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SUMMARY

Follicular lymphoma (FL) is an indolent disease, but
30%–40% of cases undergo histologic transforma-
tion to an aggressive malignancy, typically repre-
sented by diffuse large B cell lymphoma (DLBCL).
The pathogenesis of this process remains largely
unknown. Using whole-exome sequencing and
copy-number analysis, we show here that the domi-
nant clone of FL and transformed FL (tFL) arise by
divergent evolution from a common mutated precur-
sor through the acquisition of distinct genetic events.
Mutations in epigenetic modifiers and antiapoptotic
genes are introduced early in the common precursor,
whereas tFL is specifically associated with alter-
ations deregulating cell-cycle progression and DNA
damage responses (CDKN2A/B, MYC, and TP53)
as well as aberrant somatic hypermutation. The
genomic profile of tFL shares similarities with that
of germinal center B cell-type de novo DLBCL but
also displays unique combinations of altered genes
with diagnostic and therapeutic implications.

INTRODUCTION

Follicular lymphoma (FL) is the second most common type of B

cell non-Hodgkin lymphoma, comprising �25% of all new diag-

noses (Swerdlow et al., 2008) (http://seer.cancer.gov/statistics/).

Although initially indolent and responsive to a variety of treat-

ments, this disease remains largely incurable (Kridel et al.,
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2012). One particularly compelling problem in the clinical history

of FL is its histologic transformation to a more aggressive malig-

nancy, typically represented by a diffuse large B cell lymphoma

(DLBCL) (Montoto and Fitzgibbon, 2011). FL transformation has

been reported to occur in 16% to 70% of patients over time, with

a consensus rate of 3% per year, and is associated with a mean

survival posttransformation of less than 2 years (Montoto and

Fitzgibbon, 2011). Thus, there is a strong need for an increased

understanding of both the dynamics of tumor clonal evolution

and the mechanisms that are responsible for transformation,

which may in turn be translated into more effective therapies.

Although the process of transformation to DLBCL was

originally described several decades ago, few studies have

specifically addressed this question in longitudinal series with

documented clonal relationship between the two phases (Los-

sos and Gascoyne, 2011). Current knowledge of the biology of

transformation suggests the involvement of heterogeneous

genetic, epigenetic, and microenvironment-dependent factors,

most notably mutations of TP53 (Lo Coco et al., 1993; Sander

et al., 1993), genetic and/or epigenetic inactivation of the

CDKN2A/p16 tumor suppressor gene (Pinyol et al., 1998), trans-

locations deregulating theBCL6 proto-oncogene (Akasaka et al.,

2003), alterations involving chromosome 1p36 (Martinez-Cli-

ment et al., 2003), and changes in MYC expression (Lossos

et al., 2002). Additionally, analysis of selected genes in few cases

revealed an association between progression to DLBCL and

aberrant somatic hypermutation (ASHM) (Rossi et al., 2006), a

mechanism of genetic instability resulting from the abnormal

functioning of the physiologic somatic hypermutation (SHM) pro-

cess that operates in germinal center (GC) B cells (Pasqualucci

et al., 2001). However, these findings were based on small num-

ber of cases and a candidate gene approach as opposed to an
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Figure 1. FL and tFL Display Shared and

Unique Genomic Aberrations

Overall load of genetic lesions identified by WES

and CN analysis in the dominant clone of the 12

discovery cases. Color codes denote distinct types

of aberrations (Tx, translocation). *In cases lacking

matched normal DNA, shared SNVs are limited to

those affecting 52 selected genes with well-estab-

lished roles in lymphomagenesis (see the Experi-

mental Procedures); thus, the total number of

genetic lesions in these patients (right column)

most likely represents an underestimate. FL-spe-

cific SNVs that could be due to genomic loss or

cnLOH of the same region in the tFL phase were

excluded.
unbiased, genome-wide analysis. Thus, the biological mecha-

nisms that are responsible for the lethal event of FL transforma-

tion remain incompletely understood.

The present studywas aimed at examining the history of clonal

evolution during FL transformation to DLBCL and compre-

hensively identifying molecular determinants that underlie this

process.

RESULTS

Divergent Evolution of FL and tFL from a Common
Mutated Precursor
To investigate whether transformation of FL evolves as a linear

process (i.e., through the emergence of an aggressive subclone

from the initial dominant FL population) or derives from the diver-

gent evolution of an ancestral common precursor cell (CPC) that

acquired distinct mutations to become a FL or a transformed FL

(tFL), we integrated massively parallel whole-exome sequencing

(WES) and genome-wide high-resolution SNP array analysis in a

‘‘discovery panel’’ of sequential FL and tFL biopsies obtained

from 12 patients, including four with available matched normal

DNA (Tables S1 and S2 and Figure S1). In all cases, investiga-

tion of the rearranged immunoglobulin (Ig) genes by Sanger

sequencing and/or SNP array analysis confirmed the clonal

relationship between the two phases, whereas the inferred

copy-number value at the segment of deletional recombination

within the Ig loci was used to quantify the percentage of tumor

cells in the biopsy (Bergsagel and Kuehl, 2013), allowing to

normalize the data for clonal representation (Table S1). Fluores-

cence in situ hybridization (FISH) analysis was used to assess the

presence of chromosomal translocations affecting BCL2, MYC,

and BCL6.

