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Abstract

We consider the removability of singular sets for the curvature equations of the formHk[u] = ψ ,
which is determined by thekth elementary symmetric function, in ann-dimensional domainΩ. We
prove that, for 1� k � n − 1 and a compact setK whose(n − k)-dimensional Hausdorff measure
zero, any generalized solution to the curvature equation onΩ \ K is always extendable to a gener
ized solution on the whole domainΩ.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is a sequel to [27]. We study the removability of singular sets of solutio
the curvature equations of the form

Hk[u] = Sk(κ1, . . . , κn) = ψ (1.1)

in Ω \ K , whereΩ is a bounded domain inRn andK is a compact set contained inΩ .
For a functionu ∈ C2(Ω), κ = (κ1, . . . , κn) denotes the principal curvatures of the gra
of the functionu, namely, the eigenvalues of the matrix
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C = D

(
Du√

1+ |Du|2
)

= 1√
1+ |Du|2

(
I − Du ⊗ Du

1+ |Du|2
)

D2u, (1.2)

andSk , k = 1, . . . , n, denotes thekth elementary symmetric function, that is,

Sk(κ) =
∑

κi1 . . . κik , (1.3)

where the sum is taken over increasingk-tuples,i1, . . . , ik ⊂ {1, . . . , n}. The mean, scala
and Gauss curvatures correspond respectively to the special casesk = 1,2, n in (1.3). We
call Eq. (1.1) “k-curvature equation.”

Here we considergeneralized solutionsto k-curvature equation, which are solutio
in a certain weak sense. In the previous paper [26] the author introduced the no
generalized solutions to

Hk[u] = ν, (1.4)

whereν is a nonnegative Borel measure. Generalized solutions form a wider clas
classical solutions or viscosity solutions under the convexity assumptions.

In [27], we considered the removability of isolated singularities for solutions to ho
geneousk-curvature equation (i.e. (1.1) withψ ≡ 0), both in the viscosity sense and
the generalized sense. In this paper we establish results concerning the removabi
singular set of a generalized solution to (1.4). We state our main theorem.

Theorem 1.1. Let Ω be a convex domain inRn and K � Ω be a compact set whos
(n − k)-dimensional Hausdorff measure is zero. Let1 � k � n − 1, ψ ∈ L1(Ω) be a
nonnegative function, andu be a continuous function inΩ \ K . We assume that for an
convex subdomainΩ ′ ⊂ Ω \ K , u is a convex function inΩ ′ and a generalized solutio
to Hk[u] = ψ dx in Ω ′. Thenu can be defined in the whole domainΩ as a generalized
solution toHk[u] = ψ dx in Ω .

For the case ofk = 1, which corresponds to the mean curvature equation in (1.1),
removability problems were extensively studied. Bers [2], Nitsche [22], and De G
and Stampacchia [14] proved the removability of isolated singularities for solutions
equation of minimal surface (ψ ≡ 0) or constant mean curvature (ψ is a constant function)
Serrin [24,25] studied the same problem for a more general class of quasilinear eq
of mean curvature type. He proved that any weak solutionu to the mean curvature typ
equation inΩ \ K can be extended to a weak solution inΩ if the singular setK is a
compact set of vanishing(n − 1)-dimensional Hausdorff measure. For various semilin
and quasilinear equations, there are a number of papers concerning removability
See [4,5,32] and references therein.

Here we remark that (1.1) is a quasilinear equation fork = 1 while it is afully nonlinear
equation fork � 2. It is much harder to study the fully nonlinear equations’ case.
Monge–Ampère equations’ case, there are some results on the removability of is
singularities (see, for example, [3,16,23]). However, until recently, there were no resu
other types of fully nonlinear equations. For solutions to uniformly elliptic equations
Hessian equations, such removability problems were studied by Labutin [18–20]. I
paper we obtained Serrin type removability result for generalized solutions tok-curvature

equations.
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For the casek = n which corresponds to the Gauss curvature case, one has a so
to (1.1) with nonremovable singularities at a single point. For example,

u(x) = α|x|, x ∈ Ω = B1(0) = {|x| < 1
}
, (1.5)

whereα > 0, satisfies Eq. (1.1) withk = n, ψ ≡ 0 andK = {0}, in the classical sense a
well as in the generalized sense. However,u does not satisfyHn[u] = 0 in Ω = B1(0)

in the generalized sense (see Example 2.1). Accordingly the casek = n is excluded from
Theorem 1.1.

