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a b s t r a c t

The paper explores new expansions of eigenvalues for −∆u = λρu in S with
Dirichlet boundary conditions by Wilson’s element. The expansions indicate that Wilson’s
element provides lower bounds of the eigenvalues. By the extrapolation or the splitting
extrapolation, the O(h4) convergence rate can be obtained, where h is the maximal
boundary length of uniform rectangles. Numerical experiments are carried to verify the
theoretical analysis made. It is worth pointing out that these results are new, compared
with the recent book, Lin and Lin [Q. Lin, J. Lin, Finite Element Methods; Accuracy and
Improvement, Science Press, Beijing, 2006].

© 2009 Published by Elsevier B.V.

1. Introduction

In this paper, we consider the eigenvalue problem

−∆u = λρu in S, (1.1)
u = 0 in ∂S, (1.2)

where S = [0, 1]2, and the function ρ = ρ(x, y) > 0 and ρ ∈ C2(S). Then Eqs. (1.1) and (1.2) can be written in a weak form:
To seek (λ, u) ∈ R× H10 (S)with u 6= 0 such that

a(u, v) = λ(u, v), ∀v ∈ H10 (S), (1.3)

where H10 (S) = {v|v ∈ H
1(S), v|∂S = 0}, and

a(u, v) =
∫∫
S
∇u∇v, (1.4)

(u, v) =
∫∫
S
ρuv. (1.5)
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For Wilson’s element [24,8], the piecewise interpolation functions uI ∈ W = P2 = span{1, x, y, xy, x2, y2} are formulated
by

u(Z`) = uI(Z`), ` = 1, 2, 3, 4, (1.6)
uxx(O) = (uI)xx(O), uyy(O) = (uI)yy(O), (1.7)

where Zi are the four corners of �ij, O is the center of �ij, and �ij = {(x, y)|xi − hi ≤ x ≤ xi + hi, yj − kj ≤ y ≤ yj + kj}.
Choose the affine transformation:

ξ =
x− xi
hi

, η =
y− yj
kj

.

The admissible functions on �ij can be expressed as

v(x, y) =
4∑
t=1

vtφt(ξ , η)+ h2i uxx(O)φ5(ξ , η)+ k
2
j uyy(O)φ6(ξ , η),

where the nodal points 1, 2, 3, 4 denote (i, j), (i+ 1, j), (i, j+ 1), (i+ 1, j+ 1), respectively, and the six basis functions on
[−1, 1]2 are given explicitly by

φ1(ξ , η) =
1
4
(1− ξ)(1− η), φ2(ξ , η) =

1
4
(1+ ξ)(1− η),

φ3(ξ , η) =
1
4
(1− ξ)(1+ η), φ4(ξ , η) =

1
4
(1+ ξ)(1+ η),

φ5(ξ , η) =
1
8
(−1+ ξ)(1+ ξ), φ6(ξ , η) =

1
8
(−1+ η)(1+ η).

Let S = ∪ij �ij, where �ij are quasi-uniform. Denote by V 0h ⊂ L
2(S) the finite-dimensional collection of the admissible

functions defined in Wilson’s element. The nonconforming elements, such as Wilson’s element, are used to seek (λh, uh) ∈
R× V 0h

1such that

ah(uh, v) = λh(uh, v), ∀v ∈ V 0h , (1.8)

where

ah(u, v) =
∑
ij

∫∫
�ij

5u5 v. (1.9)

In this paper, we explore the expansions of the eigenvalues λh by Wilson’s element. When �ij are uniform rectangles with
the boundary lengths h and k, we obtain the following formula,

λh − λ = −
h2 + k2

3

∫∫
S
uxxuyy −

h2

3

∫∫
S
uxx(uh)yy −

k2

3

∫∫
S
uyy(uh)xx + O(h4), (1.10)

where k = O(h). The detailed proof for the expansions in (1.10) byWilson’s element is deferred to Section 3. For uniform�ij,
Wilson’s element provides a lower estimation on eigenvalues, whose proof is also deferred to Section 4. By the extrapolation
or the splitting extrapolation with h 6= k, we may reach the O(h4) convergence rate, which is validated by our numerical
experiments in Section 5.
Let us mention the references related to this paper. Numerical eigenvalues are discussed in [1–3,6,11,19–22,25–27].

The Wilson’s element is studied in [7,18,15], and the extrapolation for eigenvalues are explored in [4,13,16,17]. Here let us
mention other works for the expansions of numerical eigenvalues for−∆u = λρu in S with Dirichlet boundary conditions.
We report the new expansions for the conforming bilinear elementsQ1 in [10], and for the nonconforming elements, such as
the rotated bilinear elements Q rot1 and the extended rotated bilinear elements EQ

rot
1 , in Lin, Huang and Li [14]. More results

of this subject are given in [16].
Asymptotic lower bounds for eigenvalues have been obtained by the finite difference method (FDM) in [9,23]. In [9], for

a convex S, the numerical eigenvalues by the standard five-node finite difference equations have lower bounds, and upper
and lower bounds of numerical eigenvalues by FDM are also discussed in [23]. Since the FDM can be regarded as a special
kind of FEM involving different integration rules in [12], the variational crimes, the terminology used in [22] for FEM with
nonconforming elements and numerical integration, may produce the lower bounds of approximate eigenvalues. Based on
the error expansions of numerical eigenvalues, the Wilson’s elements yield the lower bounds, the same conclusion made
for ρ = 1 in the recent paper of Zhang, Yang and Zhen [28].

