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Abstract

This article studies the inverse problem of the calculus of variations for the special case of the geodesic flow asso-
ciated to the canonical symmetric bi-invariant connection of a Lie group. Necessary background on the differential
geometric structure of the tangent bundle of a manifold as well as the Fréhlicher—Nijenhuis theory of derivations is
introduced briefly. The first obstructions to the inverse problem are considered in general and then as they appear
in the special case of the Lie group connection. Thereafter, higher order obstructions are studied in a way that is
impossible in general. As a result a new algebraic condition on the variational multiplier is derived, that involves
the Nijenhuis torsion of the Jacobi endomorphism. The Euclidean group of the plane is considered as a working ex-
ample of the theory and it is shown that the geodesic system is variational by applying the Cartan—Kahler theorem.
The same system is then reconsidered locally and a closed form solution for the variational multiplier is obtained.
Finally some more examples are considered that point up the strengths and weaknesses of the theory.
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1. Introduction

On a Lie groupG there are three kinds of natural linear connection: the plus, minus and zero con-
nections introduced first by E. Cartan and J.A. Scho{8gnThe plus and minus connections arise from
the fact that any two tangent spacegianay be “connected” by means of a unique left or right trans-
lation, respectively. A simple way to define these connections is to give their values on left-invariant
vector-fieldsX, Y by

VY =[X,Y], VyY =0,

and extend them to arbitrary vector fields by making them tensorial ikthegument and satisfy the
Leibniz rule in theY argument. It is easy to show that the curvature tensors of the minus and plus
connections are zero, indeed that is exactly what the structure equations of the Lie algebra say, but ir
general, the corresponding torsion tensors are non-vanishing. In this article we shall be interested in the
zero connection whose parallel transport rule is more complicated than the other two. Nonetheless its
value on left invariant vector fields is given simply by

0. 1
VRY = JIX. Y]

Clearly V° has zero torsion but its curvature tensor is not zero in general; however, we shall prove that
its curvature tensor is parallel. Thakis in a sense a symmetric space with respedftoAll three of
the canonical connections have the same geodesics.

This paper is concerned with investigating the inverse problem of Lagrangian dynamics for the geo-
desic flow associated t&° which henceforth shall be denoted simply Byand referred to as the
canonical symmetric, linear connection. Thus we wish to be able to decide if there exists a Lagrangian
function E defined on an open subset of the tangent buidlewhose Euler—Lagrange equations coin-
cide with the geodesics of and to a lesser extent to describe all possible such Lagrangians, or more
realistically, their Hessians. An easy computation shows that the curvatitésof

1
R(X,Y)Z = Z[Z’ (X, Y], (1)

whereX, Y and Z are arbitrary vector fields. Other important properties/athat we shall discuss in
Sectionl are that every left or right invariant vector field is an affine collineation and dually every left
or right invariant one-form gives a first integral of the geodesics when thought of as a linear function
on T'G. Furthermore its Ricci tensak;; is symmetric and since the curvature tensor is paraRgl,
gives a partial, that is possibly degenerate, quadratic Lagrangian function. IRgeiscessentially just
the left or right translation of the Killing form and s&; is non-degenerate precisely whénis semi-
simple. In that case i€ is compact it is a Riemannian type Il symmetric space or more generally, if
non-compact, a pseudo-Riemannian symmetric siddjelt should be noted, however, that it is possible
for an indefinite metric Lagrangian to be associate® teven if G is not semi-simple or flat. As regards
the inverse problem whel@ is not semi-simple, the only results are as far as we aware are gijéd by
where the inverse problem for the cases of Lie groups up through dimension three is solved by lengthy
local coordinate calculations.

In this present paper we will concentrate on the higher dimensional case and in the main part (Sec-
tion 5) we push the computation as far as is reasonably possible in the generic case. In®@eetcm-
sider the example of the Euclidean group AS™d compute explicitly the integrability conditions found
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in Section5. We also prove that AS{s variational and use it as a worked example to explain the theory.
In Section7 we approach the inverse problem form the point of view of the Helmholtz conditions and
give some examples that are intended to illuminate the theory. In particular we give a concrete solution to
the inverse problem for the Euclidean group of the plane A&early the Lie group problem becomes
very much more difficult as the dimension of the group increases. Therefore it is profitable to have both
the theoretical Spencer approach and coordinate formulations of S&csemilable. For example the
case of the higher dimensional Euclidean groups is altogether more complicated with the involution tests
running into dimensions in the hundreds. The coordinate version is also very difficult, not least because
there is a semi-simple part. The inverse problem for Lie groups of dimension two and three has been ad-
dressed in14]. In dimension four for indecomposable Lie algebras all algebras are solvable and the same
is almost true in dimension five where only the Lie algebra of the special affine group is not solvable.

In this paper the Frolicher—Nijenhuis theory of derivations of the exterior algebra of differential forms
A(M) on a smooth manifold/ is used extensively. The reader may congjlior [9] for further details
but we mention here that there are two basic types of derivations from which all others are obtained. The
first kind of derivation, “of typ&.”, is purely algebraic and involves an interior product of a vector field
by a form or more generally a vector-valued form by a formL Ibelongs to the space of vector fields
X(M) on M andw is ak-form theni, w is the standard interior product. If, howeveris a vector-valued
[-form theni w is ak + [ — 1 vector-valued form. The second kind of derivationtafM), “of type d..”,
involves the exterior derivativé. If again L € X(M) andw is ak-form thend, w is the Lie derivative of
o by L. If, however,L is a vector-valued-form thend, w is ak + [-vector-valued form. The action of
irw andd o are determined by their effect on forms of degree one and zero, respectively and the fact
that they act as derivations. If is a vector-valued form or endomorphism field ahds a function then
dy f is simply the value of. applied todf. In factd, is the graded commutator of the derivatians
andd. Another useful fact is that, in the case whérés non-singulard; - d; vanishes if and only if
the Nijenhuis torsion of is zero. Indeed, ifK and L are vector-valued forms of degréeand! it is
possible to show that the commutafdk, d; ] is again a derivation of typé, and therefore there exists
a vector-valued forniK, L] of degreek + [ — 1 such that

ldi,di]l =dik 1)

The other formalism which is employed is the Spencer—Goldschmidt theory of over-determined sys-
tems of partial differential equations. The reader may find more detajB ifor example. In order to
make the paper intelligible we have found it useful to summarize some of the theory develdpgd in
In particular the word “spray” below is synonymous with “second order vector field” although the only
systems that we shall ever consider are the geodesics of a linear connection for which some authors re-
serve the term “spray”. Finally the summation convention on repeated indices applies unless the contrary
is stated.

