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Abstract

We consider the removability of singular sets for the curvature equations of theHpfm = v,
which is determined by thkth elementary symmetric function, in ardimensional domaiw2. We
prove that, for I< k < n — 1 and a compact sé& whose(n — k)-dimensional Hausdorff measure is
zero, any generalized solution to the curvature equatiof? §rK is always extendable to a general-
ized solution on the whole domain.
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1. Introduction

This paper is a sequel to [27]. We study the removability of singular sets of solutions to
the curvature equations of the form

Hi[u]l = Sk(k1, ..., kn) =Y (1.1)

in 2\ K, whereg2 is a bounded domain iR" and K is a compact set contained §R.
For a functioru € C%(2), k = (k1, ..., k,) denotes the principal curvatures of the graph
of the functionu, namely, the eigenvalues of the matrix
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Du 1 Du ® Du
C= D< ) = <1 - )Dzu, (1.2)
J1+|Du2) 1+ |Dul? 1+ |Dul?

andSy, k=1,...,n, denotes théth elementary symmetric function, that is,

Sk(k) =Y Kiy - Ky (1.3)

where the sum is taken over increaskwuples,iy, ..., ix C {1,...,n}. The mean, scalar
and Gauss curvatures correspond respectively to the specialkcase, n in (1.3). We
call Eqg. (1.1) %-curvature equation.”
Here we considegeneralized solutionto k-curvature equation, which are solutions
in a certain weak sense. In the previous paper [26] the author introduced the notion of
generalized solutions to

Hi[ul=v, (1.49)

wherev is a nonnegative Borel measure. Generalized solutions form a wider class than
classical solutions or viscosity solutions under the convexity assumptions.

In [27], we considered the removability of isolated singularities for solutions to homo-
geneousk-curvature equation (i.e. (1.1) withh = 0), both in the viscosity sense and in
the generalized sense. In this paper we establish results concerning the removability of a
singular set of a generalized solution to (1.4). We state our main theorem.

Theorem 1.1. Let £2 be a convex domain iiR" and K € £2 be a compact set whose
(n — k)-dimensional Hausdorff measure is zero. lek k <n — 1, € L1(2) be a
nonnegative function, ang be a continuous function if2 \ K. We assume that for any
convex subdomaif®’ C 2 \ K, u is a convex function if2” and a generalized solution
to Hi[u] = ¥ dx in £2’. Thenu can be defined in the whole domaih as a generalized
solution toH[u] =y dx in £2.

For the case of = 1, which corresponds to the mean curvature equation in (1.1), such
removability problems were extensively studied. Bers [2], Nitsche [22], and De Giorgi
and Stampacchia [14] proved the removability of isolated singularities for solutions to the
equation of minimal surface/( = 0) or constant mean curvaturg (s a constant function).
Serrin [24,25] studied the same problem for a more general class of quasilinear equations
of mean curvature type. He proved that any weak solutida the mean curvature type
equation ing2 \ K can be extended to a weak solutionsihif the singular setk is a
compact set of vanishin@: — 1)-dimensional Hausdorff measure. For various semilinear
and quasilinear equations, there are a number of papers concerning removability results.
See [4,5,32] and references therein.

Here we remark that (1.1) is a quasilinear equatiorkferl while it is afully nonlinear
equation fork > 2. It is much harder to study the fully nonlinear equations’ case. For
Monge—-Ampére equations’ case, there are some results on the removability of isolated
singularities (see, for example, [3,16,23]). However, until recently, there were no results for
other types of fully nonlinear equations. For solutions to uniformly elliptic equations and
Hessian equations, such removability problems were studied by Labutin [18-20]. In this
paper we obtained Serrin type removability result for generalized solutidnstovature
equations.
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For the casé& = n which corresponds to the Gauss curvature case, one has a solution
to (1.1) with nonremovable singularities at a single point. For example,

u(x)=alx|, xe2=2B10)={x|<1}, (1.5)

wherea > 0, satisfies Eq. (1.1) with = n, ¥ = 0 andK = {0}, in the classical sense as
well as in the generalized sense. Howevedoes not satisfyH,,[u] = 0 in 2 = B1(0)

in the generalized sense (see Example 2.1). Accordingly thekcaseis excluded from
Theorem 1.1.