1 Here V 0h is not a subset of H
1
0 (S).
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2. Basic theorems

We rewrite (1.3) as:

a(u, v) = (f , v), ∀v ∈ H10 (S), (2.1)

where f = λu. Define the finite element projection Rh by

ah(Rhu, v) = (f , v), ∀v ∈ V 0h . (2.2)

For simplicity, we assume the simple eigenvalues, and consider only a few leading eigenvalues

λ1 < λ2 ≤ · · · ≤ λk, (2.3)

where k is a small integer. Note that the minimal eigenvalue λ1 = λmin is of great interest in practical application.
For the above elements, we cite the known results in [26,27] as a lemma.

Lemma 2.1. For the quasi-uniform �ij with the maximal boundary length h, there exist the following bound for leading
eigenvalues λ and their corresponding eigenfunctions u,

|λ− λh| + ‖u− uh‖0,S + ‖u− Rhu‖0,S ≤ Ch2, (2.4)

where C is a constant independent of h, and (λh, uh) are the FEM solutions by Wilson’s element.

Below we give a new theorem, whose proof is given in [14,15].

Theorem 2.1 (Nonconforming). Let �ij be quasi-uniform with the maximal boundary length h. For the nonconforming elements,
there exists the error formula,

λh − λ = λ(u− uI , uh)− ah(u− uI , uh)+ ah(u− Rhu, uh)+ O(h4), (2.5)

where u and uI are the true solution (i.e., eigenfunction) and the FEM interpolation of u, respectively, and uh and Rhu are the FEM
solution of (1.8) and the FEM projection in (2.2), respectively.

In Theorem 2.1, in order to derive the errors λh − λ, we need to evaluate the following interpolation errors:

(u− uI , v), ah(u− uI , v), ∀v ∈ V 0h , (2.6)

and the projection error

ah(u− Rhu, v), ∀v ∈ V 0h . (2.7)

Note that the projection error (2.7) is null for the conforming elements and that the estimation of (2.6) is similar to that
for Poisson’s equation. Hence the key analysis of the nonconforming elements is to derive the expansions of (2.7). In error
estimates, we often use the Bramble–Hilbert lemma [5]: Denote B(u) a bounded linear function from Hk(S) to R. If for all
polynomials Pk of degree k, B(Pk) = 0, then there exists a constant C independent of u such that

|B(u)| ≤ C |u|k+1,S . (2.8)

In this paper, we needmore expansions of higher terms of degree k+1.We solicit the generalized Bramble–Hilbert Lemma.
Denote

B(u) =
∑
|α|=k+1

B(xα)
α!|S|

∫∫
S
Dαu+ H(u), (2.9)

where xα = xα11 x
α2
2 , α1 + α2 = α, and α! = α1!α2!. In (2.9) H(u) is also a bounded linear function from H

k+1(S) to R. We
write the following lemma, whose proof is given in [15].

Lemma 2.2 (Generalized Bramble–Hilbert Lemma). Let u ∈ Hk+2(S) and B(Pk) = 0. Suppose that H(Pk+1) = 0 in (2.9). There
exists a bound,

|H(u)| ≤ C |u|k+2,S, (2.10)

where C is a constant independent of u.

By using the techniques in this section, the expansions of numerical eigenvalues can be derived for the bilinear element
(denoted by Q1) in [10,15], the rotated Q1 element (denoted by Q rot1 ) and the extension of rotated Q1 element (denoted by
EQ rote) in [14,15], andWilson’s element in this paper. The Q1 is conforming, but the Q rot, the EQ rot andWilson’s element are
nonconforming. However, since theWilson element is a benchmark of nonconforming elements, its analysis can be found in
many references, such as [8,7,15,17,18,22,24,28]. It is worthy to derive the new expansions of its numerical solutions. More
importantly, Theorems 3.1 and 4.1 given later are the new developments of [15], and the proof of the lower bound (4.2) in
Theorem 4.1 is more intriguing than that in [10,14], since it is completed via the errors of eigenvalues in Section 4.1.
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Fig. 1. (1) ê = [−1, 1] × [−1, 1]. (2) e = �ij = [xi − hi, xi + hi] × [yj − kj, yj + kj].

3. Wilson’s element

Denote ê = [−1, 1]× [−1, 1] and e = �ij = [xe− he, xe+ he]× [ye− ke, ye+ ke] (see Fig. 1). Next, we give four lemmas
whose proof is deferred to Sections 3.1–3.3.