2. Properties of the canonical connection

Let E,, denote a basis for the left invariant vector fields@nThen the structure constan§, of the
Lie algebrag are defined by

[Eq. Egl=CLE,. (2)
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Following the conventions ofl0] a left invariant vector field associated to an elem&nin 7,G is
denoted b)f(; that is,f((x) = L,. X, wherex ande denote a typical and identity group elements, respec-
tively, and L, denotes left translation. Likewise usiigy for right translation the right invariant vector
field induced byX is denoted byX #® so thatX *®) = R, X.

Lemma2.1. In the definition oV one can equally use right invariant vector fields instead of left invariant
vector fields.

Proof. Let E; be a basis for the Lie algebra 6f, that isT,G. According to the conventions introduced
above and letting denote a generic elementGf there must exist a matrix of functiorfs; (x) such that

Ef = fu()Ey. (3)
If we calculate the quantltWERmE ¥ — HE™, ET™] using the definition o and the Koszul ax-
ioms, we find that it is zero if and only if
fiEcfiDEr + fi(Ei fu) Ex =0, 4)

where the poink in the group has been suppressed. If we interchara®d/ in the second term above
we find that the latter condition is equivalent to
fix(Exfi) + fix(Ex fi) = 0. (5)
Starting from the condition above that relates left and right invariant fields and using the fact that the
left invariant £, and right invariant vector fleIdER(x) commute we find that
Elfik + fimclm =0. (6)

However, because of the skew-symmetrgfy) the latter condition implies) and hence in the definition
of V we can equally use right invariant vector fieldsa

Corollary 2.2. V is right invariant and hence bi-invariant.

Clearly the curvature tensor (on left invariant vector fields) is givenBy FurthermoreG is a
symmetric space in the sense tlRais a parallel tensor field. Indeed suppose thatX, Y and Z are
left-invariant vector fields. Then froifi) and(2) we have that

AVyR(X,Y)Z=1/2[W,[Z,[X.Y]]] —4R(VwX,Y)Z — 4R(X,VwY)Z — 4R(X,Y)Vy Z
=1/2[W,[Z,[X,Y1]] - [Z.[VwX. Y]] = [Z,[X, VwY]] - [VWZ.[X, Y]]
=1/2[W,[Z,[X, Y]] - 1/2[Z,[[W, X]. Y]]
—1/2[ [X, [W, Y]] — 1/2[[W, Z],[X, Y]]
=1/2([z, (W, X, Y] - [Z, (W, X1, Y]] - [Z, [X, [W, YT1])
=0.
It follows from (3) that V is flat if and only if the Lie algebrg of G is nilpotent of order two. Clearly

left and right invariant vector fields are auto-parallel. Hence the geodesicsaoé translates either to
the right or left of one-parameter subgroupsafthat is of the formx (exp(z X)) or (exp(r X))x, where
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X andx are ing andG, respectively. The Ricci tensd,s of V is symmetric and bi-invariant. In fact, in
the basig E, } of left invariant vector fields the Ricci tens& is given by

1
Ralg = Z Cguch (7)

from which the symmetry oR,s becomes apparent. Indeekl,s is obtained by translating to the left or
right one quarter of the Killing form. Sincegﬂy is a parallel tensor field anil,z is symmetric, it follows
that Ricci gives rise to a quadratic Lagrangian which may, however, not be regutars Ifemi-simple
then the Killing form provides a bi-invariant metric whose Levi-Civita connectiovi.i§or this reason,
in what follows it will usually be assumed thé&tis not semi-simple.
We remind the reader that a one-fowpdx® on G gives rise to a functiom, y* on T G, that is linear
in the fibres, wheréx®) is a system of local coordinates 6éhand (x*, y*) the induced system ofiG.
Conversely any such linear function gives rise to a one-form and this construction is a general feature of
second order systems and in no way depends on the group structGre on

Proposition 2.3. Any left or right invariant one-form o gives rise to a linear first integral off G.

Proof. Letw be a one-form oi; that is left-invariant and leX andY be left-invariant vector fields. The
function (Y, w) is left invariant and so is constant. Hence

XY, w)=(VxY,w)+ (Y, Vxw) =0. (8)
Now interchangeX andY and add the resulting equations and use the definitioh. @ne finds that
(X, Vyw) + (¥, Vxw) = 0. )

Since the last condition is tensorial ¥1andY it follows that w satisfies Killing’s equation and hence
gives afirstintegral o G. O

Alternatively just notice that since a left or right invariant vector field is a geodesic field, a left or right
invariant one- form, respectively, must be constant along the geodesic.

Proposition 2.4. Consider the following conditions for a one-fornon G:

() wis left-invariant and closed.
(i) w is right-invariant and closed.
(iii) w is bi-invariant.
(iv) wis parallel.

Then we have the following implicatian@ii) implies(i); (iii) implies(ii); each of (i), (i) or (iii) im-
plies(iv).

Proof. (i) implies (iv): The fact thatw is closed implies that for any two vector fields and Y, in
particular right invariant ones, that
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On the other hand according Ryoposition 2.3
(X, Vyw) + (¥, Vxw) = 0. (11)

Hencew is parallel.

The proof that (i) implies (iv) is similar to the proof that (i) implies (iv).

(iii) implies (i): A lemma of Helgasorj10] states that if a one-form is bi-invariant then it is closed.
Hence we are reduced to proving that (i) implies (iv), which has already been dane.

We note next that any left-invariant vector field will be a “Killing vector field” or affine collineation of
V, that is to say an infinitesimal symmetry Ut Indeed ifX andY are also left-invariant one finds that
the Lie derivative ofV alongZ is given by

(LzV)xY =[Z,VxY]—Vizx)Y — VxI[Z,Y]
1

=iz x]+[ix, 21 Y]+ [X. v, 1]
=0

because of the Jacobi identity. The same argument applies equally to right-invariant vector fields. Hence:

Proposition 2.5. Every left or right invariant vector field ot is an infinitesimal symmetry &f.

3. Connections, covariant differentials, L agrangians

The natural framework of the calculus of variations is the tangent bundle, where one can present the
obstructions to the integrability of the Euler—Lagrange system in an intrinsic and naturg®jvaye
present here the basic objects that play a role in the theory.

If M is a manifoldT M denotes its tangent space anthe natural submersion. Lét TTM — TTM
be the canonical vertical endomorphism aficc X(7 M) the Liouville vector-field: if (x*) is a local
coordinate system oM and(x*, y*) is the induced coordinate system BiM, then

J=dx*® 9 C « 9
=dx -, = - .
ay“ Y ay“

Definition 3.1 [7]. A (non-linear)connectionon M is a tensor field of type (1-1) on T M such that
JI' =J andI'J = —J. The connection is called linear[i€, I'] = 0, andI" is C* on the O section.
If I' is a connection/"? = idyr)y and the eigenspace corresponding to the eigenvalliés the
vertical spacé/,. Then, at any € T M, we have the splitting
T,TM=H,®V,,
whereH, is the eigenspace correspondingttth. The subspac#, is called the horizontal space. In the
sequel we will write

h—lu+F) -—1u r
=3 , v._2 ,
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for thehorizontalandvertical projectors. Locally we have:

] ad ad d
h— ) = —IPx,y)—, hl— ) =0,
0x® 0x® ayF dy“

wherel’? are the coefficients of the connection. If the connection is linear, the coeffidigits y) are
linear iny and one would naturally writg” ny whereFaﬁy are the classical Christoffel components.