We extrapolated the evolutionary history of transformation by

defining genomic alterations that are present in the dominant

clone of both pre- and posttransformation specimens (‘‘shared

lesions’’) and contrasting them to those that are present exclu-

sively in the FL or tFL biopsy (‘‘phase-specific lesions’’). This
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analysis allows to discriminate between

a linear, sequential model, wherein the

tFL dominant clone will maintain all

lesions present in the FL dominant clone,

along with additional tFL-acquired alter-
ations, and a divergent evolution model, which postulates the

existence of lesions that are unique to the dominant clone of

the FL or the tFL in addition to the set of shared alterations

(Experimental Procedures and Figure S1).

Overall, we found 52 clonally represented, shared copy-

number aberrations (CNAs; average, 4.3 per sample; range,

0 to 19 per sample) and 234 shared single-nucleotide variants

(SNVs), including silent and nonsilent mutations (average, 38.5

per sample in the four patients with matched normal DNA; in

the remaining eight pairs, shared SNVs were only considered if

they affected 52 genes that have been previously validated as

functional targets of somatic mutations in lymphoid malig-

nancies, because of the exceedingly high number of variants

that are predicted in the absence of matched normal DNA,

most likely reflecting private SNPs not reported in public data-

bases; see the Experimental Procedures). The presence of

shared genetic alterations was documented in all sample pairs

analyzed, confirming the original clonal relationship between

the FL and tFL sample (Figure 1, left).

In addition to shared lesions, all tFL cases harbored unique

mutations and CNAs that were not present in the major FL clone

at diagnosis, indicating acquisition during the transformation

process or selection of a minor subclone, the size of which

was below the detection threshold of the methodologies used.

The number of tFL-specific lesions (n = 709 SNVs and 291

CNAs, including 119 losses and 172 gains) was widely heteroge-

neous across different patients, ranging from 24 to 161 per case

(average, 83 per sample) (Figure 1, right; see also Figure S2A and

Table S3). Importantly, unique, clonally represented events were

also detected in 10 of 12 baseline FL biopsies (n = 327, including

229 SNVs and 98 CNAs; Figure 1, middle, and Figure S2A). The

presence of FL-specific lesions was not due to CN loss or copy-

neutral loss of heterozygosity (cnLOH) affecting the same region

in the sequential tFL biopsy, as documented by both SNP array

and WES analysis. Thus, these events had been acquired inde-

pendently by the dominant FL clone, consistent with divergent

evolution.
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Figure 2. FL and tFL Arise through Diver-

gent Evolution in Most Patients

Inferred models of clonal evolution during FL

transformation. The original B cell clone is on top;

blue and red circles depict the FL and tFL clones,

respectively, whereas green, dotted circles

represent the postulated common mutated pre-

cursor cell (CPC). In the linear model (2 of 12

patients analyzed), the tFL dominant clone origi-

nates directly from the FL dominant clone after the

acquisition of additional mutations. In the diver-

gentmodel (10 of 12 patients analyzed), the FL and

tFL dominant clones derive from a CPC through

the independent acquisition of distinct mutations.

In both scenarios, the tFL dominant clone may be

present as a minor subclone already at the time

of the FL biopsy (not addressed in this study).

ABC, mutations shared between FL and tFL; DEF,

mutations unique to the FL dominant clone; GHI,

mutations unique to the tFL dominant clone.
Evidence of nonlinear evolution was also observed at the indi-

vidual gene level. As an example, both FL and tFL of patient #23

harbored biallelic MLL2 mutations in the dominant clone, but

only one of the two events (S286fs) was shared between the

pre- and posttransformation biopsy, consistent with its presence

in the common ancestor clone, whereas distinct mutations were

detected in the second allele of the FL (R2687*) and tFL

(R280_splice) specimen, indicating that they had been acquired

independently by the ancestor clone during evolution to these

two diseases (Figures S2B–S2D).

Overall, 10 of 12 patients analyzed (83.3%; 95% confidence

interval [CI], 55% to 95%) showed a mutation pattern suggestive

of divergent evolution, indicating that this is the predominant

mode in the history of FL transformation (Figure 2). The remaining

two patients (#8 and #12) did not harbor FL-specific events;

furthermore, a significant proportion of tFL-specific lesions (13

of 63 in patient #8 and 34 of 61 in patient #12) could be detected

at low frequencies (4% to 15%) in the FL specimen, suggesting

that the tFL arose from a minor subclone within the dominant FL

population, which subsequently acquired additional mutations in

a linear evolution pattern (Figure 2 and Table S3).

With one exception (patient #17), the number of events

acquired by the tFL dominant clone (including CNAs and

SNVs) was significantly higher than that acquired by the FL domi-

nant clone, ranging from >50-fold in case #6 to 2-fold in case #11

(p < 0.005) and underscoring the genomic complexity of the tFL

genome (Figures 1 and S3A). Notably, at least one of these ten

patients did not receive any treatment between the original FL

diagnosis and transformation, indicating that the higher mutation

load of tFL does not simply reflect the consequence of the muta-

genic effect or the selective pressure of chemotherapy. In at

least two patients, several chromosomes displayed convoluted

intrachromosomal rearrangements due to alternating gains and

losses of genomic material, frequently accounting for over ten
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switches per chromosome (Figure S3B

and Table S4). Although the sequencing

approach adopted in our study (WES, as

opposed to whole-genome sequencing)
prevents from distinguishing true chromothripsis from localized

lesions that occurred progressively (Korbel and Campbell,

2013), these data highlight a remarkable genomic instability

in tFL cases in comparison to both FL and other lymphoid

malignancies (Fabbri et al., 2011; Mullighan et al., 2007; Rossi

et al., 2012).