Lemma 3.1. For v ∈ W (e)∫∫
e
(u− uI)xvx = −

k2e
3

∫∫
e
uxyyvx +

h4e
30

∫∫
e
uxxxxvxx

+
2h2ek

2
e

9

∫∫
e
uxxyyvxx +

14k4e
45

∫∫
e
uxyyyvxy + O(h5)|u|5,e|v|2,e, (3.1)

where |v|m,h =
√∑

e |v|
2
m,e (m = 1, 2), and e = �ij = [xe − he, xe + he] × [ye − ke, ye + ke].

Lemma 3.2. For v ∈ W (e)∫∫
S
(u− uI)v = −

1
45

∑
e

∫∫
e
(h4euxxxvx + k

4
euyyyvy)−

1
9

∑
e

∫∫
e
h2ek

2
e (uxyyvx + uxxyvy)+ O(h

5)‖u‖4‖v‖1. (3.2)

Lemma 3.3. For v = uh ∈ W (e)

ah(u− Rhu, uh) = −
1
3

∑
e

∫∫
e

(
k2euxx(uh)xx + h

2
euyy(uh)xx

)
+ O(h4)|u|4|uh|2,h. (3.3)

Lemma 3.4. For v = uh ∈ W (e)∑
e

(∫
`1

−

∫
`3

)
uxuh dy = −

k2e
3

∫∫
e
uxx(uh)yy + O(h4)|u|4|uh|2,h, (3.4)

where `i are the edges of ∂e shown in Fig. 2.

Theorem 3.1. For Wilson’s element, there exists the eigenvalue error

λh − λ = −
1
3

∑
e

(h2e + k
2
e )

∫∫
e
uxxuyy −

1
3

∑
e

∫∫
e

(
k2euxx(uh)yy + h

2
euyy(uh)xx

)
+ O(h4). (3.5)
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Fig. 2. The rectangle.

Proof. There exists the bound

|uh|2,h ≤ |uh − uI |2,h + |uI − u|2,h + |u|2 ≤ Ch−1|uh − uI |1,h + C |u|2 ≤ C |u|2. (3.6)

From Lemma 3.1 and (3.6),

ah(u− uI , uh) =
1
3

∑
e

∫∫
e

(
k2euxyy(uh)x + h

2
euxxy(uh)y

)
+ O(h4). (3.7)

By using integration by parts we have

ah(u− uI , uh) =
1
3

∑
e

∫∫
e

(
k2euxxyyuh + h

2
euxxyyuh

)
−
1
3

∑
e

(∫
`1

−

∫
`3

)
k2euxyyuh −

1
3

∑
e

(∫
`2

−

∫
`4

)
h2euxxyuh + O(h

4). (3.8)

Based on Lemma 3.4, there exist the bounds,

∑
e

(∫
`1

−

∫
`3

)
k2euxyyuh = −

k4e
3

∫∫
e
uxxyy(uh)yy + O(h6) = O(h4), (3.9)

∑
e

(∫
`2

−

∫
`4

)
h2euxxyuh = O(h

4). (3.10)

Hence, we have from (3.8) and Lemma 2.1

ah(u− uI , uh) =
1
3

∑
e

∫∫
e

(
k2euxxyyuh + h

2
euxxyyuh

)
+ O(h4)

=
1
3

∑
e

∫∫
e

(
k2euxxyyu+ h

2
euxxyyu

)
+ O(h4). (3.11)

Since u = 0 on ∂S, from integration by parts again, Eq. (3.11) leads to

ah(u− uI , uh) =
1
3

∑
e

(k2e + h
2
e )

∫∫
e
uxxuyy + O(h4). (3.12)

Moreover, based on Theorem 2.1, we have from Lemmas 3.2 and 3.3 and (3.12)

λh − λ = ah(u− Rhu, uh)+ λ(u− uI , uh)− ah(u− uI , uh)+ O(h4)

= −
1
3

∑
e

(h2e + k
2
e )

∫∫
e
uxxuyy −

1
3

∑
e

∫∫
e

(
k2euxx(uh)yy + h

2
euyy(uh)xx

)
+ O(h4). (3.13)

This is the desired equation (3.5), and completes the proof of Theorem 3.1. �
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Table 1
The integration

∫∫̂
e(u − uI )xvx for u ∈ P3 \ P2 , v ∈ span{1, x, y, xy, x

2, y2} and vx ∈ span{0, 1, 0, y, 2x, 0}, where ê = [−1, 1]2 and the sign 0+ denotes
that the computed integrals are zero

u x3 x2y xy2 y3 Note
uI x y x y /
(u− uI )x 3x2 − 1 2xy y2 − 1 0 /∫∫̂
e(u− uI )x 0+ 0 −

8
3 0 v = x∫∫̂

e(u− uI )xy 0 0 0 0 v = xy∫∫̂
e(u− uI )x(2x) 0 0 0 0 v = x2

u x4 x3y x2y2 xy3 y4 Note
uI 1 xy 1 xy 1 /
(u− uI )x 4x3 3x2y− y 2xy2 y3 − y 0 /∫∫̂
e(u− uI )x 0 0 0 0 0 v = x∫∫̂
e(u− uI )xy 0 0+ 0 −

8
15 0 v = xy∫∫̂

e(u− uI )x(2x)
32
5 0 16

9 0 0 v = x2

3.1. Proof of Lemma 3.1

Whenu ∈ P2,
∫∫
e(u−uI)xvx = 0. Foru ∈ P3\P2, we list in Table 1 the integration terms,where v ∈ span{1, x, y, xy, x

2, y2}
and vx ∈ span{0, 1, 0, y, 2x, 0}. In Table 1, the zero values can be easily seen by checking odd polynomials with respect to x
or y, and the zero values with ‘‘+’’ in the tables are confirmed by real integral evaluation.
First, when u = x3 and v = x, we have∫∫

ê
(u− uI)xvx =

∫∫
ê
(3x2 − 1) = 0.