Proposition 3.2 [7]. If S is a spray, than :=[J, S] is a connection.

Definition 3.3. The torsion of a connection is the vectorial 2-fornr := [J, ] and the curvature is
R:=—1[h,h].

For every spray, the connection” = [J, S] has zero torsion. Moreover, the vertical distribution is
integrable, and thereforgv X, vY]=0 and so

R(X,Y)=—v[hX,hY].

Every connection” on M determines an almost complex structiteon 7 M which interchanges the
horizontal and the vertical spaces. More precisglis the unique (1-1) tensor field such thaf =k
andFh = —J. In the case whel" = [J, S] we have

F=h[S, h]—J. (12)

In Section4 we have to do a calculation that is crucial for our analysis. It is convenient for that
purpose to introduce the following definition of covariant derivative that enables the standard definition
to be generalized considerably even though we shall not need that generalizati¢d] hBeall first
that if z e TM andr (z) = x, there is a natural isomorphism between the vertical subspacé 7.7 M
andT, M that we denote by,. Indeed the definition of atz is simply the composition ot .., followed

by (&)~

Definition 3.4. Let M a manifold with connection”. Suppose that € X(M) andw € T, M. Then
recalling thatv is vertical projector, theovariant derivativeof z with respect taw is defined by:

Dw(x)Z = Ez(x) (U © Z*(w)) (13)

A vector fieldz € T M along a curvey is calledparallelif D%Z =0.Ageodesiésacurvey :[a,b] > M
such thathi y'=0.

If w,ze X(M), we have locally

Dyz = w® aZﬂ+1“f3(x ) 9 (14)
W= gxa e\t oxP’

J. Douglas introduced a tensor now called the Jacobi endomorphism that plays an essential role in the
theory of the inverse problem of the calculus of variatiptjsIts coordinate-free presentation was given
by J. Klein in[11]:
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Definition 3.5. The Jacobi endomorphisiis the (1-1) tenso® on T M defined by

& :=v-[h,S], (15)
whereh andv are the horizontal and vertical projectors did S] is simply the negative of the Lie
derivative ofi with respect taS.

It is easy to see tha® is semi-basic and

@ =[h,S]+F+J, (16)
whereF is the almost complex structure associatefl'tdhe endomorphism# is related to the curvature
by the formula

1
R = é[J, 1. (17)

Definition 3.6. A Lagrangianis a mapE : TM — R that is smooth on at least an open subset of.
The Lagrangiark is said to beegular if the 2-form

has maximal rank.

The LagrangiarE is regular if and only if de(ta;’fgﬁ) £0.1f E:TM — R is a regular Lagrangian,

then the vector field on T M defined by the equation
is2g =d(E — LcE) (19)
is a spray and the paths Sfare the solutions to

d 0FE oE
=0, a=1...n,

dr 9% 9x©
the Euler-Lagrange equatioft.

Definition 3.7. A spray S is calledvariational if there exists a smooth, regular Lagrangignwhich
satisfieg19), the Euler—-Lagrange equation.
To every Lagrangiark and spray§ a scalar 1-formwy can be associated by
wWE ::ing +d£cE—dE, (20)

which is calledEuler-Lagrangdorm. It is easy to see thaix is semi-basic, and the local expression in
the standard coordinate system®i is

“ OE OFE .
a)E=Z(S< l_)— i)dx’.
i=1 dy dx

Therefore along a curve = x(¢) associated witl$ we have

“(d dE JE .
= S 2 )ay,
Ely ;(dt P ax’) *
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whered/dt denotes the differentiation along So, in order to solve the inverse problem of the cal-
culus of variations for a given spray, we have to look for a regular Lagrangidor which o = 0.

For this purpose we must study the local integrability of the second order partial differential operator
P1:C*(T M) — SecT; called theEuler—Lagrange operatodefined by

P1:=i5ddj +d£c—d. (21)

4. The geometry of Liegroups

In this section we will describe the connection and geometric structures associated to the canonical
covariant derivatiorV of a Lie groupG. Since our goal is to study the inverse problem, it will be very
convenient to suppose thétis a linear Lie group, that is, a subgroup@ilf(», R) for somen.

Let (x) be coordinates oy, (x, y) be the standard associated coordinate systeff@nwWe will also
use the “left-invariant” coordinate&, «) on TG ~ G x g, wherea = (L,-1),y is the Maurer—Cartan
form. The corresponding coordinates B G are(x, o, X, A), that is,

0 0

x,0, X, A)=X— —
o

A
ox +

(x,)

(x,@)
Since the coordinatesand A are left-invariant, we find that left translation by a group elengeinduces
onTTG

0

0
Lo(x,o,X,A)=(gx,0,8X, A)=gX— +A—

ox (ex.) oo
The canonical projection : TG — G is (x,«a) — x, thereforer,.: TTG — TG is given by (x, «, X,

A) — (x,x~1X) and the vertical subspace ¢n o) € TG is

(gx,)

Vi TG :=Kerm, = {(x,@,0,b) | b € g}.
4.1. Horizontal and vertical lifts of left-invariant fields

A vector-fieldX € X(G) can be represented as a mapG — G x g, x — (x, a(x)), wherea(x) € g.
A vector-field X is left-invariant, if and only ifa(x) = a is a constant map.

Let X,Y:G — G x g be two left-invariant vector-field o7/, X :x — (x,a), Y:x — (x,b). The
integral curve ofX passing through a pointe G is L, (exp(t X)) = x(1+ta + éaz +---), and therefore

Y. X (x)= a1y A (exp(tX)).Y
x+ A (X _dt o Lx(exp(tX))—dt o x "
d 1? d
:(x,b,— (x(1+ta+—a2+---),— b)):(x,b,xa,O).
dt|,_g 2 dt|,_g

By the definition ofV, we have

1
(VXY))C == (xv é[av b]) (22)
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so from(13) taking D = V we obtain that

1 1 0
v(x,b,xa,0)=|x,b,0, =[a,b] )| ==[a, b]— , (23)
2 2 oo (.b)
and
1 0 1 0
h(x,b,xa,00={x,b,xa,—=[a,b] | =xa— — —[a, b]— (24)
2 0X | (x.p) 2 A | p)
Therefore the horizontal and vertical lifts of a left-invariant vector-fi€le- (x, a) are
1 0 1 0
X?xa)zh(x,a,xa,O)z x,a,xa,—=[a,a] | =xa— — —la,a]— ,
’ 2 0X |ray 2 Lo P

XU

(x,)

0
= JXZW) =,,0,a)=a—

We remark that at each poiat, «) of TG, the horizontal subspadé,, ., associated t¥ is the average
of the horizontal space determined ¥y andVv+.