This paper is divided as follows. In the next section, we give a definition of general-
ized solutions td&-curvature equation with some examples. Then we prove that the notion
of generalized solutions is weaker than that of viscosity solutions under the convexity as-
sumptions. Section 3 is devoted to the proof of Theorem 1.1. Finally, in Section 4, we state
some remarks and open problemskeourvature equations.

2. Thenotion of generalized solutions

In this section we give the definition of generalized solutions to (1.1) which was intro-
duced in [26].

For a large class of elliptic PDEs, it is well known that one can consider a function
which is not necessarily differentiable in a usual (classical) sense as a solution to the
equation. Many mathematicians have investigated solutions in a generalized sense, such
asweak solutiongor quasilinear equations of divergence type disdributional solutions
for semilinear equations. For fully nonlinear equations, the theonismosity solutions
provides existence and uniqueness theorem under mild hypotheses (we refer to [10-12,
21]). Weak solutions and distributional solutions have an integral nature, while viscosity
solutions do not have. Itis difficult to define solutions with an integral nature for fully non-
linear PDEs. However, for some special types of fully nonlinear PDEs, one can introduce
an appropriate notion of solutions that have such property, sugereeralized solutions
for Monge—Ampére type equations (see [1,7]) and for Hessian equations (see [9,29-31]).
Recently, the author [26] introduced the notionganeralized solutionfor k-curvature
equations which form a wider class than viscosity solutions under the convexity assump-
tions (we prove this in Proposition 2.3).

Let £2 be an open, convex and bounded subsék’ofind we look for solutions in the
class of convex and (uniformly) Lipschitz functions defineddn For a pointx € £2, let
Nor(u; x) be the set of downward normal unit vectorsitat (x, u(x)). For a nonnegative
numberp and a Borel subset of 2, we set

Qpu;n)={zeR" |z=x+pv, x€n, vEYX)}, 2.1
wherey, (x) is a subset oR” defined by
Vu(x) = {(ala s an) | (ala ceey a}’la al’l+l) € Nor(u; 'x)} (22)

The following theorem, which is an analogue of the so-called Steiner type formula, plays
an important part in the definition of generalized solutions.



230 K. Takimoto / J. Math. Anal. Appl. 309 (2005) 227-237

Theorem 2.1[26, Theorem 1.1]Let £2 be an open convex bounded seRih, and letu be
a convex and Lipschitz function definedi Then the following hold.

(i) For every Borel subset of £2 and for everyp > 0, the setQ,(u; n) is Lebesgue

measurable.
(i) There exiskz + 1 nonnegative, finite Borel measures(u; -), ..., 0, (u; -) such that
- n
L' ) = m (U " 2.3
(Qpu:m)=>" <m>" (u: n)p (2.3)

m=0
for everyp > 0 and for every Borel subsetof £2, whereL" denotes tha-dimensional
Lebesgue measure.

Remark 2.1. The measures; (u; -) determined by: are characterized by the following
two properties.

(i) If u e C%(2), then for every Borel subsetof £2,

(Z)okw; n) = / Hy[u](x) dx. (2.4)
n

(The proof is given in [26, Proposition 2.1].)
(i) If u; converges uniformly ta on every compact subset &f, then

or(ui;-) = ox(u;-)  (weakly) (2.5)
Therefore we can say that far=1, ..., n, the measureg(’)ak(u; -) generalizes the
integral of the functionH [u].

Now we state the definition of a generalized solutio-tturvature equation.

Definition 2.2. Let £2 be an open convex bounded setlifi and letv be a nonnegative,
finite Borel measure im2. A convex and Lipschitz function € C%1(£2) is said to be a
generalized solutioto

Hiul=v in, (2.6)
if it holds that
(Z)ak(u; n =v(n) (2.7)

for every Borel subsej of £2.