Next, we examine the non-trivial term in Table 1. When u = xy2 and v = x, we have∫∫
ê
(u− uI)xvx =

∫∫
ê
(y2 − 1) = −

8
3
= −

1
3

∫∫
ê
uxyyvx.

Denote a functional

H(u, v) = B(u, v)+
1
3

∫∫
ê
uxyyvx, (3.14)

where B(u, v) =
∫∫̂
e(u− uI)xvx. Hence for u ∈ P3, H(u, v) = 0 and v ∈ W (̂e), we obtain from Lemma 2.2

|H(u, v)| ≤ C |u|4,̂e|v|1,̂e.

Then we have∫∫
ê
(u− uI)xvx = −

1
3

∫∫
ê
uxyyvx + O(1)|u|4,̂e|v|1,̂e. (3.15)

In what follows, we consider the more terms in P4 \ P3, whose results are also listed in Table 1. First, let us check the zero
term with 0+. When u = x3y and v = xy, we have∫∫

ê
(u− uI)xvx =

∫∫
ê
(3x2 − 1)y2 = 0. (3.16)

Next, we examine the non-trivial terms for P4 \ P3. For u = x4 and v = x2, we have∫∫
ê
(u− uI)xvx =

∫∫
ê
4x3(2x) =

32
5
. (3.17)

For u = x2y2 and v = x2,∫∫
ê
(u− uI)xvx = 4

∫∫
ê
x2y2 =

16
9
, (3.18)

and for u = xy3 and v = xy,∫∫
ê
(u− uI)xvx =

∫∫
ê
(y3 − y)y = −

8
15
. (3.19)

Now we have to re-count H(u, v) for those more non-trivial terms of P3 \ P2, and obtain from (3.14):
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(1) When u = x4 and v = x2

H(u, v) = B(x4, x2)+
1
3

∫∫
ê
uxyyvx =

32
5
+ 0 =

32
5
=
1
30

∫∫
ê
uxxxxvxx.

(2) When u = x2y2 and v = x2,

H(u, v) = B(x2y2, x2)+
1
3

∫∫
ê
uxyyvx =

16
9
+
32
9
=
16
3
=
1
6

∫∫
ê
uxxyyvxx.

(3) When u = xy3 and v = xy

H(u, v) = B(xy3, xy)+
1
3

∫∫
ê
uxyyvx = −

8
15
+
8
3
=
32
15
=
4
45

∫∫
ê
uxyyyvxy.

Hence we define a new functional

X(u, v) = H(u, v)−
1
30

∫∫
ê
uxxxxvxx −

1
6

∫∫
ê
uxxyyvxx −

4
45

∫∫
ê
uxyyyvxy. (3.20)

Obviously, for u ∈ P4, H(u, v) = 0, v ∈ P2, and then from Lemma 2.2,

X(u, v) ≤ C |u|5,̂e|v|2,̂e.

Then, we conclude that

B(u, v) = −
1
3

∫∫
ê
uxyyvx +

1
30

∫∫
ê
uxxxxvxx +

1
6

∫∫
ê
uxxyyvxx +

4
45

∫∫
ê
uxyyyvxy + O(1)|u|5,̂e|v|2,̂e.

Define an affine transformation T : (x, y)→ (̂x, ŷ)with

x̂ =
x− xe
he

, d̂y =
y− ye
ke

. (3.21)

Then under T , we have that e→ ê = [−1, 1]2 and the following equations,

û(̂x, ŷ) = u(x, y), ûI (̂x, ŷ) = uI(x, y),

d̂x =
dx
he
, d̂y =

dy
ke
,

û̂x = heux, û̂y = keuy.

By the affine transformation T in (3.21), we have2∫∫
e
(u− uI)xvx =

ke
he

[∫∫
ê
(u− uI)xvx

]
=
ke
he

[
−
1
3

∫∫
ê
uxyyvx +

1
30

∫∫
ê
uxxxxvxx +

1
6

∫∫
ê
uxxyyvxx +

4
45

∫∫
ê
uxyyyvxy + O(1)|u|5,̂e|v|2,̂e

]
= −

k2e
3

∫∫
e
uxyyvx +

h4e
30

∫∫
e
uxxxxvxx +

h2ek
2
e

6

∫∫
e
uxxyyvxx +

4k4e
45

∫∫
e
uxyyyvxy + O(h5)|u|5,e|v|2,e.

