming five growing seasons (2016/17 to 2019/20).
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(a) M5Rules algorithm (b) M5P algorithm

(c) MLP regression algorithm (d) IBk algorithm

Fig. 2. Trend of the average daily minimum temperature (Tmin) and maximum temperature (Tmax) values of the years (1990 to 2020)

Table 2. The recommended sowing times for the aimed crops during the coming five growing seasons (2016/17 to 2019/20) using the M5Rules

algorithm

Growth season Sowing date Achieved GDD Number of Days

2015 - 2016 11/1/2015 1254.3034 86

11/8/2015 1262.1795 89

11/15/2015 1255.7404 90

2016 -2017 11/12/2016 1257.48515 83

2017 -2018 11/1/2017 1251.30 91

11/8/2017 1252.75 93

11/15/2017 1252.750 97

2018 -2019 11/1/2018 1251.30 91

11/8/2018 1252.750 93

11/15/2018 1252.750 97

2019 - 2020 11/1/2019 1251.30 91

11/8/2019 1252.750 93

11/15/2019 1252.750 97

5. Conclusions and future work

This research proposes a recommender system for support the best utilization of farm resources in the newly

reclaimed lands in Farafra Oasis, The Egyptian Western Desert. The proposed cultivation-time recommender system

predicts the best winter cereal crops sowing dates based on calculating the seasonal accumulative growing degree days

(GDD) fulfillment duration for each crop. Experimental results showed that using the M5p and IBk ML regression

algorithms have outperformed using the M5Rules and MLP resgressor algorithms for predicting the daily minimum
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Table 3. The recommended sowing times for the aimed crops during the coming five growing seasons (2016/17 to 2019/20) using the M5P

algorithm

Growth season Sowing date Achieved GDD Number of Days

2015 - 2016 1/1/2015 1253.7279 86

11/8/2015 1259.7504 89

11/15/2015 1254.2792 90

2016 - 2017 11/1/2016 1259.8866 76

11/8/2016 1252.7897 80

11/15/2016 1254.6721 83

2017 - 2018 11/2/2017 1260.64695 77

11/9/2017 1256.7152 81

11/16/2017 1262.52295 84

2018 - 2019 11/2/2018 1258.06845 77

11/9/2018 1253.95875 81

11/16/2018 1259.7698 84

2019 - 2020 11/2/2019 1255.3167 77

11/9/2019 1251.062049 81

11/16/2019 1256.914449 84

Table 4. The recommended sowing times for the aimed crops during the coming five growing seasons (2016/17 to 2019/20) using the MLP

algorithm

Growth season Sowing date Achieved GDD Number of Days

2015 - 2016 11/1/2015 1262.01 88

11/8/2015 1263.15 91

11/15/2015 1263.28 93

2016 - 2017 11/1/2016 1250.282 86

11/8/2016 1258.639 90

11/15/2016 1257.897 92

2017 - 2018 11/1/2017 1261.6418 90

11/8/2017 1262.8226 93

11/15/2017 1263.1058 95

2018 - 2019 11/1/2018 1256.2259 93

11/8/2018 1261.5044 96

11/15/2018 1250.29445 97

2019 - 2020 11/1/2019 1260.33325 97

11/8/2019 1255.64515 99

11/15/2019 1258.1188 101

and maximum air temperature based on historical weather conditions data for twenty-five growing seasons (1990/91

to 2014/15).

Also, considering the tested weather conditions dataset, results showed that the best sowing date prediction, based

on the predicted average daily Tmin and Tmax values of the coming five years (2016 to 2020), have been achieved

by the M5P and the IBk regression algorithms. Moreover, using the maximum and minimum temperature of four

validation years (2000, 2004, 2008, 2012), the M5P and the IBk prediction algorithms have achieved MAE ranges as

[2.242 to 2.735] and [2.694 to 3.607], respectively, for the Tmax and ranges as [1.531 to 1.767] and [2.149 to 2.254],

respectively, for the Tmin.

Generally, obtained experimental results indicated that the best cultivation-time prediction by the proposed rec-

ommender system has been achieved by the M5P algorithm, based on the obtained MAE ranges for the Tmax and
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Table 5. The recommended sowing times for the aimed crops during the coming five growing seasons (2016/17 to 2019/20) using the IBk algorithm

Growth season Sowing date Achieved GDD Number of Days

2015 - 2016 11/1/2015 1251.3 91

11/8/2015 1252.750 93

11/15/2015 1252.750 97

2016 - 2017 11/1/2016 1251.3 91

11/8/2016 1252.75 93

11/15/2016 1252.75 97

2017 -2018 11/1/2017 1251.30 91

11/8/2017 1252.751 93

11/15/2017 1252.750 97

2018 - 2019 11/1/2018 1251.30 91

11/8/2018 1252.750 93

11/15/2018 1252.750 97

2019 - 2020 11/1/2019 1251.30 91

11/8/2019 1252.750 93

11/15/2019 1252.750 97

the Tmin as well as the seasonal accumulative growing degree days (GDD) fulfillment duration, for the coming five

growing seasons (2016/17 to 2019/20).

For future work, it is planned to improve the overall performance of the system in this paper via considering

additional regression algorithms. Furthermore, in order to increase the use of the proposed GDD based cultivation-

time recommender system, more experiments will be employed considering extended study areas in further newly

reclaimed lands in Egypt.
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