Collectively, these findings support a divergent evolution

model in a significant proportion of patients undergoing transfor-

mation, whereby FL and tFL arise from a common mutated

ancestor through the independent acquisition of distinct genetic

lesions.

Recurrent Genetic Lesions
In order to identify lesions potentially relevant for transformation

among the large number of candidates that emerged from the

analysis of the discovery panel (710 unique genes, including

those targeted by nonsilent SNVs, small indels, and/or CNAs if

they were within minimal common regions involving a maximum

of three loci), we extended theWES and SNP array analysis to 27

additional tFL cases (screening panel; combined, 39 tFL cases).

Then, these data were interrogated for the presence of recurrent

alterations, a common readout for functionally relevant genes,

and by three independent analytical methods for the identi-

fication of key targets of functional genomic alterations:

(1) MutComFocal, a recently developed computational algorithm

that isolates candidate cancer genes from high throughput CN

and SNV data (Trifonov et al., 2013a), (2) MutSigCV, a tool that

analyzes SNV data in order to identify genes mutated more often

than expected by chance (Lawrence et al., 2013), and (3) GISTIC,

a computational approach identifying significant targets of

somatic CNAs.

Figure 3 illustrates the overall proportion of tFL cases

harboring genetic lesions in genes altered at R10% frequency

and recognized as functionally relevant targets by at least one



Figure 3. Recurrently Mutated Genes in tFL

Proportion of tFL cases (n = 39) carrying genetic lesions (SNVs and CNAs) in genes altered at R10% frequency and deemed significant by one of three

independent algorithms (see the Supplemental Information and Table S5); additional genes of functional relevance in the same pathways are also shown.

Deletions and gainswere only computed if definingMCRs of aberration encompassing amaximumof three genes. Green shade highlights alterations consistently

shared between the FL and tFL sample, and red shade identifies alterations enriched in tFL (*p < 0.05 when comparing tFL frequency versus unselected FL

frequency; note that TP53was considered as a tFL-specific target despite its borderline p value because it was invariably unmutated in the diagnostic FL sample

of all three informative tFL cases and because of the broad literature data. The remaining genes did not appear to be phase-specific or could not be unequivocally

assigned to a given category because of the relatively small numbers (for the full list of SNVs found in >5% of tFL cases, see Table S7).
of the three independent approaches, with few additional genes

of functional annotation within the same pathway (see Figures

S4–S6 and Table S5 for the full list of genes found mutated

in R 10% of cases; see also Table S6). Genes are grouped

into biological categories and annotated in order to indicate

whether alterations were also found in the diagnostic FL biopsy

(available in 24 of the 39 cases) or predominantly acquired or

selected at transformation. Collectively, these aberrations point

to a number of biological programs and signaling pathways

that are either dysregulated early in the putative FL and tFL

precursor cell (i.e., ‘‘shared’’ lesions) or selected during trans-

formation (‘‘tFL-acquired’’ lesions).

Genetic Lesions Shared by FL and tFL
The most commonly affected genes in both FL and tFL were

those encoding for histone modification enzymes, including

methyltransferases and acetyltransferases (36 of 39 cases

[92.3%]). In line with previous findings in unselected FL (Morin

et al., 2010; Morin et al., 2011; Pasqualucci et al., 2011a;

Pasqualucci et al., 2011b), the H3K4 trimethyltransferase MLL2

was mutated in 26 of 39 tFL cases (66.7%) with 36 truncating

events and nine missense mutations (Figures 3, S4, and S6

and Table S7). These lesions were already present at FL diag-

nosis in all but one patient and were never lost at transformation,

consistent with an early acquisition by the CPC. The activity of
C

the MLL2-containing complex was also impaired by mutually

exclusive alterations of KDM6B, encoding for an H3K4 histone

demethylase interacting with MLL2 (n = 3 of 39 cases, including

two SNVs and one homozygous deletion) and MLL3 (n = 3 of 39

cases; Figures S4 and S6 and Table S7). Additionally, one-fourth

of tFL cases (n = 10 of 39 [25.6%]) harbored EZH2 gain-of-func-

tionmutations that almost invariably replace the hotspot tyrosine

residue Y641 within the protein SET domain (n = 9 of 10; Table

S7). EZH2 mutations have been reported in 7% unselected FL

cases and 22% de novo GCB-DLBCL (Morin et al., 2010; Morin

et al., 2011), where they increase H3K27 levels through altered

substrate specificity.

Another class of chromatin modifiers was represented by the

acetyltransferases CREBBP (n = 21 of 39 patients [53.8%]; 19

point mutations and two focal deletions) and EP300 (6 of 39

cases [15.4%], of which five mutated and one deleted; Figures

3, S4, and S6). In both genes, the mutation pattern was highly

reminiscent of what has been reported in unselected FL and

de novo DLBCL with respect to the inactivating nature of the

lesions, the evidence of mutational hotspots (R1446 in five

patients, F1484 in two patients, Y1503 in two patients, and

DS1680 in three patients; Table S7), and the predominantly

monoallelic distribution (19 of 21 affected cases), indicating

a haploinsufficient tumor suppressor role (Pasqualucci et al.,

2011a).
ell Reports 6, 130–140, January 16, 2014 ª2014 The Authors 133



Figure 4. Biallelic Loss of CDKN2A/B

Is Specifically Acquired during Trans-

formation

(A) Segmentation data from 18 DLBCL

samples harboring CDKN2A/B deletions, visual-

ized with the Integrative Genomics Viewer

(http://www.broadinstitute.org/igv). Each track

represents one sample, wherein white denotes

a normal (diploid) copy number, blue indicates

a region of copy-number loss, and red corre-

sponds to a region of copy-number gain.