(3.22)

This yields the desired result (3.1), and completes the proof of Lemma 3.1. �

3.2. Proof of Lemma 3.2

When u ∈ P2,
∫∫
e(u− uI)v = 0. We list in Table 2 the integration

∫∫̂
e(u− uI)v for u ∈ P3 \ P2 and v ∈ P2. We examine

the non-trivial values in Table 2. First, for u = x3 and v = x,∫∫
ê
(u− uI)v =

∫∫
ê
(x3 − x)x = −

8
15
= −

1
45

∫∫
ê
uxxxvx,

and for u = y3 and v = y, similarly∫∫
ê
(u− uI)v = −

1
45

∫∫
ê
uyyyvy.

2 For simplicity, we omit the hat notation on the top for the integration on ê. For instant, the integration
∫∫̂
e û̂x̂ŷy v̂̂xd̂xd̂y is simplified as

∫∫̂
e uxyyvx in

(3.22).
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Table 2
The integration

∫∫̂
e(u− uI )v for u ∈ P3 \ P2 , v ∈ span{1, x, y, xy, x

2, y2}, where ê = [−1, 1]2 and the sign 0+ denotes that the computed integrals are zero.

u x3 x2y xy2 y3 Note
uI x y x y /
u− uI x3 − x x2y− y xy2 − x y3 − y /∫∫̂
e(u− uI ) 0 0 0 0 v = 1∫∫̂
e(u− uI )x −

8
15 0 −

8
9 0 v = x∫∫̂

e(u− uI )y 0 −
8
9 0 −

8
15 v = y∫∫̂

e(u− uI )xy 0 0 0 0 v = xy∫∫̂
e(u− uI )x

2 0 0 0 0 v = x2∫∫̂
e(u− uI )y

2 0 0 0 0 v = y2

Next for u = x2y and v = y,∫∫
ê
(u− uI)v =

∫∫
ê
(x2y− y)y = −

8
9
= −

1
9

∫∫
ê
uxxyvy,

and for u = y2x and v = x, similarly∫∫
ê
(u− uI)v = −

1
9

∫∫
ê
uxyyvx.

Denote

H(u, v) = B(u, v)+
1
45

∫∫
ê
(uxxxvx + uyyyvy)+

1
9

∫∫
ê
(uxxyvy + uxyyvx), (3.23)

where B(u, v) =
∫∫̂
e(u− uI)v. We can see that for u ∈ P3, H(u, v) = 0, ∀v ∈ P2. Based on Lemma 2.2,

H(u, v) ≤ C |u|4,̂e|v|1,̂e.

This gives

B(u, v) = −
1
45

∫∫
ê
(uxxxvx + uyyyvy)−

1
9

∫∫
ê
(uxxyvy + uxyyvx)+ O(1)|u|4,̂e|v|1,̂e. (3.24)

By using the affine transformation T in (3.21), and by following the proof in Section 3.1, the desired result (3.2) is obtained.
This completes the proof of Lemma 3.2. �

3.3. Proof of Lemmas 3.3 and 3.4

We have from (2.1) and (2.2) and the Green formula,

ah(u− Rhu, uh) =
∑
e

∫
∂e

∂u
∂n
vds =

∑
e

(∫
`1

−

∫
`3

)
uxuh dy+

∑
e

(∫
`2

−

∫
`4

)
uyuh dx, (3.25)

where `i are the edges of e in Fig. 2. The desired result (3.3) follows from Lemma 3.4, and completes the proof of Lemma 3.3.
�
Below we prove Lemma 3.4. Denote by Ih(v) the bilinear interpolation of v ∈ W (e). Hence Ih(v) is continuous in S and

Ih(v)|∂S = 0. Then we obtain∑
e

(∫
`1

−

∫
`3

)
uxIh(v) dy = 0, (3.26)

and ∑
e

(∫
`1

−

∫
`3

)
uxv dy =

∑
e

(∫
`1

−

∫
`3

)
ux(v − Ih(v)) dy. (3.27)

Moreover, there exist the equations

(v − Ih(v))|`i = F(y)vyy|`i , i = 1, 3, (3.28)

where the function

F(y) =
1
2

(
(y− ye)2 − k2e

)
, F(y)|`i = 0, i = 2, 4, (3.29)

F(y) = −
k2e
3
+
1
6
(F 2(y))′′.
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Hence we obtain repeatedly from the integration by parts(∫
`1

−

∫
`3

)
ux(v − Ih(v)) dy =

(∫
`1

−

∫
`3

)
ux(F(y)vyy) dy

=

∫∫
e
(uxF(y)vyy)x =

∫∫
e
uxx

[
−
k2e
3
+
1
6
(F 2(y))′′

]
vyy

= −
k2e
3

∫∫
e
uxxvyy −

1
6

∫∫
e
uxxy(F 2(y))′vyy +

1
6

(∫
`2

−

∫
`4

)
uxx(F 2(y))′vyy dx

= −
k2e
3

∫∫
e
uxxvyy −

1
6

∫∫
e
uxxy(F 2(y))′vyy

= −
k2e
3

∫∫
e
uxxvyy +

1
6

∫∫
e
uxxyy(F 2(y))vyy −

1
6

(∫
`2

−

∫
`4

)
uxxy(F 2(y))vyy dx

= −
k2e
3

∫∫
e
uxxvyy +

1
6

∫∫
e
uxxyy(F 2(y))vyy, (3.30)

where we have used (F 2(y))′|`2∪`4 = (F
2(y))|`2∪`4 = 0. When v = uh ∈ W (e), combining (3.27) and (3.30) gives∑

e

(∫
`1

−

∫
`3

)
uxuh dy = −

k2e
3

∫∫
e
uxx(uh)yy +

1
6

∫∫
e
uxxyy(F 2(y))(uh)yy

= −
k2e
3

∫∫
e
uxx(uh)yy + O(h4)|u|4|uh|2,h. (3.31)