It is easy to see thaf?(£2) generalized solution is also a classical solution. Here we
note that one can also define the notion of generalized solutions stated above in the case
where £2 is not necessarily convex. Indeed, we shall say thit a generalized solution
to (2.6) if for any pointx € £2 and for any balB = Bg(x) C £2, (2.7) holds for every Borel
subset; of Bg(x).

Here are some examples.
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Example2.1. Let o be a positive constant.
(1) u1(x) = a|x|, which is a function we have already seen in (1.5), is a generalized
solution to

o
V1+a?

wherew, denotes the volume of the unit ballR*, anddg is the Dirac measure at 0.

(2) uz(x) = ay/x2 + -+ x2, wherex = (x1, ..., x,), is a generalized solution to

H,[u1] = < ) w89 INnR", (2.8)

Hi[ o LR T inRY (2.9)

k

o

=)
1+ a?

wherew; denotes thé-dimensional measure of the unit balli and7 = {(x1, ..., x,) €
R" | x1 = - -- = xx = 0}. We note that Hausdorff dimension @fis n — k. Hence, as far as
k-curvature equation is concerned, we cannot expect that the removability theorem holds
for the set with nonzer@: — k)-dimensional Hausdorff measure.

There is a notion of generalized solutions to the Gauss curvature equation which corre-
sponds to the case &f=n in (2.6), since they are in a class of Monge—Ampeére type. As
far as the Gauss curvature equation, namely,

detD?u)

1+ |Du|2)(n+2)/2 =V

is concerned, the definition of generalized solutions for Monge—Ampére type equations co-
incides with the one introduced in Definition 2.2. The proof is given in [26, Theorem 3.3].

In the last part of this section, we prove that the notion of generalized solutions is weaker
than that of viscosity solutions in some sense.

(2.10)

Proposition 2.3. Let1 < k <n and£2 be adomain irR”. Lety be a positive function with
yl/k e €O1(£2), andu be a convex function if2. If u is a viscosity solution téf [u] = v
in £2, thenu is a generalized solution t&;[u#] = v in 2, wherev = ¥ (x) dx.

Proof. Let xo be any point inf2. We wish to show that is a generalized solution to
Hi[u] = vdx in some ball centered ab. We fix a sufficiently small constamt> 0 such
that

1V Nl kB, (xoy) < %(Z)wﬁ/", (2.11)
which assure€©-a priori bound for a solution té#[u] = ¥ (see [28]). We may assume
that2 = B, (xo).

First we extend the function to a convex function defined iR”, which is proved
in [8]. Let ¢ be a nonnegative function id3°(IR") vanishing outsided1(0) and satisfying
J5,0) ¢ dx = 1. We define

&

1
@e (x) = S—nso(x), (2.12)
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and sety; = ¢1/; * u, the regularization of. It turns out thai; converges uniformly ta
in 2 asi — oo.

Next, let{$2;}7°; be a sequence of convex domains such fbate 2, € --- and that
2=U72192i.Inthecase of Kk <n—1, we take{y;}72, C C(£2) which satisfies
that

¥ — ¥ in LY(22) and uniformly inc®($2;) for every;j e N, (2.13)

foreveryj e N, i:stjzg?m |Dv;| is bounded in2;, (2.14)

Sk(kyy ..o k1,00 =¥  0onas2, (2.15)
wherex’ = (7, ...,k _;) denotes the principal curvatures of the bounda®yand that

vi >0 ing. (2.16)
Fork = n, the condition (2.16) is replaced by

Y >0 in2 and ¥; =0 o0nods. (2.17)

One can gety;}:°, by using the regularizations gf.
Now we consider the following Dirichlet problem:

{ Hilvil=v; ing,

(2.18)
Vi = U; onos2.