This paper is divided as follows. In the next section, we give a definition of gen
ized solutions tok-curvature equation with some examples. Then we prove that the n
of generalized solutions is weaker than that of viscosity solutions under the convex
sumptions. Section 3 is devoted to the proof of Theorem 1.1. Finally, in Section 4, we
some remarks and open problems onk-curvature equations.

2. The notion of generalized solutions

In this section we give the definition of generalized solutions to (1.1) which was i
duced in [26].

For a large class of elliptic PDEs, it is well known that one can consider a fun
which is not necessarily differentiable in a usual (classical) sense as a solution
equation. Many mathematicians have investigated solutions in a generalized sens
asweak solutionsfor quasilinear equations of divergence type anddistributional solutions
for semilinear equations. For fully nonlinear equations, the theory ofviscosity solutions
provides existence and uniqueness theorem under mild hypotheses (we refer to
21]). Weak solutions and distributional solutions have an integral nature, while visc
solutions do not have. It is difficult to define solutions with an integral nature for fully n
linear PDEs. However, for some special types of fully nonlinear PDEs, one can intr
an appropriate notion of solutions that have such property, such asgeneralized solution
for Monge–Ampère type equations (see [1,7]) and for Hessian equations (see [9,29
Recently, the author [26] introduced the notion ofgeneralized solutionsfor k-curvature
equations which form a wider class than viscosity solutions under the convexity as
tions (we prove this in Proposition 2.3).

Let Ω be an open, convex and bounded subset ofR
n and we look for solutions in th

class of convex and (uniformly) Lipschitz functions defined inΩ . For a pointx ∈ Ω , let
Nor(u;x) be the set of downward normal unit vectors tou at (x,u(x)). For a nonnegative
numberρ and a Borel subsetη of Ω , we set

Qρ(u;η) = {
z ∈ R

n | z = x + ρv, x ∈ η, v ∈ γu(x)
}
, (2.1)

whereγu(x) is a subset ofRn defined by

γu(x) = {
(a1, . . . , an) | (a1, . . . , an, an+1) ∈ Nor(u;x)

}
. (2.2)

The following theorem, which is an analogue of the so-called Steiner type formula,

an important part in the definition of generalized solutions.
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Theorem 2.1 [26, Theorem 1.1].LetΩ be an open convex bounded set inR
n, and letu be

a convex and Lipschitz function defined inΩ . Then the following hold.

(i) For every Borel subsetη of Ω and for everyρ � 0, the setQρ(u;η) is Lebesgue
measurable.

(ii) There existn + 1 nonnegative, finite Borel measuresσ0(u; ·), . . . , σn(u; ·) such that

Ln
(
Qρ(u;η)

) =
n∑

m=0

(
n

m

)
σm(u;η)ρm (2.3)

for everyρ � 0 and for every Borel subsetη ofΩ , whereLn denotes then-dimensional
Lebesgue measure.

Remark 2.1. The measuresσk(u; ·) determined byu are characterized by the followin
two properties.

(i) If u ∈ C2(Ω), then for every Borel subsetη of Ω ,(
n

k

)
σk(u;η) =

∫
η

Hk[u](x) dx. (2.4)

(The proof is given in [26, Proposition 2.1].)
(ii) If ui converges uniformly tou on every compact subset ofΩ , then

σk(ui; ·) ⇀ σk(u; ·) (weakly). (2.5)

Therefore we can say that fork = 1, . . . , n, the measure
(
n
k

)
σk(u; ·) generalizes the

integral of the functionHk[u].