4.2. The spray and the geodesics

Second order differential equations are described by vector-fiabiis?’ G that have the characteristic
propertyJ S = C. In the local coordinate systetw, «), S is a spray if and only if it has the local form
Sty = (x, a, xet, f), that is,

d

Str.a) = X0t —
(xe) 0x

for some functions = ().

The sprays associated to the connectidhcan be computed &= 1S, whereS is an arbitrary spray
on G. It, like any spray, has the characteristic property that the projection of its integral curves are the
geodesics with respect to the associated covariant derivatilre order to computes we can choose for
S simply the spray corresponding to the functiofis- 0, and we find that

- 1
S=hS=h(x,a,xa,0) = <x,a,xa, E[(x,a]) =(x,a,xa,0),

that is,S andS coincide. The equation of the geodesicsjs= y, wherey = x, is a path onG. Its first
and second derivatives age= (x;, «;) andy = (x, a, xa, &) = (x, o, xa, —x " Lix~1x 4+ x~1¥), since
a = x~1x. Therefore the spray correspondingvas encoded in the system

1%, (25)

Of course to obtain the spray proper, one has to select a certain number of independent coordinates in th
matrix x.

In order to solve the inverse problem we have to find necessary and sufficient conditions for a spray to
be the Euler-Lagrange equations of a regular Lagrangian function. In practice we must obtain conditions
that will ensure integrability of an over-determined system of partial differential equations. The first

X=xx"
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compatibility conditions are determined by the curvature teiahe Jacobi endomorphisth and a
double hierarchy of tensors obtained from them by recurgigdi13] In this section we will examine
them in the case of a Lie group.

4.3. The curvature

The curvaturer of a connection™ is described by the Nijenhuis torsion of the associated horizontal
projection:R := —%[h, h]. Let us computeR(X", Y"), where thex” andY" are horizontal lifts of the
left-invariant vector fieldsX = (x, a) andY = (x, b). Using the formula

dla, N] 0

M —

Ja  Ju

whereN denotes a constant matrix, we obtain

=[M, N] !
- ’ 80{’

5 1 8 8 1 3
Xt Y = | xa— — Zla,al—, xb— — Z[b, a]—
[ ] [max pla-alyy oy =3l “]aa]

Ja 1 a
= x|a, b]a + Z([[(x,a], b] — [[a, b], a])a

0 1 0 1
= x[a, b]a_x + Z[a, [a, b]]a_a =|x,a, xla,bl], Z[a, [a, b]] .

Now, using(23) we find that
Ruoy (X", Y = —%[h,h](X"‘, Yh =—v[X", ¥"]
1 1
= _<xa o, 09 E[[aa b]v Ol] + Z[aa [Cl, b]])
1 v
= x7aaoa_[aa [aab]] =R (X7 Y’a)vv

4

that is, roughly speaking the curvatuke, ., as defined above is the vertical lift of the usual curvature
RY associated t&.

4.4. The Jacobi endomorphism

Let @ be the Jacobi endomorphisd,:= v o [k, S] andX := (x, a) a left-invariant field. Then

(X" =v xai—}[a Ot]i Xai =v }x[a 0‘]i —}[[a o] O‘]i
o ax 2 aa’ ox | \27 7 Tax/) 4V T T«

and so

& X" =R (o, X, a)".
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4.5. The higher order curvature and Jacobi tensors
The higher order tensors obtained fr&krand® are obtained by induction by means of the following
formulas:
R¥ (X, Y):=v[S, RPIhX,hY), % D(X):=v[S, @P|hX).

(The bracket in the above formula is the Frolicher—Nijenhuis bracket. In the case when the first argument
is a vector-field it means simply the Lie derivative with respect to that vector-field.)
Let X = (x, a) andY = (x, b) left-invariant vector-fields. We have

RYX", Y™ =v([R(X", Y"), S]— R(IX", S1,Y") — R(X", [Y", 51)).

Hence

0 d 0
(X', S]=|la—,xa— | =xa—,
oo ox ax

ox ox 2 ox
so using the fact thak is semi-basic we find

1 0 0 1 0 0 0 1 0
RYX", Y" =v| [a.la,b]] —.,xa— | — R( Sx[a,0]—,xb— )| — R( xa—, =x[b,a] —
( ) v[4[a la ]] do x“ax 2x[a “]ax * ax xaax 2x[ “]ax

h 0 1 0 0 1 0
[X", S]= xa——é[a,a]a—,xa— = —=xla,a]—,
o

1 d 1 a9 1 d
= U(Zx[ol, [a, b]]a) - é[a, [[aa O{], b]@ - é[a’ [Cl, [b’ a]]]a

1 d 1 0 1 ad
= é[[a9 [av [bv a]]]?“]a - é[av [[av a]v b]]% - é[av [av [bv a]]]@

1
= é[a, [la,bl,a] + [[b, o], a] + [[o. al, b]] = 0.

Of course, the higher order tensa®®’ vanish also. Moreover
X" =vo[®, SI(hX") =v[® X", S] — vP[X", S]

— }[[ ] ]i i _@<}[ ]i>
—v[4 a, o], o 8a’xa8x:| 2x a,o ox

—o( 1 ]]8) L.l o], a]-
—U(ZX a,a,aa —g a,a,a,aa
1 3

1 9
- g[[[“’“]’“]»“]a—a - g[[[a,a],a],a]a—a =0

and also, the higher order tens@r&’ vanish.

5. Theinverse problem of the calculus of variationson Lie groups

As we explained at the end of Secti@rin order to solve the inverse problem of the Lagrange dynamics
in the analytic category we have to study the integrability of the Euler—Lagrange differential opg@&rator
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The method consists in principal of deriving successively a number of compatibility conditions and when
no more can be obtained at a certain level, checking if the symbol of the system is involutive. If it is then
the Cartan—Kéhler ensures the existence of a solution. If not then the system must be prolonged and the
entire process started over. According to the Cartan—Kuranishi theorem, the process must terminate at a
finite stage at which point the Cartan—Kéhler theorem is applicable or else the system is incompatible
and there are no solutions. As a comprehensive reference wRaed also9] as it pertains to the
inverse problem. In Sectiorisand 6we shall adopt the following convention so as to ease the notation:
the tangent and cotangent bundlewill be denoted simply byi" andT*. Similarly instead off TG
we shall writeT T .