By virtue of the results in [15,28], there exists a unique classical solutignhC>(£2)

to (2.18), for sufficiently large. From the maximum principle [28], the sequer{eg} is
uniformly bounded. We also see that for any open(3e€ 2, the interior gradient bound
by Korevaar [17] implies thafv; } is equicontinuous i2’. Therefore, using the diagonal
argument, we deduce from Ascoli—Arzela’s theorem that there exists a subsequénge of
(we relabel it agv;} again) converging uniformly to some functiene C°(£2) on every
compact subset aP. By the stability property of viscosity solutions, it follows thats a
viscosity solution to

{Hk[v]:iﬁ in £, (2.19)
v=u onas2.
The uniqueness of solutions to the Dirichlet problem (2.19) impliesitkatb in £2.
We set
pitn = [ viwdx (2.20)
n
for Borel subset) of £2. From (2.13), we obtain
w; — v (strongly) (2.21)

On the other hand, from the uniform convergencdwf on every compact subset &f
and Remark 2.1(ii) (see also [26, Proposition 3.2]), we see that

i — (Z)akw; ) (weakly) (2.22)
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Then, the uniqueness of the weak limit yields

(’;)o—k(u; n) = / ¥ (x)dx (2.23)
n

for every Borel subsei of £2. Hence the proposition is proved

Remark 2.2. It is not known whether a viscosity solution to the Dirichlet problem
H, = in £2,
{ el = (2.24)
u=g onos2,
whereg € €9(3£2), is unique or not for general nonnegatiye We note here also that
Cranny [13] proved the uniqueness of a viscosity solution to (2.24) for “highly degenerate
case, that isyy =0.

3. Proof of Theorem 1.1

Before giving a proof of Theorem 1.1, we introduce some notations. We write
(X1y .0y X1, Xn) = (X', xp). B;’*l(x/) c R*~1 denotes then — 1)-dimensional open ball
of radiusr centered at’.

Proof. The proof is split into two steps.

Step 1 (Extension ofu to a convex function in2). Here we prove that can be extended
to a convex function in the whole domaip. The idea of the proof is adapted from that of
Yan [33].

Let y, z be any two distinct points if2 \ K. Without loss of generality we may assume
thaty is the origin and; = (0, ..., 0, 1). First we prove the following lemma.

Lemma 3.1. There exist sequences;}72,.{z;}72; C £2 \ K such thaty; — y,z; — z
asj — oo and

yj.zjl={tyj + (1 -1z |0<r <1} C 2\ K. (3.1)
Proof. To the contrary, we suppose that there exdsts 0 such that for every € Bs(y)

and for every; € B;(z), there exists € (0, 1) such thaty + (1 —7)Z € K. Here we note
that7y + (1 — 7)z must be in®2 sinces? is assumed to be convex. In particular, if we set

y=(a1,...,a,-1,0),Z=(a1,...,a,-1, D) witha' = (a1, ...,a,-1) € Bg’_l(O), one sees
that there existg, € (0, 1) such that(@’, ,/) € K. We define the set by

V={, 1) d € By 0)}. (3.2)
ClearlyV c K.

The assumption o implies that then — 1)-dimensional Hausdorff measure &fis
zero. Hence there exist countable b, (x;)}7°; such that

o o
Kc|JB,) and ) rt<eh (3.3)
i=1 i=1
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It follows that V' is also covered byB;, (x;)}7°,. By projecting bothV and{B,, (x;)}7°;
ontoR"~1 x {0}, we have that

o
B0 c | Br ). (3.4)
i=1
Taking (n — 1)-dimensional measure of each side of (3.4), we obtain that

o0
wp_18" 1 < an_lrf_l < wp_18""1, (3.5)
i=1
which is a contradiction. Lemma 3.1 is thus proved

LetA e[0,1]and setx = Ay 4+ (1 — 1)z € £2 \ K. From the above lemma and the local
convexity ofu, it follows that

u(x) < iu(y;) + @A —1u(z;) (3.6)

forall j e N, where{yj};‘;l and{z,-}§°:l are sequences which we obtained in Lemma 3.1.