Now we state the definition of a generalized solution tok-curvature equation.

Definition 2.2. Let Ω be an open convex bounded set inR
n and letν be a nonnegative

finite Borel measure inΩ . A convex and Lipschitz functionu ∈ C0,1(Ω) is said to be a
generalized solutionto

Hk[u] = ν in Ω, (2.6)

if it holds that(
n

k

)
σk(u;η) = ν(η) (2.7)

for every Borel subsetη of Ω .

It is easy to see thatC2(Ω) generalized solution is also a classical solution. Here
note that one can also define the notion of generalized solutions stated above in t
whereΩ is not necessarily convex. Indeed, we shall say thatu is a generalized solutio
to (2.6) if for any pointx ∈ Ω and for any ballB = BR(x) ⊂ Ω , (2.7) holds for every Bore
subsetη of BR(x).
Here are some examples.
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Example 2.1. Let α be a positive constant.
(1) u1(x) = α|x|, which is a function we have already seen in (1.5), is a genera

solution to

Hn[u1] =
(

α√
1+ α2

)n

ωnδ0 in R
n, (2.8)

whereωn denotes the volume of the unit ball inRn, andδ0 is the Dirac measure at 0.

(2) u2(x) = α

√
x2

1 + · · · + x2
k , wherex = (x1, . . . , xn), is a generalized solution to

Hk[u2] =
(

α√
1+ α2

)k

ωkLn−k�T in R
n, (2.9)

whereωk denotes thek-dimensional measure of the unit ball inR
k andT = {(x1, . . . , xn) ∈

R
n | x1 = · · · = xk = 0}. We note that Hausdorff dimension ofT is n − k. Hence, as far a

k-curvature equation is concerned, we cannot expect that the removability theorem
for the set with nonzero(n − k)-dimensional Hausdorff measure.

There is a notion of generalized solutions to the Gauss curvature equation which
sponds to the case ofk = n in (2.6), since they are in a class of Monge–Ampère type
far as the Gauss curvature equation, namely,

det(D2u)

(1+ |Du|2)(n+2)/2
= ν (2.10)

is concerned, the definition of generalized solutions for Monge–Ampère type equatio
incides with the one introduced in Definition 2.2. The proof is given in [26, Theorem

In the last part of this section, we prove that the notion of generalized solutions is w
than that of viscosity solutions in some sense.

Proposition 2.3. Let1� k � n andΩ be a domain inRn. Letψ be a positive function with
ψ1/k ∈ C0,1(Ω̄), andu be a convex function in̄Ω . If u is a viscosity solution toHk[u] = ψ

in Ω , thenu is a generalized solution toHk[u] = ν in Ω , whereν = ψ(x)dx.

Proof. Let x0 be any point inΩ . We wish to show thatu is a generalized solution t
Hk[u] = ν dx in some ball centered atx0. We fix a sufficiently small constantr > 0 such
that

‖ψ‖Ln/k(Br (x0))
<

1

2

(
n

k

)
ω

k/n
n , (2.11)

which assuresC0-a priori bound for a solution toHk[u] = ψ (see [28]). We may assum
thatΩ = Br(x0).

First we extend the functionu to a convex function defined inRn, which is proved
in [8]. Let ϕ be a nonnegative function inC∞

0 (Rn) vanishing outsideB1(0) and satisfying∫
B1(0)

ϕ dx = 1. We define

1
(

x
)

ϕε(x) =
εn

ϕ
ε

, (2.12)



232 K. Takimoto / J. Math. Anal. Appl. 309 (2005) 227–237

d
al
of
and setui = ϕ1/i ∗ u, the regularization ofu. It turns out thatui converges uniformly tou
in Ω asi → ∞.

