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1. INTRODUCTION 

For k > 1, let LS,,~ denote the set of polynomial splines of order k (or, degree 
k - 1) on the partition 7~ = {ti)‘;,o of the unit interval. Here 

o=to<t,<...<t,=1, 

so that Snk consists of all s E Ck-’ [0, l] which on each of the intervals 
(4, t*+,), i = 0, * * -, n - 1, reduce to a polynomial of degree gk - 1. 

For k = 2m, let I,,” denote the linear operation of spline interpolation, i.e., 
[4], for eachfE Cm-’ [O, 11, I,,k f is the unique element of S,,k satisfying 

(z,kf)(ti) =jlti>3 i=o 3 . . .F no 

(Znkf)“‘(ti) =f”‘(t.) 
(1.1) 

I 3 i=O,n;j=l,..., m-l. 

We are interested in the behavior of 

Il(f--Zvkf)(j)ll,, j=O, . . . . 2m- 1, 

as the norm of rr, 

jl~ll = max(ti+l - li>, 

tends to zero. Here, and below, 

Ilgllm = sup{lg(t)l : 0 G t G I>* 

Much is known about this problem in certain special cases. For one, the case 
k = 4 of cubic spline interpolation has been covered extensively by many: [I], 
[2], [3], 1121, [Z4], [15]. For the purposes of this note, Sharma and Meir’s result 
[Z4] is the most pertinent. They prove that iff E C2 [0, 11, then 

IIU - 4T4fY2)llm G 4w(f(*); 1141> 

for all partitions 7~ of [0, 11, where 

45 3 = sup{/&) - g(t)1 : 1s - t I G 6, s, t E LO, 111 
is the modulus of continuity of g on [O, 11. 

This implies [6] that 
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for alIfE Cc31 [0, l] with o(f t3); 8) G 6, for all S > 0, the constant K being 
independent of v orf. A similar result had been obtained earlier [3] under some 
restriction on 7~. 

For k > 4, little is known except in the case of a uniform partition [I], [9], 
[13], [Id], [27]. There are some results [IO], [Z4] for k = 6 in the limiting case 
that all points of 7~ are repeated twice, i.e., value as well as first derivative are 
interpolated at each t,, and, correspondingly, the elements of S,,6 are merely in 
[C31 P, 11. 

In this note, it is proved that for allf E Cf3) [0, I], 

IKf - ~2fY3’11m G K3 4-(3); lb-II)9 

where the constant K3 does not depend on rr orf. 
It is hoped that the method of proof will be useful in the treatment of the 

general case. The analysis is therefore carried through for arbitrary k up to the 
point where the complexity of certain computations makes me settle for k = 6. 

2. LEASTSQUARESAPPROXIMATIONBY SPLINES 

Let m > 2, and let L,” denote the linear projector on C [0, I] which associates 
with each g E C [0, I] its best approximation L,” g in Snrn with respect to the 
norm 

Ilgll* = [Ji Ig(t)12dl]“2. 

LEMMA 2.1. If there exists a constant cnz, independent of rr, such that 

llL”llm = suP~ll~~“~ll~/ll~ll,~ g G C[O, 11) G GIL7 
then,for aZEf E C” [O,l], 

II(f - G”)‘“‘llm G Kn4f’“); Il4l>, 

where K,,, is independent of r or f. 

Proof. By [4], iff E Cm [O, 11, then 

(pmf)(m) = Lnmf(m). n 

Hence, as L,,” is a linear projector with Snrn as its range, 

where 
dist(g, S,,m) = inf 11 g - s[[,. 

se.7; 



454 DEBOOR 

Since, by [5], for g E C [0, 11, 

Wg, Gm> G &,4g; ll4l), 

where the constant fi, depends neither on g nor on rr, the conclusion follows. 
Q.E.D. 

COROLLARY. Under the assumption of Lemma 2.1, there exists a constant C,,,, 
indeperldent qf 7r, such thatfor allf E C2m-1 [O, 1] with o(f (‘“‘-‘); 8) G 6, for all 
6 20, 

llf- Crnfllm Q Gl142m. 

Proof. By [5], there exists a constant k,, independent off or V, such that 

dist(f cm), S,,m) G k,lj~\lm 

for all f satisfying the above assumptions. Hence, 

Kf- CYm’llo, Q (1 + cm)hll#’ 

follows. But as Zf f interpolates f at the points of rr, repeated application of 
Rolle’s Theorem yields from this 

II(f-- Z~m)(j’l/m < (I + c,)klpjj[~/j2”‘-j> j= 0, . . ., m, 

where, again, the constants pj do not depend on f or 7. Q.E.D. 