Sinceu is locally convex ins2 \ K, u is continuous in2 \ K. Taking j — oo,

ux) <rau@y)+ A - Au(z). 3.7
Next letU be the supergraph af, that is,
U=|@x,w)|xe2\K, w>ukx)}cR™, (3.8)

and for every sek ¢ R"*1, coX denotes the convex hull &f. Now we define the function
i by
i(x)=inf{lw e R| (x,w) ecoU}. (3.9

One can easily show that the convex hull@f\ K (in R"?) is £2, so thati is defined in
the whole£2. Moreover,i is a convex function due to the convexity of &o Finally, we
show thatu is an extension ofi defined in$2 \ K. To see this, fix a point € £2 \ K.
The definition ofi follows thatii(x) < u(x). Taking the infimum of the right-hand side
of (3.7) over ally, z € 2 \ K, we have thati(x) < i(x). Consequently, it holds that= i

in 2\ K. u is the desired function.

Step 2 (Removability of the singular s&X'). We denote the extended function constructed
in Step 1 by the same symbwl Theorem 2.1 implies that there exists a nonnegative Borel
measure whose support is contained K such that

Hilul=v¥dx+v ingQ (3.10)
in the generalized sense. We fix arbitrary- 0. By the assumption we can covir by
countable open ballgB,, (x;)}7°, such that

e¢]

o< (3.11)

i=1
For anyp > 0,



K. Takimoto / J. Math. Anal. Appl. 309 (2005) 227-237 235

n

wn (ri + P)n Z En(Qp(”; By, (xl))) = Z (l:l/l)o'm (u; By, (xi))pm

m=0
> <Z>Uk(u; By, (xi))pk = ( / Y dx +v(By, (Xi))>,0k
By, (xi)
> (B, (x)p". (3.12)

The firstinequality in (3.12) is due to the fact th@f (u; B,, (x;)) C By, +,(x;), Since taking
anyz € Q,(u; By, (x;)) we obtain

lz—xil =1y +pv—xi| <|y — x|+ plv| <7i + p, (3.13)
for somey € By, (x;), v € ,(y). Insertingp = r; in (3.12), we obtain that
wp2'r! = v(By, (xi))rf. (3.14)
Consequently, it holds that
V(B (x))) < wn2"ri"7k. (3.15)
Now taking the summation far> 1, we have that
o o o
V(K) < U(U B, (x,-)) <D (B () <Y on2'r T < w0, 2. (3.16)
i=1 i=1 i=1

Since we can take > 0 arbitrarily, we see that(K) = 0. Thereforep = 0. We conclude
thatK is a removable set. O

4. Final remarks

There are a number of results concerning the Dirichlet problem-farrvature equa-
tion (1.1) in the literature, for generl=1, 2, ..., n. Such problems were investigated by
Caffarelli et al. [6] and Ivochkina [15] in the classical sense. Trudinger [28] established the
existence and uniqueness of Lipschitz solutions to the Dirichlet problem in the viscosity
sense, under natural geometric restrictions and under relatively weak regularity hypotheses
ony, for instancey ¥ * e c%1(2).
Therefore, it seems an interesting problem to study the solvability of the Dirichlet prob-
lem
{ Hilul=v in$2, @.1)
u=q onas2,

in the generalized sense, wharés a nonnegative Borel measure. kot n (the Gauss
curvature case) which is an equation of Monge—Ampére type, the existence and uniqueness
of generalized solutions to the Dirichlet problem (4.1) in a bounded convex domain have
been studied. We refer the reader to [1], for example. We would like to seek appropriate
conditions onv which guarantee the solvability of generalized solutions to (4.1) for the
case of 1< k < n — 1. However, we obtain few results about that so far. Theorem 1.1
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in this paper implies that, for example, there exist no generalized solutions to (4.1) when
1<k <n—1landv = Cé,,, whereC is a positive constant arfg, is a Dirac delta measure
atxg € £2. In fact, if we writev = ¥ dx + u, wherey is a nonnegative.1(£2) function

andu is the singular part of with respect to the Lebesgue measure, then either of the two
alternatives must hold:

(i) the (n — k)-dimensional Hausdorff measure of the supporta$ nonzero; or
(i) w=0.
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