Next, let {Ωi}∞i=1 be a sequence of convex domains such thatΩ1 � Ω2 � · · · and that
Ω = ⋃∞

i=1 Ωi . In the case of 1� k � n − 1, we take{ψi}∞i=1 ⊂ C∞(Ω̄) which satisfies
that

ψi → ψ in L1(Ω) and uniformly inC0(Ω̄j ) for everyj ∈ N, (2.13)

for everyj ∈ N, sup
i=1,2,...

|Dψi | is bounded inΩj, (2.14)

Sk(κ
′
1, . . . , κ

′
n−1,0) � ψi on∂Ω, (2.15)

whereκ ′ = (κ ′
1, . . . , κ

′
n−1) denotes the principal curvatures of the boundary∂Ω and that

ψi > 0 in Ω̄. (2.16)

For k = n, the condition (2.16) is replaced by

ψi > 0 in Ω and ψi = 0 on∂Ω. (2.17)

One can get{ψi}∞i=1 by using the regularizations ofψ .
Now we consider the following Dirichlet problem:{

Hk[vi] = ψi in Ω,

vi = ui on ∂Ω.
(2.18)

By virtue of the results in [15,28], there exists a unique classical solutionvi ∈ C∞(Ω̄)

to (2.18), for sufficiently largei. From the maximum principle [28], the sequence{vi} is
uniformly bounded. We also see that for any open setΩ ′ � Ω , the interior gradient boun
by Korevaar [17] implies that{vi} is equicontinuous inΩ ′. Therefore, using the diagon
argument, we deduce from Ascoli–Arzelà’s theorem that there exists a subsequence{vi}
(we relabel it as{vi} again) converging uniformly to some functionv ∈ C0(Ω) on every
compact subset ofΩ . By the stability property of viscosity solutions, it follows thatv is a
viscosity solution to{

Hk[v] = ψ in Ω,

v = u on ∂Ω.
(2.19)

The uniqueness of solutions to the Dirichlet problem (2.19) implies thatu ≡ v in Ω .
We set

µi(η) =
∫
η

ψi(x) dx (2.20)

for Borel subsetη of Ω . From (2.13), we obtain

µi → ν (strongly). (2.21)

On the other hand, from the uniform convergence of{vi} on every compact subset ofΩ

and Remark 2.1(ii) (see also [26, Proposition 3.2]), we see that(
n
)

µi ⇀
k

σk(u; ·) (weakly). (2.22)
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Then, the uniqueness of the weak limit yields(
n

k

)
σk(u;η) =

∫
η

ψ(x)dx (2.23)

for every Borel subsetη of Ω . Hence the proposition is proved.�
Remark 2.2. It is not known whether a viscosity solution to the Dirichlet problem{

Hk[u] = ψ in Ω,

u = ϕ on ∂Ω,
(2.24)

whereϕ ∈ C0(∂Ω), is unique or not for general nonnegativeψ . We note here also tha
Cranny [13] proved the uniqueness of a viscosity solution to (2.24) for “highly degene
case, that is,ψ ≡ 0.

3. Proof of Theorem 1.1

Before giving a proof of Theorem 1.1, we introduce some notations. We writex =
(x1, . . . , xn−1, xn) = (x′, xn). Bn−1

r (x′) ⊂ R
n−1 denotes the(n−1)-dimensional open ba

of radiusr centered atx′.

Proof. The proof is split into two steps.

Step 1 (Extension ofu to a convex function inΩ). Here we prove thatu can be extende
to a convex function in the whole domainΩ . The idea of the proof is adapted from that
Yan [33].

Let y, z be any two distinct points inΩ \ K . Without loss of generality we may assum
thaty is the origin andz = (0, . . . ,0,1). First we prove the following lemma.