The inferred copy number and the corresponding

color intensity may vary across samples because

of the presence of nontumor cells infiltrating the

biopsy. Individual genes in the region are aligned

in the bottom panel, and the area defined by the

red bar at the top corresponds to the CDKN2A/B

locus.

(B) dChipSNP heatmap showing median-

smoothed log2 CN ratio in 14 tFL biopsies

harboring CDKN2A/B deletions, including six with

matched FL biopsies and two control DNAs (N).

A vertical black bar indicates the location of the

CDKN2A/B loci.

(C) Relative distribution of biallelic lesions affectingCDKN2A/B and TP53. Columns correspond to individual patients, and the genomic status of the two genes is

color-coded as indicated.

(D) Samples carrying biallelic alterations of CDKN2A/B and/or TP53 are characterized by a significantly higher number of CN aberrations (Mann-Whitney U test,

p = 0.03).
Programmed cell death was the second largest program

dysregulated in both FL and tFL and, thus, presumably in the

common ancestor clone. In addition to BCL2 translocations,

detected in 27 of 33 tFL (81.8%) and invariably shared between

the two phases (n = 18 informative pairs), all t(14;18)-positive

cases harbored multiple somatic point mutations within

the�2 kb region downstream of the BCL2 transcription initiation

sites (Figure 3 and S4 and Table S7), reflecting the activity of

the AID-dependent SHM process driven by the juxtaposed Ig

enhancer (Lohr et al., 2012; Saito et al., 2009).

The FAS gene was disrupted in 13 of 39 tFL cases (33.3%)

because of inactivating mutations (n = 4 of 39 [10.2%]) and

genomic deletions (n = 9 of 39 [23.1%], including two focal

homozygous events; Figures 3 and S4). In the three affected

patients with available pre- and posttransformation biopsy,

these lesions were always detectable at FL diagnosis, suggest-

ing their presence in the putative CPC (Table S7). Interestingly,

none of the 23 unselected FL exomes harbored FAS mutations,

giving rise to the possibility that these lesions represent an early

marker for transformation. FAS encodes for a receptor protein

that acts as a major mediator of apoptosis in GCB cells carrying

low-affinity and self-reactive antigen receptors (van Eijk et al.,

2001). With the exception of one amino acid substitution

removing the initiating methionine (M1T), all FAS mutations

(Y232*, P217_splice, and D317V) cluster in exons 7 to 9, which

encode for the protein intracytoplasmic tail (Table S7). This

domain is required for the assembly of the death-inducing

signaling complex, and its truncation will result in the functional

loss of normal FAS signaling by a dominant-negative effect (Sie-

gel et al., 2000), as documented in patients with autoimmune

lymphoproliferative syndrome (Holzelova et al., 2004). A delete-

rious effect was also predicted for the D317V amino acid change
134 Cell Reports 6, 130–140, January 16, 2014 ª2014 The Authors
on the basis of the PolyPhen 2 algorithm (Table S7). FAS was

identified as a relevant target of genomic deletions by two

independent algorithms, including GISTIC (Figure S5 and Table

S6) and MutComFocal.

Altogether, these findings identify the disruption of pathways

affecting chromatin modifier functions and resistance to

apoptosis as recurrent lesions common to FL and tFL, and,

thus, presumably occurring early during the initial clonal expan-

sion of the putative precursor clone.

Genetic Lesions Specifically Associated with tFL
The most common genomic aberration specifically acquired

during progression to tFL was the loss of CDKN2A/B, two tumor

suppressor genes whose protein products (p14-ARF, p16-

INK4A, and p15-INK4B) play major roles as negative regulators

of cell-cycle G1 progression and as stabilizers of the tumor

suppressor p53 (Sherr, 2004). Overall, 46.1% of tFL cases

(n = 18 of 39) carry genomic aberrations affecting these loci,

including 17 CN losses (n = 6 heterozygous and 11 homozygous;

Figure 4A) and a nonsense C72* mutation combined with cnLOH

(Figure S4 and Table S7). Inmost deleted cases (n = 10 of 17), the

loss of genetic material encompassed % 3 genes, identifying a

minimal common region smaller than 10 kb and exquisitely

restricted to the CDKN2A/B locus. Biallelic CDKN2A/B alter-

ations were never present at FL diagnosis, indicating a specific

role during transformation (Figure 4B).

The loss of CDKN2A/B may impinge on different biological

programs, including DNA damage responses (via the p14-ARF/

p53 pathway) and cell-cycle regulation (via the RB/p16 tumor-

suppressive pathway). As expected, immunohistochemical

staining for p16 expression confirmed its complete loss in the

neoplastic lymphocytes of all biallelically deleted tFL cases

http://www.broadinstitute.org/igv


Figure 5. Recurrent Genetic Lesions of MYC in tFL

(A) GISTIC analysis of CN gains in FL and tFL cases (see also Figure S5).

(B) Percentage of cases carrying genetic lesions of MYC in FL and tFL.

(C) FISH analysis with a MYC break-apart probe in tFL #40.