The computations made [B] or [9] show that the first compatibility condition fa?, is given by the
equation

irQs =0, (26)

where$2 :=dd; E. The geometric meaning of this condition is the followingvifs variational andt is
aregular Lagrangian associated to it, then the horizontal distribution associatedust be Lagrangian
with respect to the symplectic 2-form. If the dimension ofG is greater than one, the above condition
is not satisfied identically. In order to incorporate the condi{@®) we introduce the operator

Pr:C>®(T) — A’T*, Pr(E)=irdd,E, (27)

and define the system®, := (P1, Pr).
We refer to[8] and[9] once again, where the compatibility condition Bf is calculated; namely, a
second order formal solutioB can be lifted into a third order formal solution if and only if the equations

ip2g =0, (28)
ir§2g =0, (29)
hold, where® is the Jacobi endomorphism aRds the curvature introduced in Secti@nThe operator
P, = (P, Pr) is regular and involutive (s€f®]). Therefore in the case where the curvature is zero or
(that is®@ = AJ for some scalar function that in fact must be identically zero in the case of a linear

connection), the system is formally integrable. It is clear from the formula for the curvature given in the
introduction that the canonical connection is flat if and onlg ifs nilpotent of order two. Hence:

Proposition 5.1. The canonical connection of a two-step nilpotent Lie group is variational. In particular
The canonical connection of a commutative Lie group is variational.

If V is non-flat, then Eqs(28) and (29)are not satisfied identically. Therefore we must study the
integrability of the system

is2g +dLcE —dE =0,

ir$2g =0,
ig$2p =0, (30)
iRQE IO,

where$2r :=dd; E. The differential operator corresponding to the sys(8)is

P3:COO(TG) — F3,
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defined by
P3:=(P19PF9P<P7PR)7

whereFz :=T* ® A?’T* @ A’T* @ AT* and
Py :C®(TG) — A?T*, Py(E)=ipdd,E, (31)
Pr:C®(TG)— A3T*, Pr(E)=igdd,E, (32)

are also second order linear differential operators.
The linear partial differential operatdk is of second order. Its symbol is the magi Ps) : S°T* — F3
given by the product of the symbols of the operators out of which it is formed:

02(P3) = 02(P) x 02(Pr) x 02(Pg) X 02(Pg),
where
(02(P1)B)(X) = B(S, J X),
(02(Pr)B)(X,Y)=2(B(hX,JY) — B(hY, JX)),
(02(Ps)B)(X,Y)=B(®X,JY) — B(®Y, JX),
(02(PR)B)(X,Y,Z)=B(R(X,Y),JZ)+ B(R(Y,Z),JX) 4+ B(R(Z,X),JY)
for everyB e S°T*, andX,Y, Z e T.
Remark 5.2. Although the curvature tensa" is constant on the Lie grou@, the rank of the Jacobi

endomorphisn® and the curvature tens®on 7 G can change depending on the poinfi&. Therefore
the differential operatoPs is regular only in a neighborhood of a generic point.

For the symbol of the first prolongatiarn(Ps) of Pz we find thatos(Ps): S3T* — T* ® Fs, where
03(P3) = 03(P) x 03(Pr) x 03(Py) x o3(Pg) and the component maps are

(03(P)B)(X,Y)=B(X,S,JY),
(03(Pr)B)(X,Y,Z)=2(B(X,hY,JZ) — B(X,hZ,JY)),
(03(Ps)B)(X,Y,Z)=B(X,®Y,JZ) — B(X,®Z,JY),

cycl
(03(PR)B)(X.Y.Z, W)=Y B(X.R(Y.Z),JW).
YZw

Let us consider the map: T* ® F3 — K with

T:=1Tr DTo DR D 11,71 D Tor D Tih,0] D 710,01 D 711,01 @ Tr' D Ty, 8] D@ Tin, &) D (o, R)
where the corresponding maps are defined as follows: for every

£:=(B.Cr,Co.DR) eT*@ F3=(T*@T") & (T* ® A’T*) & (T* ® A’T*) & (T* ® A°T™)
we set

(tré)(X,Y):=B(JX,Y)—-B(JY, X),
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(t0€)(X,Y):=B(hX,Y)— B(hY, X)— %CF(S, X,Y),

(RE)X, Y, Z2):=Cr(hX,Y,Z)+ Cr(hY,Z,X)+Cr(hZ,X,Y),
(‘L’[‘]"]]S)(X, Y, Z) = CF(JX, Y, Z) +C1“(]Y, Z,X) +C1“(]Z,X, Y),
(te&)(X,Y) =B(@X,Y)— B(®Y, X)) —Cos(S,X,Y),

cyc cyc
X,Y, 7Z):= Co(hX,Y, Z)— = Cr(®X,Y, 2),
(Tih.018)( ) );Z o ) 2;2 r( )

cyc

(To.01)(X, Y, Z) := Y Co(PX, Y, Z),
XYZ
cyc
(.08 (X, Y, 2) =Y Co(JX,Y, Z),
XYz
cyc
(tr€)(X.Y.Z):= Y B(R(X,Y), W) — Cp(S. X, Y, W),
XYZzZ
cyc
(. rE)X, Y, Z, W)=Y Cr(JX,Y, Z, W),
XYZzZ
cyc

(T, mE) (X, Y, Z,W):= Y Cr(hX,Y,Z, W),

XYZ
cyc cyc
(To.riE) (X, Y. Z, W)=Y Co(R(X,Y), Z, W)= Y Cr(PX.Y,Z,W).
XYz XYz

A simple computation shows that bg(Ps) C Kert. Taking an arbitrary linear connectidghon 7 G we
can compute the map:=t o D o po(P3) defined on the space of second order solutionBsoft gives
compatibility conditions onPs (cf. [2,9]).

Remark 5.3. The mapr is “universal”, in the sense that it has the smallest kernel that can be constructed
in the general situation without imposing any restriction(n

Itis not difficult to show that ifE is a second order solution &% at a pointv € TG, that is,P3E (v) =
0, then

(PE)y = (iI‘QEa io82p, iRS2E, i7,.182E, i0'2E, i1h,0152E .
I[0.0182E, 11,0152, iR $2E, i17.0)2E, [, R)1S2E i[zp,R]-QE),
and the new conditions that permit a second order soluiom be lifted to a third order solution are:

i@l(l)E = O, (33)
ingE = O, (34)
i r1$2e =0, (35)

ir.r1S2 =0, (36)
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i RS2 =0, (37)
itho125 =0, (38)
i, 7182 =0, (39)
i0,012 = 0. (40)

Egs.(33) and (34hold since all derivatives ak and® vanish. From the Bianchi identity4, [4, h]] =
0) we have alsdR, R] = 0, and therefore, g2 = 0 andig $2 = 0. For the other compatibility
conditions we have:

[J,R]= —[J, %[h, h]] = [h, [J, h]] =

s0(37) holds. The vectorial 2-fornj:, @] is semi-basic, hencé 1d; E = ijo 112 Also the torsion
= 1[J, I' is zero, sO

[h, ®]1=[h,[h, S]— hlh, S]] =[h, [h, S]] + [h, F + J]