Lemma 3.1. There exist sequences{yj }∞j=1, {zj }∞j=1 ⊂ Ω \ K such thatyj → y, zj → z

asj → ∞ and

[yj , zj ] = {
tyj + (1− t)zj | 0� t � 1

} ⊂ Ω \ K. (3.1)

Proof. To the contrary, we suppose that there existsδ > 0 such that for everỹy ∈ Bδ(y)

and for everỹz ∈ Bδ(z), there exists̃t ∈ (0,1) such that̃t ỹ + (1− t̃ )z̃ ∈ K . Here we note
that t̃ ỹ + (1 − t̃ )z̃ must be inΩ sinceΩ is assumed to be convex. In particular, if we
ỹ = (a1, . . . , an−1,0), z̃ = (a1, . . . , an−1,1) with a′ = (a1, . . . , an−1) ∈ Bn−1

δ (0), one sees
that there existsta′ ∈ (0,1) such that(a′, ta′) ∈ K . We define the setV by

V = {
(a′, ta′) | a′ ∈ Bn−1

δ (0)
}
. (3.2)

ClearlyV ⊂ K .
The assumption onK implies that the(n − 1)-dimensional Hausdorff measure ofK is

zero. Hence there exist countable balls{Bri (xi)}∞i=1 such that

K ⊂
∞⋃

Br (xi) and
∞∑

rn−1 < δn−1. (3.3)

i=1

i

i=1
i
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It follows thatV is also covered by{Bri (xi)}∞i=1. By projecting bothV and{Bri (xi)}∞i=1
ontoR

n−1 × {0}, we have that

Bn−1
δ (0) ⊂

∞⋃
i=1

Bn−1
ri

(x′
i ). (3.4)

Taking(n − 1)-dimensional measure of each side of (3.4), we obtain that

ωn−1δ
n−1 �

∞∑
i=1

ωn−1r
n−1
i < ωn−1δ

n−1, (3.5)

which is a contradiction. Lemma 3.1 is thus proved.�
Let λ ∈ [0,1] and setx = λy + (1− λ)z ∈ Ω \ K . From the above lemma and the loc

convexity ofu, it follows that

u(x) � λu(yj ) + (1− λ)u(zj ) (3.6)

for all j ∈ N, where{yj }∞j=1 and{zj }∞j=1 are sequences which we obtained in Lemma
Sinceu is locally convex inΩ \ K , u is continuous inΩ \ K . Takingj → ∞,

u(x) � λu(y) + (1− λ)u(z). (3.7)

Next letU be the supergraph ofu, that is,

U = {
(x,w) | x ∈ Ω \ K, w � u(x)

} ⊂ R
n+1, (3.8)

and for every setX ⊂ R
n+1, coX denotes the convex hull ofX. Now we define the function

ũ by

ũ(x) = inf
{
w ∈ R | (x,w) ∈ coU

}
. (3.9)

One can easily show that the convex hull ofΩ \ K (in R
n) is Ω , so thatũ is defined in

the wholeΩ . Moreover,ũ is a convex function due to the convexity of coU . Finally, we
show thatũ is an extension ofu defined inΩ \ K . To see this, fix a pointx ∈ Ω \ K .
The definition ofũ follows that ũ(x) � u(x). Taking the infimum of the right-hand sid
of (3.7) over ally, z ∈ Ω \ K , we have thatu(x) � ũ(x). Consequently, it holds thatu ≡ ũ

in Ω \ K . ũ is the desired function.

Step 2 (Removability of the singular setK). We denote the extended function construc
in Step 1 by the same symbolu. Theorem 2.1 implies that there exists a nonnegative B
measureν whose support is contained inK such that

Hk[u] = ψ dx + ν in Ω (3.10)

in the generalized sense. We fix arbitraryε > 0. By the assumption we can coverK by
countable open balls{Bri (xi)}∞i=1 such that

∞∑
i=1

rn−k
i < ε. (3.11)
For anyρ � 0,
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ωn(ri + ρ)n � Ln
(
Qρ

(
u;Bri (xi)

)) =
n∑

m=0

(
n

m

)
σm

(
u;Bri (xi)

)
ρm

�
(

n

k

)
σk

(
u;Bri (xi)

)
ρk =

( ∫
Bri

(xi )

ψ dx + ν
(
Bri (xi)

))
ρk

� ν
(
Bri (xi)

)
ρk. (3.12)