(D) IHC analysis of MYC expression in the pre- and posttransformation biopsy of the same patient.
(n = 8 of 8); however, two of three monoallelically deleted cases

and a significant proportion of wild-type (WT) tFL cases (n = 5 of

15 [33.3%]) were also p16-negative (data not shown), suggesting

the involvement of epigenetic mechanisms of inactivation.

Although the limited number of cases prevents statistical anal-

ysis, CDKN2A/B biallelic lesions tend to be mutually exclusive

with biallelic deletions and/or mutations of TP53, observed in

7 of 39 tFL cases (17.9%) but absent at FL diagnosis (n = 3

informative cases; Figure 4C). These observations suggest that

CDKN2A/B lossmay contribute to FL transformation by affecting

both cell-cycle regulation and p53-dependent DNA damage

responses, thus promoting genomic instability. Consistent with

this hypothesis, patients exhibiting dysregulation of the ARF/

p53 axis via biallelic alterations of CDKN2A/B and/or TP53

were characterized by a significantly higher number of CNAs in

comparison to patients that harbor WT alleles (average n =

45.0 versus 20.5, Mann Whitney U test, p = 0.03; Figure 4D).

Genetic lesions deregulating MYC, namely chromosomal

translocations (n = 6 of 24 tFL cases with available FISH data

[25.0%]), copy-number gains and/or amplifications (n = 13 of

39 [33.3%]), and point mutations reflecting the activity of

ASHM (Figures 5 and S4 and Table S7) were the second most

common tFL-specific lesions. Although low copy-number gains

could be occasionally observed in the original FL biopsy, high

CN amplifications, translocations, and point mutations were
C

either completely absent (n = 13 cases) or only detected in a

minor subclone within the dominant FL population (patient #8).

Deregulated MYC oncogenic activity may provide multiple

advantages to the cancer cell through its pleiotropic function in

cell growth, metabolism, and genetic instability.

Also enriched at transformation were biallelic mutations and/

or deletions encompassing B2M (n = 5 of 39) and CD58 (n = 2

of 39), two genes involved in the control of immune recognition

by cytotoxic T lymphocytes and natural killer cells, respectively,

and previously shown to be recurrently inactivated in de novo

DLBCL (Challa-Malladi et al., 2011) (Figures 3 and S4 and Tables

S6 and S7).B2M genomic aberrations were specifically acquired

or selected at transformation (n = 3 informative cases) and,

accordingly, B2M as well as CD58 were not mutated in 23 unse-

lected FL exomes analyzed, implicating escape from immune

surveillance as a contributor to the transformation process.

Finally, multiple point mutations, small deletions, and duplica-

tions were identified in the 50 sequences of several recognized

ASHM target genes, including PIM1, PAX5, RhoH/TTF, MYC,

BCL7A, CIITA, and SOCS1 (overall, 34 of 39 cases [87.1%];

Figure 6). These lesions display typical features of AID-mediated

activity (Figure S7) and, depending on the genomic configuration

of the involved locus, were variably distributed in coding and/or

noncoding sequences. These changes were not detected in

the pretransformation biopsy, indicating that they had been
ell Reports 6, 130–140, January 16, 2014 ª2014 The Authors 135



Figure 6. ASHM Is Associated with Trans-

formation

Proportion of cases harboring mutations in known

ASHM targets; the BCL6 intron 1 region, a

physiologic target of SHM in GC B cells, and the

BCL2 sequences, which accumulate mutations in

translocated alleles under the influence of the

juxtaposed IGH promoter, are shown as controls.

The three mutated FL cases harbored one single

event each.
specifically acquired or selected at transformation (Figure 6).

These data point to a malfunction of SHM occurring late in the

disease, although the prolonged exposure of the precursor cell

to the potentially deleterious environment of the GC reaction

may also favor the accumulation of lesions.

Non-Phase-Specific Lesions
A number of genetic alterations were variably observed as

shared or phase-specific events, suggesting heterogeneous

contributions to disease pathogenesis. Consistent with previous

reports (Lossos and Gascoyne, 2011), TNFRSF14, encoding for

a member of the TNF receptor superfamily that signals to T cells

with stimulatory or inhibitory effects depending on the ligand,

was disrupted in 22 of 39 tFL (56.4%) and 9 of 17 FL cases

(52.9%) due to a combination of truncating mutations (n = 14,

distributed in 11 tFL and 3 FL cases), genomic deletions (n =

15 tFL and 6 FL cases), and cnLOH (n = 4 tFL cases and 1 FL

case; Figure S4 and Table S7). Importantly, all mutated tFL cases

had lost the residual WT allele because of deletion or cnLOH.

Although multiple other candidate genes are encompassed by

the large heterozygous deletions affecting chromosomal

region 1p36.31, this typical pattern of biallelic inactivation docu-

mented the specific involvement of TNFRSF14 in these lesions

(Figure S4).

STAT6, a DNA binding transcription factor implicated in IL4

and IL13-mediated responses, was the target of heterozygous

somatic point mutations in 9 of 39 (23.1%) tFL cases. Analysis

of the diagnostic FL biopsy revealed the presence of the same

mutation in three of five available cases, whereas the remaining

two had acquired this lesion at transformation; STAT6mutations

were observed in unselected FL cases (1 of 23 [4.3%]), consis-

tent with a role in both disease phases. Notably, all STAT6muta-

tions cluster within the protein DNA binding domain, identifying a

mutational hotspot of possible functional relevance at residue

D419, which was substituted to G (four cases), H (one case),

and Y (one case; Figure S4 and Table S7), as previously reported

in primary mediastinal B cell lymphoma (Ritz et al., 2009).