= [h, h, S1] +[h, F1+[h, J1'= —[R, S|+ FR — RA F = R (41)
SinceR' = 0, Eq.(38)is satisfied. Using once again that = 0 we find that

1 1 1
[®, R] = [cp, Sth, h]} = —E[h, [h, ®]] — é[h, [®, h]] = [h,[®,h]] =[h, R =0.

and(39) s satisfied.
In order to comput¢40) we remark that ifV is a constant matrix, then

3[[N, x],x] 8 9
M——""""— —([IN, M], N,x],M
o = [NV M1 x|+ [N, X, M]) .
Indeed,
[N, x],x] 3 9 3
M— = NOl ﬂ l ZxotNﬂ ﬂN
dx ax ’3’( pH ﬂ)ak
= M (N{'8]8lxl + NExEs)si — 28185 NExly, — 2xi N5 o)
i o agj ol 0
+8]8LxEN + x¢ SéSﬂNfs)g

k

9
= ([IN, M1, <] + (N, x], M])

Now letX = (x, a) andY = (x, b) be two left-invariant vector fields off andX” andY" their horizontal
lifts. Using the fact thatd is semi-basic we havé o @ = 0 and also since

PIPX", Y (o) = ¢[<x, a,0, %[[a,a], a]), (x, a, xb, %[b,a])}

1 0 o 1 0
=@| - s —,xb— —[b,x]— | =0,
[4[[a,a] a]aa arr + 2[ a]aai|
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we have[®, @1(X", Y = [ X", ®Y"]. Therefore

h oyhy h hy_ 1‘ i } i
(@, P1(X", Y =[0X", @Y = |:4[[a,a],a]aa, 4[[1;,0;],(1]a ]

o
L d

= 1—6([([[[19, al,al,a] = [[la, al,al,b] — [[a, al, [b, a]]), a])a_a
L ad

= E([@(b),a], a] = [[@(a), b, a] —[[la, al. [b, a1, a])ﬁ

= liG(R((p(Xh)9 Yha C() - R(¢(Yh), Xh’ Ol) _|_ R([Xh, a]’ [Yh, C(], O{))%

In the generic case the vectorial 2-fofh, @] is not linearly related t&® and® and therefore Eq40)
represents potentially a new compatibility condition for the system. As we will see in the next section, a
nontrivial example where this condition is identically satisfied is given by ASla& group of Euclidean
transformations oR”.

6. Worked example: The Euclidean group

In this section we shall apply the theory developed in the previous sections to the Euclidean group
ASQO, of R", that is, the group generated by all rotations and translations. It consists of maps of the form:
R" — R"
X Ax +t

whereA € SQ(n) is a rotation matrix. We represent AS@s a matrix Lie group, in fact as a subgroup of
GL(# + 1, R) by

ASO, = {(6‘ tl) ‘teR”, Aesqn)},

and the action ofR” is given as a matrix action when we write an elemeriRbfisx =" (x1, ..., x", 1).
Therefore the Lie algebra of AS@an be represented as

aso, = {(Ag 6) ‘teR”, Meso(n)}.

The systenB :={E; ;, Ex | j <1, i, j,k=1...n} give us a basis ofso,, whereE;; denotes a skew-
symmetric matrix with 1 in theth row and jth column,—1 in the jth row andith column, and O
elsewhere, and; denotes the matrix with 1 in thigh row and(n + 1)th column and O elsewhere. The
bracket relations of the Lie algebra are given by:

[Ei, E;]1=0,
[Eij, Ex] = =6 E; + 8k E;,
[Eij, Eul=0jxEiu+8iuEjx — 81 Eix — 8ixEji.

Let us compute the components of the curvature te®soat a tangent vector = (x, «) € T,ASQO,,
wheree = «™ E,,,, + ¢ E,,. In order to make the computation as simple as possible, we use the notation
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E;j=—E;fori > j. Thus:

Ry(Eij, Exy) = RV(Ejj, Eq,v) = :ZLS/i (" Epi — "™ Ep + o' E — o' E;)
+ 3—-151’ (ozkmEmj — /" E i+l Ey — akEj)
- iai(almEm, — /" Ep + o/ E — o' E))
- j—;r(?l] (ak"’Em,- —o&™E, +a' Ep — ozkEi),

\% 1 k. mi im 1 ko mj im
R,(Eij,E;)=R"(E;;, Ej,v) = Z5j(0l —a'"™E, — Z5i (@™ —a’™)E,,
R,(E;, Ej) = RY(E;, Ej,v) =0.
Remark 6.1. It is not difficult to check that the Nijenhuis bracket of the Jacobi endomorphism is pro-
portional to the curvature; in fa¢tb, @] = %R. Since from the integrability condition83)—(40)only

the last one can be non-trivial, we conclude that all the compatibility conditions found in the previous
section are satisfied.

In the sequel we focus on the three dimensional group A&@ we show:
Theorem 6.2. The canonical connection &S0, is variational.

To prove the theorem we have to examine the integrability of the sy&@)ywhich contains the Euler—
Lagrange equations and its first compatibility conditions. We denotg j»p ande;, the left-invariant
vector-fields on AS@corresponding to the elemeht, E, and E1; of aso,.

Remark 6.3. Let v be an arbitrary vector of ASO, represented a&e, o) in ASO, x asop. From the
formulae of the curvature above we obtain that

R,=wANJ,
wherew, = a12¢'?, ¢*? being the dual one-form correspondingeie.

For this reason the operat®; can be removed fronP; because the equation represented by it is

identically satisfied. Indeed, for every Lagrangi@mnwe have

iRQp =g Rp=wAijdd;E=wAdjdjE=wAdy E=0
becauséJ, J]1= 0. So it is sufficient to consider the operator

Paso, : C*(TASQ,) — Faso,, (42)

where Paso, := (P1, Pr, Pp) and Faso, := T* @ A?T* & A%T*.

Therefore, to prové&heorem 6.2t is sufficient to show that there exists a second order regular solution
for Paso, (Lemma 6.4, and thatPaso, is formally integrable, that is, every second order solution can be
lifted to an infinite order solutionlemmas 6.5 and 6)6
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Lemma 6.4. For everyv # 0 in TASO;, there exists a second order regular formal solutionPigo, -

Proof. Let (x') be a local coordinate system on A§@nd(x’, y') the associated coordinate system on
TASQO; in the neighborhood of. If E is a function onT ASO,, then its second order jet atwill be
denoted by

(2E)y = (X', V', p. Py D)o Pk Piks Pk )

_ __JE __JE _ 9% _ _9%E _ _d%E :
wherep = E(v), andp; = 35, pi = 55, Pij = 5y Pij = a7 Pii = gyma,7 @re the corresponding

derivatives computed at Now (j»E), is a second order regular solution Bfso, atv if and only if

detp,)) #0, (43)

and (P E), =0, (PrE), =0 and(Paso,E), = 0 are satisfied, that is, if we hayé3) and thelinear
system

VY poi + [ Pai — i =0, (44)
pji — Pij + 1 paj — I pai =0, (45)
D pyj — % pai =0, (46)

where f* are the components of the spray anfl are the coefficients of the connectiéh= [J, S].
Computing the Jacobi endomorphisinwith the help of the formula = igR we find that in the basis

B= {eﬁ, eg, S,ef,e5, C}atv = (x, ) the matrix of® is (;, 8) where 0 denotes thex33 zero matrix

and
) 12 0 0
((D/):(O 12 O)
0O 0 O
Now let g be a scalar product df;’ so that the basie}, e;, C} is orthogonal. If(p;;) is the matrix of
g with respect to the bas'{sb%}izl,_,,,,, we find that(43) and(46) are satisfied. Solving the systei@d)

and(45) with respect to the pivot terms; andp;; we arrive at a regular second order formal solution of
PASOZ atv. O

Lemma 6.5. Every second order solution ¢hso, can be lifted into &rd order solution.