This is the desired result (3.4), and completes the proof of Lemma 3.4. �

4. Lower bounds for eigenvalues

Theorem 4.1. Let the rectangles �ij be uniform. For the eigenvalue by Wilson’s element, there exists the equality

λh − λ = −
(h2 + k2)
3

∫∫
S
uxxuyy −

h2

3

∫∫
S
uyy(uh)xx −

k2

3

∫∫
S
uxx(uh)yy + O(h4). (4.1)

Moreover, there exists the following bound,

λh − λ ≤ −
2(h2 + k2)

3

∫∫
S
u2xy + O(h

4). (4.2)

For the extension of rotated Q1 element (denoted by EQ rot1 ), there exists the formula in [14,15].

λh − λ = −
h2 + k2

3

∫∫
S
u2xy + O(h

4). (4.3)

From Theorem 4.1, and by comparing it with (1.10) for (4.3) of EQ rot1 , we have the following corollary.

Corollary 4.1. Let the rectangles �ij be uniform. When h is small, Wilson’s element provides the lower bound for λ. Also there
exist the following bounds,

λh|Wilson < λh|EQ rot1
< λ, (4.4)

|λh|Wilson − λ| ≥ 2
∣∣∣λh|EQ rot1 − λ∣∣∣ . (4.5)

Evidently, for seeking eigenvalues, the popular nonconforming Wilson’s element is less efficient than EQ rot1 .

4.1. Error expansions for eigenfunctions

In the above discussions, we seek only the expansions of eigenvalues by the FEMs. In this section, let us consider the
errors of eigenfunctions.
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Theorem 4.2. Let �ij be quasi-uniform, there exists the equality,

‖u− uh‖21,h = λh − λ− 2ah(u− Rhu, uh)+ O(h
4). (4.6)

Proof. Since Rhu is the FEM projection in (2.2) to satisfy

ah(Rhu, v) = λ(u, v),∀v ∈ V 0h , (4.7)

we have

ah(u, uh) = ah(u− Rhu, uh)+ ah(Rhu, uh) = ah(u− Rhu, uh)+ λ(u, uh). (4.8)

Then we obtain from (u, u) = (uh, uh) = 1, (1.8), (4.7) and (4.8),

|u− uh|21,h = ah(u− uh, u− uh) = ah(u, u)+ ah(uh, uh)− 2ah(u, uh)
= λ+ λh − 2ah(u− Rhu, uh)− 2ah(Rhu, uh)
= λ+ λh − 2ah(u− Rhu, uh)− 2λ(u, uh)

= λh − λ+ λ‖u− uh‖20 − 2ah(u− Rhu, uh). (4.9)

Due to Lemma 2.1 and

‖u− uh‖21,h = |u− uh|
2
1,h + ‖u− uh‖

2
0 = |u− uh|

2
1,h + O(h

4),

we obtain the desired result (4.6). This completes the proof of Theorem 4.2. �

Based on Theorem 4.2, the error ‖u− uh‖21,h can be obtained from λh−λ in (1.10) and ah(u− Rhu, uh)whose expansions
are given in Section 3.3. Here we provide the error expansions of eigenfunctions by Wilson’s element,

‖u− uh‖21,h = −
h2 + k2

3

∫∫
S
uxxuyy +

h2

3

∫∫
S
uyy(uh)xx +

k2

3

∫∫
S
uxx(uh)yy + O(h4). (4.10)

4.2. Proof of Theorem 4.1

When �ij are uniform, for Wilson’s element Eq. (4.1) is obtained from (3.13). Hence we have from (4.1) and (4.10)

λh − λ = −A− B+ O(h4), (4.11)

‖u− uh‖21,h = −A+ B+ O(h
4) ≥ 0, (4.12)

where

A =
h2 + k2

3

∫∫
S
uxxuyy, (4.13)

B =
h2

3

∫∫
S
uyy(uh)xx +

k2

3

∫∫
S
uxx(uh)yy. (4.14)

By summing (4.11) and (4.12), we obtain

λh − λ+ ‖u− uh‖21,h = −2A+ O(h
4), (4.15)

and therefore

λh − λ = −‖u− uh‖21,h − 2
h2 + k2

3

∫∫
S
uxxuyy + O(h4). (4.16)

Hence by the integration by parts, we have

λh − λ = −‖u− uh‖21,h − 2
h2 + k2

3

∫∫
S
u2xy + O(h

4)

≤ −
2(h2 + k2)

3

∫∫
S
u2xy + O(h

4).