Several genes encoding for core histones were also frequently

mutated in both tFL (n = 11 of 39 [28.2%]) and FL (n = 6 of 12

[50%]) cases, HIST1H1E being the most common target (n = 7

of 39 tFL [17.9%], 2 of 12 FL, [16.6%], and 2 of 23 unse-

lected FL cases [8.7%]; Tables S5 and S7). In addition, > 10%
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of tFL cases harbored loss-of-function

(nonsense and frameshift) mutations dis-

rupting the ARID1A (n = 7 of 39 [17.9%])

and ARID1B (n = 1 of 39 [2.6%]) genes,
two components of the SWI-SNF chromatin remodeling com-

plex, which was recently shown to take part in maintaining the

pluripotency of stem cells as well as in reprogramming somatic

cells (Ho et al., 2009).

Finally, a number of recurrent lesions are expected to interfere

with signaling pathways that are triggered in response to

engagement of the BCR or CXCR4 receptors; these include

oncogenic mutations of CARD11 and CD79B (4 of 39 tFL

[10.3%] and 3 of 39 tFL cases [7.7%], respectively), alterations

in negative and positive regulators of NF-kB (TNFAIP3, bialleli-

cally lost in 6 of 39 tFL cases, and TRAF2- and Nck-interacting

kinase [TNIK], mutated in 4 of 39 cases), truncating mutations

of GNA13 (n = 8 of 39 tFL [20.5%] versus 1 of 23 unselected

FL cases [4.3%]), and point mutations of FOXO1 (n = 6 of 39

tFL [15.4%] versus 0 of 23 unselected FL cases; Tables S5 and

S7); deregulation of the latter two genes may impinge on the

PI3K pathway as well as RhoGTPase responses, and has been

observed in de novo DLBCL (Morin et al., 2013; Trinh et al.,

2013). Altogether, these results point to several signaling path-

ways that are recurrently dysregulated in FL and/or tFL, although

their individual contribution is not specifically restricted to a

discrete phase of disease pathogenesis (see the Discussion).

The Genomic Landscape of tFL Is Unique But More
Related to GCB-DLBCL
In order to determine whether tFL and de novo DLBCL represent

pathogenically different diseases, we compared the genomic

profile of the 39 tFL cases to that of 102 de novo DLBCL cases

representative of the two major molecular subtypes; i.e., GCB

and activated B cell (ABC) DLBCL (Alizadeh et al., 2000). When

analyzed by unsupervised hierarchical clustering with the fre-

quency of aberrations at 34 informative targets, tFL appears to

be closer to GCB- than ABC-DLBCL (see the Experimental Pro-

cedures). Common features of the two diseases include the

presence of BCL2 rearrangements, REL amplifications, EZH2,

GNA13, and TNFRSF14mutations (Morin et al., 2010, 2011; Pas-

qualucci et al., 2011b) along with the absence of typical ABC-

DLBCL-specific aberrations (MYD88 mutations and PRDM1

inactivation) (Mandelbaum et al., 2010; Morin et al., 2013; Ngo

et al., 2011; Pasqualucci et al., 2006) (Figure 7). However, unique

combinations of genetic lesions were found in tFL, which

are otherwise never observed in GCB-DLBCL (e.g., biallelic



Figure 7. tFL Displays a Unique Genomic

Profile that Partially Overlaps with GCB-

DLBCL

Percentage of cases carrying the indicated genetic

lesions in de novo DLBCL (top: green bars, GCB-

DLBCL; n = 50; red bars, ABC-DLBCL; n = 52) and

tFL (bottom: black bars; n = 39). Asterisks indicate

statistically significant differences (one-tailed

Fisher’s exact test; *p < 0.05, **p < 0.01). Mutation

frequencies for SGK1 andGNA13 are derived from

Morin et al., 2011. M, mutation (missense, non-

sense, frameshift, and splice-site); D, deletion; G,

gain; AMP, amplification; M/D*, biallelic inactiva-

tion; Tx, translocation; BSE1, binding site in exon 1.
deletions of CDKN2A/B; 28.2% of tFL cases versus 0% of GCB-

DLBCL, p < 0.01). Moreover, tFL tends to be enriched in alter-

ations that are generally less frequent in de novo DLBCL, such

as STAT6 mutations (23.1% versus 2.4%), ARID1A mutations

(17.9% versus 7.2%), and FAS mutations and/or deletions

(33.3% versus 16.7%). Particularly, although observed in both

tFL and de novo DLBCL, aberrations of MLL2, CREBBP, and

BCL2were significantly enriched in cases derived from FL trans-

formation in comparison to GCB-DLBCL (p = 0.02, 0.0006, and

0.0001), suggesting that at least a subset of GCB-DLBCL arises

from the precursor cell postulated by the results described

above. In conclusion, the genome of tFL appears more similar

to GCB-DLBCL but, overall, is unique in comparison to both

subtypes of de novo DLBCL.

DISCUSSION

This study reports a comprehensive characterization of the

coding genome of tFL, an aggressive disease with dismal prog-

nosis, the pathogenesis of which has been incompletely under-

stood so far. Our goal was to take advantage of systematic,

genome-wide approaches in order to address key questions

related to this aggressive condition that have remained unan-

swered or had been previously only studied by examining indi-

vidual genes. These include: (1) tracing the evolutionary history

of the dominant clone during transformation from indolent FL,

(2) providing an assessment of the range and frequency of

genetic aberrations that are associated with this event, (3) iden-

tifying genomic changes as potential genetic drivers of transfor-

mation, and (4) elucidating the relationship between DLBCL

deriving from FL transformation and DLBCL arising de novo.