Proof. Let TASO, ‘= CrPtAa@T 1 PTa DTna ®Tia.a P 1.4 DP) defined orr'* ® Faso,, where
the mapscr, ta, .71, Ta', Tina), Tia.a) @ndry 4; and corresponding formulas are definedpage 270
and let

(0(B,Cr,Ce))(X,Y):=Co(hX,Y,S) — %cp(x, Y,S) — B(AY, X)

for every (B, Cr,Cqe) € (T* @ T*) & (T* ® A?T*) & (T* ® A%T*) and X,Y € H := (e}, el ): the
space generated by the horizontal lift of the infinitesimal translatéigrade;. It is easy to show that
Imo3(Paso,) = Kertaso,. Therefore, taking an arbitrary linear connectibron 7 M we can compute
the mapy := taso, © D o po(Paso,) defined on the space of second order solutiong;oft gives all the
compatibility conditions ofP; (cf. [9]).
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Using the computation of the previous section andReenark 6.we obtain

9r=(0,0,0,0,0,0,0, p(D Paso,E))
for every second order solutigia(E) of Paso,. Let us compute (D Paso,E): if X, Y € H, then

p(DPaso, E)(X,Y) = X(2£(®Y, S)) — %@Y(ip.QE(X, 8)) — @Y (wp(X))
= XQp(PY,S) —PYQ:(X,S) —dwg(PY, X).
Since
dwg =d(isdd;E +dLcE —dE) =disdd; E = Ls$2p,
we obtain

p(DPaso, E)(X,Y) = Q¢([S, @Y1, X) + 2£(@Y,[S, X]) + Z XQp(®Y,S)
X, ®0Y,S

=dQp(X, Y, S) + 2:([X, PY], S) = 2£([X, Y], )

becausel/2; = d°d, E = 0. ReplacingX andY by the generatore] ande” in the above formula and
using the fact thafte”, ey] =0 we find that av

,o(DPAsozE)(ef’, 67) = .QE([ef', CDeﬂ, S) = .QE([ef', alze}f], S)

h
= (¢ars) 2e(e!. 5) = “;‘1‘212) 2 Q(e!. $) =0,

becauseF being a second order solutiongti 4 2 vanishes o, ASO,. Hence for every second order
solutionE the mapyg is zero and so every second order solution can be lifted into a third order solution.
This proves the lemma. O

Lemma 6.6. The symbol oPaso, is involutive.

Proof. To prove the lemma we have to find a quasi-regular H2s%, that is, a basi¢v;}°_, of T* such
that

6

dimg2(Paso,) + Y diM g2(Paso,)uy...v, = dimga(Paso,), (47)
k=1

where g, (Paso,) = Keroz(Paso,) is the kernel of the symbol aPaso,, g3(Paso,) := Keros(Paso,) IS
the kernel of the symbol of the first prolongation, andPaso,)v,..., := {B € g2(Paso,) | B(vi,.) =0,
i=1...k}.

An easy computation shows that the bgsig®_, satisfies the conditio®7), where

vy i=¢} +C, vpi=eh +el, vz =S+ e},

Vg i=e], Us 1= ey, vg:=C. O
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7. TheHedmholtz conditions and more examples

In the previous two sections we have applied Spencer theory to study the existence of Lagrangians for
the canonical symmetric connection of a Lie group. Spencer theory is probably the best theoretical tool
for establishing existence of such Lagrangians and we have given details for the Euclidean group of the
plane as a means of providing a nice worked example of the theory. It has been known since the work
of Douglas[4] however, in the context of the general inverse problem for second order systems, that an
alternative to studying the Euler—Lagrange operator directly is to work with the Helmholtz conditions.
Indeed apart froniB,9] almost all recent investigations into the inverse problem have proceeded through
the Helmholtz conditions.

The Helmholtz conditions are formulated in terms of “the multiplier” or Hesgjanvhich is related
to the two-form ofDefinition 3.6by

Qp = gapdx® A OP (48)

whered” are the horizontal one-forms of the connection, that/ig, + nyy“ dx”. They consist of in
addition to(28)

dge
d—tﬁ — I )s8yp — ¥ T58ya =0 (49)
and
9gus 084
Sap _ T8ay _ (50)
dyY ayp

Of course the Helmholtz conditions can easily be formulated for general second order systems but
we shall have no need to do so here. Notice {&8) is now to be regarded as an algebraic condition
whereas(49) and (50) are systems of ordinary and partial differential equations, respectively. In the
Helmholtz approach if a non-degenerate solution can be found, the Lagrangian can found by means of
two quadratures and the addition of suitable terms lineaf jthere is no obstruction to the construction
of these terms and the only ambiguity in the Lagrangian is the addition of a total time derivative. It turns
out that(29) arises as an integrability condition so it may as well be appended to the other conditions from
the outset. Now(28) and(29) are linear algebraic conditions that in principle can be solved. Likewise
there is no obstruction to solving9), though it may be difficult to solve them in practice. The hardest
part by far is to solvg50) of which there are in general(’zgl) conditions for amm-dimensional Lie
group. On the other hand if one is interested in finding just a single Lagrangian it may not be necessary
to integrate or analyzg0) in complete generality.

Throughout this article we have assumed that we are given a linear gratiphe outset. However, it
is interesting to observe thé8) and(29) can be solved purely at a Lie algebra level where in differential
geometry one often prefers to start. In fact in some cases one is able to conclude that the multiplier is
singular and hence the canonical connection of any associated Lie group is not variational. If one does
start with amm-dimensional Lie algebrg and the multiplier is not forced to be singular one is then faced
with the problem of finding a local vector field representatio of terms of vector fields oR”, if one
wants to obtain the equations for the geodesicg @dcally. Such a representation is guaranteed by Lie’s
third theorem10].