This is the desired result (4.2), and completes the proof of Theorem 4.1. �
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Table 3

The first eigenvalue solutions λ1,h by extrapolation from the Wilson’s solutions, where the true λ1 = 2π2
.
= 19.73920880217872, λ(k)1,h =

22kλ(k−1)1,h −λ
(k−1)
1,2h

22k−1
,

ε
(k)
h =

λ
(k)
1,h−λ1
λ1

, Ratio(k) = |ε(k)2h /ε
(k)
h |, λ

(0)
1,h = λ1,h and h =

1
2N

N 2 4 8 16 32

λ1,h 13.3210127367 17.2960110470 19.0232226313 19.5519189423 19.6918333914

λ
(1)
1,h / 18.6210104838 19.5989598260 19.7281510459 19.7384715410

λ
(2)
1,h / / 19.6641564488 19.7367637939 19.7391595741

λ
(3)
1,h / / / 19.7379162915 19.7391976023

λ
(4)
1,h / / / / 19.7392026271

ε
(0)
h −0.325 −0.124 −0.363 (−1) −0.949 (−2) −0.240 (−2)
ε
(1)
h / −0.566 (−1) −0.711 (−2) −0.560 (−3) −0.374 (−4)
ε
(2)
h / / −0.380 (−2) −0.124 (−3) −0.249 (−5)
ε
(3)
h / / / −0.655 (−4) −0.567 (−6)

ε
(4)
h / / / / −0.313 (−6)

Ratio (0) / 2.63 3.41 3.82 3.95
Ratio (1) / / 7.97 12.7 15.0
Ratio (2) / / / 30.7 49.7
Ratio (3) / / / / 115

Table 4
The second eigenvalue solutions λh,2 by the Wilson element and the true second eigenvalue λ2 = 5π2 .

= 49.34802200544679, where λ(k)2,h =
22kλ(k−1)2,h −λ

(k−1)
2,2h

22k−1
, ε(k)h =

λ
(k)
2,h−λ2
λ2

, Ratio(k) = |ε(k)2h /ε
(k)
h |, λ

(0)
2,h = λ2,h and h =

1
2N

N 3 6 12 24

λ2,h 33.8900820581 43.4379825024 47.6033857887 48.8905854494

λ
(1)
2,h / 46.6206159838 48.9918535508 49.3196520030

λ
(2)
2,h / / 49.1499360552 49.3415052331

λ
(3)
2,h / / / 49.3445460137

ε
(0)
h −0.313 −0.120 −0.354 (−1) −0.927 (−2)
ε
(1)
h / −0.553 (−1) −0.722 (−2) −0.575 (−3)
ε
(2)
h / / −0.401 (−2) −0.132 (−3)

ε
(3)
h / / / −0.704 (−4)

Ratio (0) / 2.62 3.39 3.81
Ratio (1) / / 7.66 12.6
Ratio (2) / / / 30.4

5. Numerical experiments

In this section, for solving (1.1) and (1.2) we provide numerical experiments for Wilson’s element.

5.1. Function ρ = 1

We consider the eigenvalue problem of Laplace’s operator with ρ = 1,

−∆u = −
(
∂2u
∂x2
+
∂2u
∂y2

)
= λu in S,

u = 0 on Γ = ∂S,

where S = {(x, y)|0 ≤ x, y ≤ 1}. Then we have the exact eigenvalues and eigenfunctions,3

uk,` = 2 sin(kπx) sin(`πy), λk,` = (k2 + `2)π2, 1 ≤ k, ` ≤ N − 1. (5.1)

The minimal and the next minimal eigenvalues, denoted by λ1 and λ2, are most interesting. We list in Tables 3 and 4 their
numerical eigenvalues by Wilson’s element. In the tables, their errors and the ratios = | ε2h

εh
| are given, where εh = λh − λ,

and λh and λ are the approximate and the true eigenvalues, respectively. For simplicity, we only choose the uniform squares

3 The constant 2 of eigenfunctions in (5.1) is used for (u, u) = 1.
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with h = k. Denote h = 1/(2N) from Fig. 1, and N = 2m, m = 1, 2, . . . .When | ε2h
εh
| ≈ 2p, we may conclude the empirical

convergence rates O(hp).
We can see from Tables 3 and 4,

λ`,h − λ = O(h2), (5.2)

where λ`,h denote the computed λ` (` = 1, 2) at the mesh size h. Eq. (5.2) agrees with (1.10). From Tables 3 and 4, we can
find the following relative errors of λ1 and λ2,

λ1,h − λ1

λ1
= −0.240(−2), at N = 32, (5.3)

λ2,h − λ2

λ2
= −0.927(−2), at N = 24, (5.4)

to indicate the lower bounds due to negative relative errors. More importantly, the expansions of eigenvalues can be
applied to raise the accuracy by the extrapolation or the splitting extrapolation techniques. For simplicity, we only report
the numerical results for the extrapolation techniques. Based on the computed eigenvalues in Tables 3 and 4, we use the
following extrapolation formulas for λ1,h,