The first inequality in (3.12) is due to the fact thatQρ(u;Bri (xi)) ⊂ Bri+ρ(xi), since taking
anyz ∈ Qρ(u;Bri (xi)) we obtain

|z − xi | = |y + ρv − xi | � |y − xi | + ρ|v| < ri + ρ, (3.13)

for somey ∈ Bri (xi), v ∈ γu(y). Insertingρ = ri in (3.12), we obtain that

ωn2nrn
i � ν

(
Bri (xi)

)
rk
i . (3.14)

Consequently, it holds that

ν
(
Bri (xi)

)
� ωn2nrn−k

i . (3.15)

Now taking the summation fori � 1, we have that

ν(K) � ν

( ∞⋃
i=1

Bri (xi)

)
�

∞∑
i=1

ν
(
Bri (xi)

)
�

∞∑
i=1

ωn2nrn−k
i < ωn2nε. (3.16)

Since we can takeε > 0 arbitrarily, we see thatν(K) = 0. Therefore,ν ≡ 0. We conclude
thatK is a removable set.�

4. Final remarks

There are a number of results concerning the Dirichlet problem fork-curvature equa
tion (1.1) in the literature, for generalk = 1,2, . . . , n. Such problems were investigated
Caffarelli et al. [6] and Ivochkina [15] in the classical sense. Trudinger [28] establishe
existence and uniqueness of Lipschitz solutions to the Dirichlet problem in the visc
sense, under natural geometric restrictions and under relatively weak regularity hypo
onψ , for instance,ψ1/k ∈ C0,1(Ω̄).

Therefore, it seems an interesting problem to study the solvability of the Dirichlet
lem {

Hk[u] = ν in Ω,

u = ϕ on ∂Ω,
(4.1)

in the generalized sense, whereν is a nonnegative Borel measure. Fork = n (the Gauss
curvature case) which is an equation of Monge–Ampère type, the existence and uniq
of generalized solutions to the Dirichlet problem (4.1) in a bounded convex domain
been studied. We refer the reader to [1], for example. We would like to seek appro
conditions onν which guarantee the solvability of generalized solutions to (4.1) for

case of 1� k � n − 1. However, we obtain few results about that so far. Theorem 1.1
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in this paper implies that, for example, there exist no generalized solutions to (4.1)
1� k � n−1 andν = Cδx0, whereC is a positive constant andδx0 is a Dirac delta measur
at x0 ∈ Ω . In fact, if we writeν = ψ dx + µ, whereψ is a nonnegativeL1(Ω) function
andµ is the singular part ofν with respect to the Lebesgue measure, then either of the
alternatives must hold:

(i) the (n − k)-dimensional Hausdorff measure of the support ofµ is nonzero; or
(ii) µ = 0.

References

[1] I.J. Bakel’man, Geometric inequalities and existence theorems for convex generalized solutions ofn-dimen-
sional Monge–Ampère equations, in: I.J. Bakel’man (Ed.), Geometric Analysis and Nonlinear Parti
ferential Equations, Dekker, New York, 1993, pp. 237–287.

[2] L. Bers, Isolated singularities of minimal surfaces, Ann. of Math. 53 (1951) 364–386.
[3] R. Beyerstedt, Removable singularities of solutions to elliptic Monge–Ampère equations, Math. Z

(1991) 363–373.
[4] H. Brezis, L. Nirenberg, Removable singularities for nonlinear elliptic equations, Topol. Methods Non

Anal. 9 (1997) 201–219.
[5] H. Brezis, L. Veron, Removable singularities for some nonlinear elliptic equations, Arch. Ration. M

Anal. 75 (1980–1981) 1–6.
[6] L. Caffarelli, L. Nirenberg, J. Spruck, Nonlinear second-order elliptic equations, V. The Dirichlet pro

for Weingarten hypersurfaces, Comm. Pure Appl. Math. 42 (1988) 47–70.
[7] S.Y. Cheng, S.T. Yau, On the regularity of the Monge–Ampère equation det(∂2u/∂xi∂xj ) = F(x,u),