There is one final general remark that we shall make assuming that we have been able to find a lo-
cal representation for the geodesicsMafOne is at liberty to change coordinates so as to simplify the
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geodesics before solving the Helmhlotz conditions. Again, if only a single Lagrangian is required the
transformation may lead easily to the construction of such a Lagrangian.

We proceed in this final section by considering some special kinds of Lie algebra that occur in the
inverse problem. The results complement the theory of the previous sections.

Example 7.1 (Lie algebras nilpotent of order tWolLet g be a finite dimensional Lie algebra associated
to a Lie groupG. We know that the canonical connection @nis flat if and only if g is nilpotent of
order two andProposition 5.1showed that a Lagrangian exists in this case. We shall now construct one
concretely. The necessary and sufficient conditiongfeo be nilpotent of order two is that C Z(g),
whereg’ = [g, g] is the derived algebra ariflg) denotes the center gf We can introduce a badjs;, ¢}

for g where 1<i < pandp + 1< A <n such that{e;} is a basis foiZ(g). The Lie bracket relations of

g are given by

[e;,e;1=0, [e;,ea]l =0, lea, ep]l = Vi gei,

wherey , = —y; ,. Clearly the Jacobi identity is satisfied because all second order Lie brackets vanish.
We can obtain a faithful local representation fon terms of vector fields ofR” as follows: put

0 0 1. 9

Toxit T gua T 2VABg

If we compute the connection components of the canonical connection we find that they are all zero.
Hence the geodesic equations are given by

¥ =0, = 0.

Clearly thenk := > (dx")? + Y (dw*)? is a Riemannian metric compatible with. However,h is not
bi-invariant because, according[t®], a bi-invariant metric exists on a Lie grodpif and only if G is a
product of compact and abelian Lie groups.

A particular case of two-step nilpotent algebras are the Heisenberg algebfamension 2 + 1
which are characterized by the extra property that the derived algélw@ne-dimensional. There is a
basis{e1, e;, e3, ..., 2,11} such that the only non-zero brackets are given by

€

[epa en+p] = €2+1

for 1 < p < n. Inthis case it is easy to find a group which fgaas its Lie algebra; namely, for algebras
of dimension 2 + 1 the(n + 2) x (n + 2) matrices:

Tl x1 x2 ... X, 2]
0O 1 0 ... 0 »n
0O 0 1 ... 0 y
x=|. . .
0O 0 0 ... 1 vy,
L0 0 O ... 0O 1]

The corresponding system of geodesic equations is given by

=Y Xy, xi=0, y=0 (A<i<n). (51)
j=1
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A metric Lagrangian is given by

n . . 2 n
E= (z—zi(x"y’:y"x")> +3 (24 52).

j=1 j=1

Example 7.2 (The affine group of the plaiheThe affine group of motions d&? is the six-dimensional
subgroup ofGL(3, R) given by

AQ2) = {(é ;) (reRz, A eGL(2,R)},

and the Lie algebra oA (2) is given by

a(2) = {(8 )6) ‘x €R? ac gI(Z,R)}.
When conditiong28) and(29) are imposed one finds that the multiplggy has the following form:

Y5822+ 2y2y3g23+ 3 —y1(y2g22+ ¥3g23)  —y1(y2823 + ¥3g33)
giji=1| —y1(y2822+ y3823) Y2822 ¥2g23
—y1(y2823 + ¥3833) Y2823 ¥2g33

The same conclusion can be reached starting from the Lie algebra{basis es, e4, es, eg} With non-
zero bracket relations:

[e1, eo] = e, [e1, e3] = —e3, [e1, es5] = es, [eo, e3] = e1 — ea, [e2, es] = e2,
[e2, ee] = es, [e3, e4] = —e3, [e3, es] = e, [es, es] = es.

However, it is clear that in this exampgg; is singular and therefore there can be no Lagrangian for the
geodesics, which are given by:

. X4Y1Y5 — X3Y1Ye — XeY2Y5 + X5Y2)6 . X4Y1Y3 — X3Y1Y4 — XeY2Y3 + X5Y2Y4
y1= s Y2 = )
A A
. —x6y§ + X5Y3Y4 + X4Y3Y5 — X3Y4Y5 . —XeYaya+ Xay3Ye + XsyZ — X3yaYe
y3= s Y4 = s
A A
. —XeY3Ys + X5y3ye + x4y§ — X3Y5Y6 . —X6Y4Y5 + X5Y4Y6 + Xay5Ye — xsyg
Y5 = A ) Y6 = A )

where A is the determinantsxs — x3xg. We do not know if a similar conclusion holds for the affine
groupA(n) in general.

Example 7.3 (The Euclidean group of the plap€elo conclude this section we shall revisit the inverse
problem for ASQ, the Euclidean group of the plane. This example was treatgdlrbut we are now in
a position to complete the analysis. The corresponding Lie algebra has theibasis; with non-zero
brackets,

[e1, e3] = —e, [e2, e3] = e1.
As in[14] the geodesics are given by

0=tv, V= —tu, i =0, (52)
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whereu, v andr denotex, y andz, respectively. The connection forénis given by

0 —dz —dy
—20 = {dz 0 dx }
0 0 0
and the curvature two-form is given by

0 0 dxdz
4.Q=|:O 0 dydz:|.

0 0 O
Hence we see that the curvature tensor has essentially only the following non-zero components
1 1
1 2
R313= 4 R3p3= 4 (53)

Conditions(28) and(29) entail thatg;; satisfies the conditions

glquq = nguq = O»

whereu is the 3-vectolu, v, t) and the solution of the ODE conditio®9) imply thatg;; is given by

2u v —tu? 47 12 0 —tu

gij = M[ t%v —t%u 0 i| + P |: 0 # —tv i|
—tw?+v% 0 u(u? + v?) —tu  —tv u?+v?
—12y t2u 0 0 0 O
+N[r% % —mﬁ+v%}+ﬂ{o 0 o]
0 —tW?+v%  vw?+v? 0 0 F
whereH, M, N and P are arbitrary first integrals.
The closure condition0) turn out to be

uM, +vM, +tM, +4M =0, (54)
uN, +vN, +tN; +4N =0, (55)
uP,+vP,+tP,+3P =0, (56)
F, =0, (57)
F,=0, (58)
P,+2N +tN,+uM, — vM, =0, (59)
P,+2M +tM; —uN, + vN, =0. (60)

The closure conditions can be solved by introducing the following first integrads: — y, 8 = 7 + x,

y = COS(z)ut—sin(z)v, 5= Cos(z)v-tl—sin(z)u. Thus
F=F(), (61)
:mim, (62)
NA:’“f;ﬂ), (63)
b (2n +dm,, —yms)B + (2m — én,, + )/I’l,g)Ol’ 64)

13
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wherem, n and F are arbitrary smooth functions. Two simple Lagrangians in this case are given by

2 2
L= s, (65)
2 _ u?)cosz + 2uvsin
[,= YT HICorawsing ., (66)
2t
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