λ
(k)
h =

22kλ(k−1)h − λ
(k−1)
2h

22k − 1
, k = 1, 2, 3, (5.5)

where λ0h = λh. Note that in (5.5), λ
(1)
h denotes the first level of extrapolation. In computation, we have computed from the

first to the fourth levels of extrapolation. Such a procedure is like that in the Romberg integration. The extrapolation results
are also listed in Tables 3 and 4 for λ1,h and λ2,h by Wilson’s element. We can see that all approximate eigenvalues are less
than the true eigenvalues, to verify Theorem 4.1 and Corollary 4.1. Moreover from Table 3 there exist the numerical errors,

λ
(1)
1,h − λ = O(h

4), (5.6)

where λ(1)1,h is the better approximation of λ1,h at the first level of extrapolation. Below, from Table 3 we list the following
eigenvalues at the first and fourth levels of extrapolation,

λ
(1)
1,h − λ1

λ1
= −0.374(−4),

λ
(4)
1,h − λ1

λ1
= −0.313(−6), (5.7)

for Wilson’s elements at N = 32. Evidently, the errors in (5.7) are much smaller than−0.240(−2) in (5.3).

5.2. Function ρ 6= 1

The error analysis is valid for the function ρ = ρ(x, y) ≥ ρ0 > 0. To verify the analysis made, we also carry out the
numerical experiments for ρ 6= 1. Choose

ρ = ρ(x, y) = 1+
(
x−

1
2

)(
y−

1
2

)
, (5.8)

which is symmetric with respect to x and y. Consider

−∆u = −
(
∂2u
∂x2
+
∂2u
∂y2

)
= λρu in S,

u = 0 on Γ = ∂S,

where S is also the unit square. For the ρ in (5.8), we may evaluate
∫∫
S ρuv in (1.5) exactly. The FEM as (1.3) can be easily

performed. We provide the numerical results for λ1, and list them in Table 5. Since for ρ in (5.8), the true solution of λ1
is unknown, we may compute the ratios of sequential errors, to display the empirical convergence rates. The numerical
solutions, the sequential errors and their ratios are listed in Table 5 for Wilson’s element. Since only the sign of ε(0) is
significant, this is also listed in Table 5.
From Table 5, we can see the sequential errors

λ1,2h − λ1,4h

λ1,h − λ1,2h
= O(h2), (5.9)

for Wilson’s element. The empirical convergence rate of λ1 is exactly the same as that in Section 5.1 for ρ = 1. All those
theoretical results have been verified by the numerical results.
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Table 5

The first eigenvalue solutions λ1,h for−∆u = λρu byWilson’s element, where λ
(k)
1,h =

22kλ(k−1)1,h −λ
(k−1)
1,2h

22k−1
, ε(k)h = λ

(k)
1,h−λ

(k)
1,2h , Ratio(k) = |ε

(k)
2h /ε

(k)
h |, λ

(0)
1,h = λ1,h

and h = 1
2N

N 2 4 8 16 32

λ1,h 12.8079589980 17.2866245950 19.0155981774 19.5447728619 19.6848297584

λ
(1)
1,h / 18.7795131273 19.5919227049 19.7211644234 19.7315153906

λ
(2)
1,h / / 19.6460833434 19.7297805380 19.7322054551

λ
(3)
1,h / / / 19.7311090649 19.7322439458

λ
(4)
1,h / / / / 19.7322483963

ε
(0)
h / −4.479 −1.729 −0.529 −0.140
|ε
(1)
h | / / 0.812 0.129 0.104 (−1)
|ε
(2)
h | / / / 0.837 (−1) 0.242 (−2)

|ε
(3)
h | / / / / 0.113 (−2)

Ratio (0) / / 2.59 3.27 3.78
Ratio (1) / / / 6.29 12.49
Ratio (2) / / / / 34.52

Remark 5.1. Strictly speaking, the derivatives (uh)xx and (uh)yy in (1.10)may depend on h. However, based on the numerical
results in (5.6) and (5.9), the principal integrals

∫∫
S uxx(uh)yy and

∫∫
S uyy(uh)xx seem to be independent of h. Hence from

Theorem 4.1 we may assume

λh − λ = −
2(h2 + k2)

3
α

∫∫
S
u2xy + O(h

4),

where α(>0) is a constant independent of h, but may depend on λ. From the numerical data in Tables 3 and 4, we can see
that α = 1.5 and α = 2 for λ1 and λ2, respectively.

6. Concluding remarks

Thenewexpansions of numerical eigenvalues byWilson’s element is summarized in (1.10) for uniform�ij; the strict proof
of Wilson’s element is provided in this paper. Not only can Wilson’s element display a lower bound of the FEM solution of
λi, but also can lead to higher superconvergence rates by the extrapolation or the splitting extrapolation techniques. All the
theoretical analyses have been verified by the numerical experiments in Section 5. Moreover, the higher accurate solutions
can also be obtained numerically by multiple levels of extrapolation for Wilson’s element. It is worth pointing out that not
only these results are new to [15], but also the proof for the lower bound is more intriguing than that in [14,15,28].
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