The first finding of our study is that, although all FL-tFL sample

pairs have a clear clonal relationship, the dominant tFL clone

arises in most patients from a mutated CPC through the acquisi-

tion of independent genetic events, consistent with divergent
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evolution. The existence of this CPC

cannot be physically demonstrated, but

it can be postulated on the basis of the

presence of a set of lesions that are

shared between FL and tFL, and is

consistent with previous studies based

on the analysis of the rearranged Ig genes

(Carlotti et al., 2009) as well as with recent
work on FL progression (Green et al., 2013). Our study does not

address the topography of the tFL clone and/or the intraclonal

architecture of these tumors, which require the backtracking of

tFL-specific lesions in the diagnostic FL sample by ultrahigh

deep sequencing analysis (Ding et al., 2012; Walter et al.,

2012; Welch et al., 2012). Thus, additional studies will be needed

in order to clarify whether the tFL clone temporally developed

after FL diagnosis or whether it can be already detected as

a minor subclone within the FL diagnostic sample. Notably, the

two most prominent programs deregulated in the precursor

clone—epigenetic modifications and resistance to apoptosis—

represent actionable targets, and a number of drugs are already

being tested in the clinic (e.g., BCL2 inhibitors, histone deacety-

lase inhibitors, and EZH2 inhibitors) (Sawas et al., 2011). If these

lesions are essential to the survival of the fully transformed tumor

cells and if the tFL clone is not already present at FL diagnosis,

then the development of combination regimens incorporating

drugs that specifically target this group of alterations in early

stages of FL may lead to the elimination of the precursor clone,

possibly preventing transformation.

Our study reveals that, although the genome of tFL is signifi-

cantly more complex in comparison to FL, no unifying genetic

lesion is selected during transformation to DLBCL. Nonetheless,

the recurrent alteration of genes involved in the control of cell-

cycle progression (CDKN2A/B and MYC) and DNA damage

responses (alternative biallelic loss of TP53 and CDKN2A) sug-

gest that a loss of genetic stability and deregulated proliferation

are critical steps in tFL development. Lesions affectingCDKN2A/

B have been observed in several terminally aggressive lymphoid

malignancies, including relapsed acute lymphoblastic leukemia

(Mullighan et al., 2008), Richter syndrome (Fabbri et al., 2013),

and ABC-DLBCL (Lenz et al., 2008), consistent with a central

role in the acquisition of a more aggressive phenotype. The

existence of tFL cases that lack p16 expression despite being

devoid of CDKN2A genetic lesions suggests an even broader
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involvement of this pathway through alternative epigenetic

mechanisms (e.g., promoter hypermethylation or posttranscrip-

tional modifications). Furthermore, the inactivation of epigenetic

modifiers such as CREBBP/EP300 and MLL2 may also

contribute to the deregulation of cell growth and DNA damage

responses by interfering with p53 acetylation and activation

(Pasqualucci et al., 2011a).

The genomic complexity of tFL appears to be remarkably high

in respect to other hematologic malignancies, as exemplified by

the presence of numerous CNAs and the evidence of ASHM. The

latter may represent a major mechanism for transformation, as

previously suggested for de novo DLBCL (Pasqualucci et al.,

2001). Interestingly, although the physiologic SHM process is

known to operate in FL (Bahler and Levy, 1992), ASHM was

only observed in the dominant clone of tFL, pointing to a disrup-

tion occurring late during evolution to or selection of a more

aggressive disease. Although the analysis presented here did

not uncover any apparent lesions in genes that are directly

involved in SHM, the alteration of histonemarks owing to genetic

lesions in histone modification and chromatin remodeling

enzymes may induce chromatin conformation changes that

favor the accessibility of nonphysiologic genomic target regions

to the AID mutator. Thus, additional studies interrogating the

entire genome as well as the epigenome of this cancer will be

necessary in order to conclusively address this question.

Finally, and consistent with observations obtained by gene

expression profiling, our data highlight tFL as a distinct disease

that, although more similar to GCB-DLBCL, harbors unique

combinations of oncogenic and tumor suppressor lesions in

comparison to de novo DLBCL. Previous studies have sug-

gested that transformation proceeds through two distinct path-

ways: one characterized by a high-proliferation signature, and

a second where T cell and follicular dendritic-associated genes

predominate (Davies et al., 2007; Lossos et al., 2002). We did

not observe statistically significant mutual exclusion between

genetic lesions affecting these two classes of mutated genes

(e.g., MYC and CDKN2A/B versus TNFRSF14 and STAT6).

However, integrated genomic and transcriptional profiling of

larger cohorts of patients will be needed in order to address

this question. The unique tFL genomic landscape, combining

alterations that are specific to GCB- and ABC-DLBCL as well

as lesions that are uncommon in de novo DLBCL, could be

responsible, at least in part, for its poor response to standard

anti-DLBCL regimens. The results herein suggest the potential

usefulness of combining current immunochemotherapeutic reg-

imens that harness the proliferative and genetically unstable

phenotype of tFL with more specific approaches targeting

some of the pathways recurrently altered in tFL, as it could be

the case for CDK4/6 activation deriving from the loss ofCDKN2A

or NF-kB activation deriving from TNFAIP3 deletions and/or

mutations.
EXPERIMENTAL PROCEDURES

Study Panel

A discovery panel of 24 sequential fresh-frozen biopsies (12 pairs) obtained at

FL diagnosis and at transformation to DLBCL (Table S1) and a screening panel

of 27 tFL samples were selected on the basis of the criteria described in the
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Supplemental Information, and were used for WES and SNP6.0 array analysis.