Comm. Pure Appl. Math. 30 (1977) 41–68.
[8] A. Colesanti, A Steiner type formula for convex functions, Mathematika 44 (1997) 195–214.
[9] A. Colesanti, P. Salani, Generalised solutions of Hessian equations, Bull. Austral. Math. Soc. 56

459–466.
[10] M.G. Crandall, L.C. Evans, P.-L. Lions, Some properties of viscosity solutions of Hamilton–Jacobi

tions, Trans. Amer. Math. Soc. 282 (1984) 487–502.
[11] M.G. Crandall, H. Ishii, P.-L. Lions, User’s guide to viscosity solutions of second order partial differe

equations, Bull. Amer. Math. Soc. 27 (1992) 1–67.
[12] M.G. Crandall, P.-L. Lions, Viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. So

(1983) 1–42.
[13] T.R. Cranny, On the uniqueness of solutions of the homogeneous curvature equations, Ann. Inst. H. P

Anal. Non Linéaire 13 (1996) 619–630.
[14] E. De Giorgi, G. Stampacchia, Sulle singolarità eliminabili delle ipersuperficie minimali, Atti Accad.

Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 38 (1965) 352–357.
[15] N.M. Ivochkina, The Dirichlet problem for the equations of curvature of orderm, Leningrad Math. J. 2

(1991) 631–654.
[16] K. Jörgens, Harmonische Abbildungen und die Differentialgleichungrt − s2 = 1, Math. Ann. 129 (1955)

330–344.
[17] N.J. Korevaar, A priori interior gradient bounds for solutions to elliptic Weingarten equations, Ann

H. Poincaré Anal. Non Linéaire 4 (1987) 405–421.
[18] D.A. Labutin, Removable singularities for fully nonlinear elliptic equations, Arch. Ration. Mech. Anal

(2000) 201–214.
[19] D.A. Labutin, Isolated singularities for fully nonlinear elliptic equations, J. Differential Equations 177 (2

49–76.
[20] D.A. Labutin, Potential estimates for a class of fully nonlinear elliptic equations, Duke Math. J. 111 (
1–49.



K. Takimoto / J. Math. Anal. Appl. 309 (2005) 227–237 237

I: Vis-

en und

(1995)

1964)

1965)

s 197

al. 111

.

.

[21] P.-L. Lions, Optimal control of diffusion processes and Hamilton–Jacobi–Bellman equations. Part I
cosity solutions and uniqueness, Comm. Partial Differential Equations 8 (1983) 1229–1276.

[22] J.C.C. Nitsche, Über ein verallgemeinertes Dirichletsches Problem für die Minimal-flächengleichung
hebbare Unsteigkeiten ihrer Lösungen, Math. Ann. 158 (1965) 203–214.

[23] F. Schulz, L. Wang, Isolated singularities of Monge–Ampère equations, Proc. Amer. Math. Soc. 123
3705–3708.

[24] J. Serrin, Removable singularities of solutions of elliptic equations, Arch. Ration. Mech. Anal. 17 (
67–78.

[25] J. Serrin, Removable singularities of solutions of elliptic equations. II, Arch. Ration. Mech. Anal. 20 (
163–169.

[26] K. Takimoto, Generalized solutions of curvature equations, preprint.
[27] K. Takimoto, Isolated singularities for some types of curvature equations, J. Differential Equation

(2004) 275–292.
[28] N.S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Ration. Mech. An

(1990) 153–179.
[29] N.S. Trudinger, X.J. Wang, Hessian measures I, Topol. Methods Nonlinear Anal. 10 (1997) 225–239
[30] N.S. Trudinger, X.J. Wang, Hessian measures II, Ann. of Math. 150 (1999) 579–604.
[31] N.S. Trudinger, X.J. Wang, Hessian measures III, J. Funct. Anal. 193 (2002) 1–23.
[32] L. Veron, Singularities of Solutions of Second Order Quasilinear Equations, Longman, Harlow, 1996

[33] M. Yan, Extension of convex functions, preprint.