Matched normal DNA was available for 4 of the 12 discovery pairs and was

documented to lack contaminating tumor cells by PCR amplification of the

clonally rearranged tumor-associated Ig genes as well as by SNP array anal-

ysis of the corresponding loci. Using these 12 pairs, we estimate a 99% prob-

ability of detecting mutations that affect genes at 30% prevalence and 93%

probability for genes at 20% prevalence.

Whole-Exome Capture and Next-Generation Sequencing

Purified high-molecular-weight genomic DNA (�3 mg) from the 12 FL and 39

tFL samples (n = 12 from the discovery panel and 27 from the screening panel)

was enriched in protein-coding sequences with the Agilent SureSelect Human

51Mb All Exon v4 Kit (Agilent Technologies) according to the manufacturer’s

protocol. The resulting target-enriched pool was normalized and combined

(four-plex) before high-throughput paired-end (2 3 100 bp) sequencing was

performed on the Illumina HiSeq2000 System at Centrillion Biosciences. The

analysis produced on average 67.5 million passed-filter paired-end reads

per sample (range, 51.7 to 111.6; Table S2). After filtering for duplicate reads

(defined as reads with identical start and orientation), sequences were aligned

to the reference human genome hg19 assembly (GRCh37) with the Burrows-

Wheeler Aligner tool (version 0.5.9). The mean coverage depth (i.e., the

mean number of reads covering the target exome of a haploid reference)

was 80.83 (range, 45.8 to 119.4) with an average of 89.3% of the captured

region covered at >103 (range, 83.8 to 93.4) and 73.9% covered at >303

(range, 53.9 to 84.5; Table S2). Sequence variants, including nucleotide sub-

stitutions and small insertions and/or deletions, were obtained independently

for each tumor and normal sample with the Statistical Algorithm for Variant

Identification (Trifonov et al., 2013b) and were independently validated by con-

ventional Sanger sequencing, as described in the Supplemental Experimental

Procedures.

Dominant Clone Analysis

For the purpose of reconstructing the history of clonal evolution during FL

transformation to DLBCL, we first estimated the percentage of tumor cells in

the biopsy on the basis of the inferred CN value at the clonally rearranged Ig

loci (i.e., the region of intrachromosomal deletional recombination at 14q32,

2p11, and 11q22). Then, the allelic frequency of each SNV was corrected for

the fraction of tumor cells in the biopsy by calculating its expected frequency,

the 95% CIs from its observed frequency, the total depth at the variant posi-

tion, and the tumor content of the sample, assuming a binomial distribution.

Mutations were classified as clonal if the fraction of variant reads (upon

correction for the percentage of tumor cells in the specimen) was > 20 and

were classified as subclonal otherwise. Because this analysis focuses on the

history of the dominant tumor clone, only SNVs that were clonally represented

in at least one disease phase were considered. Then, SNVs were assigned to

one of the following three categories: (1) shared mutations (i.e., mutations that

are detected in the major clone of both diseases phases), (2) FL-specific mu-

tations (i.e., mutations present in the major clone of the FL phase and either

completely absent or present at subclonal levels in the paired tFL specimen,

provided the difference in the corrected frequencies between the two phases

was statistically significant at p < 0.05 [as explained below] and after excluding

that its absence in the paired tFL specimen was not due to CN loss or cnLOH

involving the same genomic region), and (3) tFL-specific mutations (i.e., muta-

tions present in the major clone of the tFL phase and absent or subclonal in the

FL biopsy provided the difference in the corrected frequencies between the

two phases was statistically significant at p < 0.05 and could not be explained

by CN loss or cnLOH in the latter). To assess whether the difference in fre-

quencies between the two phases was significant, we considered a binomial

distribution and calculated the probability of observing the variant in the pre-

transformation (or posttransformation) phase, given the coverage depth at

that position, the observed frequency of variant reads in the paired sample,

and the estimated tumor content of the samples. WES and SNP6.0 analysis

were used to exclude that the absence of FL-specific SNVs in the longitudinal

tFL biopsy was due to recombination events, such as CN losses or cnLOH

affecting the same region; the few mutations belonging to this category were

conservatively classified as ‘‘shared’’ (in cases with paired normal DNA) or

were excluded (in cases without paired normal DNA). Mutations that were



clonally represented in the tFL phase but could be detected in a small fraction

of reads in the FL phase (with p < 0.05) were defined as DLBCL-specific, given

that they most likely reflect a pre-existing smaller clone within the FL major

clone, whereas mutations that were clonally represented in the FL phase but

were also detected in a small fraction of the tFL population (with p < 0.05)

were considered as FL-specific, given that they may reflect residual FL cells

amidst the DLBCL clone, which were not selected during progression and

expansion.

High-Density SNP Array Analysis, Sequencing Analysis of ASHM

Target Genes, FISH, and Immunohistochemistry Analysis

High-density SNP array analysis, sequencing analysis of ASHM target genes,

FISH, and immunohistochemistry analysis were all performed as previously

described, and their detailed protocols can be found in the Supplemental

Information.
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