For the remainder of this section, we shall be concerned with bounding 
llLr”llm~ 

First, a general observation. If (xi};,l is a sequence of points in a real normed 
linear space A’, and {Ai);=, is a sequence of continuous linear functionals on X, 
then the conditions 

Pf= i CciXi, A*(f-Pf)=O, i= 1 , - * ., r, for all f e X, 
i=l 

define a continuous linear projector P on X, with range the linear span of 
{x~},~, provided the matrix 

A = (hi Xj)f, j-L 

is nonsingular. We shall refer to P in this case as being given or defined by 
{xill’ and {Mire 

LEMMA 2.2. Let X be a real normed linear space and let P be the linear pro- 
jector on Xgiven by {x~}~~ c Xand {A,],’ c X*. Then 

)IPll G 41~-‘llm~~~ll~ill~ (2.1) 
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where 

Remark. We use the notations 

l/c&, = rnp/aII, for all tc = (q) E R’, 

and 
IPllm =su~~ll~&Jll~ll,: m E R’I> 

where B is any real r x r matrix. 

Proof ofLemma 2.2. Letf E Xand Pf = xi=, uIxI. Then 

IlPf II G 44lm~ and Act = (hif);S1. 

Hence 

IlPfll 4l~-'llm~Il(~~f>ll m G cjl~-‘llmy41~lll -IIf II, 

which proves (2.1), as f was arbitrary. Q.E.D. 

As is well known, L,,” is given by (x1} rr and {X,} rr where {x1} ,’ is any basis of 
S,,“‘, and 

X*f = I:,JG(t)f (t)& i=l , * * *, r, for all f E C [0, 11, 

with {y&’ any basis of S,“‘. We shall choose xi and y1 in such a way that 

v4w~llm/l141m = maxllhll = 1. UOIV I 
For then, by Lemma 2.2, 

llL”llco G IW’llm, 
and the problem of bounding L,,” reduces to bounding the matrix A = (&x,) 
below in the uniform norm, uniformly with respect to n-. 

For ease of notation, it is convenient to extend the partition 7~ of [0, l] by the 
adjunction of points 

t,.& -c . . . -K t-1 -=z 0, 1 -c tn+1 -c * - * < fn+2m-1% 

which, for the present, are otherwise arbitrary. Later, the first few of the 
additional t,‘s will be made to coalesce, i.e., 

t I-“=... = t-, = 0, l=tn+l=...=t”+,-*. 
30 

(2.2) 
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Define 

xt(t> =&!(b . . ., tt+m; t)(ti+m - tr), for all t E R, (2.3) 

where g(tl, . . ,, ti+m; t) is the mth divided difference in s, on the points 
4, . . ., ti+,,,, of the function 

g(s; 1) = (s - t)!y’. (2.4) 

Further, set 

hf = In J+y, g(4, . . ., 4+,; t) f(Odt. 

The following facts about x1 and X1 are known [8], [5J; 

(2.5) 

LEMMA 2.3 (i) The function x,(t) vanishes outside the interval [tl, tl+,J and is 
positive on (tr, tl+,). 

(ii) The sequence of functions {x~};:~-,,, (restricted to the interval [0, l]) is a 
basisfor S,.,“‘; further, for all CQ E R, i = 1 - m, . . ., n - 1, one has 

(iii) Zff E C[I], with [tl, titm] c I, then 

Ihf I Q suPlf(t)l. 
tEI 

COROLLARY. The linear projector L,“’ is given by {x,}:;;+, and (&};:;+ 
provided (2.2) holds. In that case 

where A = (A1 xi>. 

The calculation of bounds on ]]A-‘jjm for a given real matrix A is in general 
difficult. The best-known result concerns strictly diagonally dominant A: If 
A = (ozIJ), and 

then A-’ exists and 

j]A-‘llc,, Q d. 

This result is applicable to the matrix A under discussion only in the simplest 
case, wt= 1. 
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LEMMA 2.4. If all (n - l)-minors of the n x n matrix A = (c(J are non- 
negative and, for some y = (~0, 

> d-’ > 0, 

then A-’ exists and 

Proof. Let B be the algebraic adjoint of A and let D be the diagonal matrix 
((-l)* &), where a,, is the Kronecker delta. Then, by assumption, DBD-’ has 
all entries nonnegative, and 9 = DAD-’ y has all components ad-’ r 0. Hence 

det(A) y = DBD-‘(DAD-‘) y 

is not zero, unless B = 0, which would imply A = 0, a contradiction. Therefore 
A-’ exists and (d,,) = DA-’ D-’ has all entries nonnegative. With this, 

IIYL = lI(DA-’ D-‘)9lL = my jf,l &9j 
I I 

= +yg%j) * min qj > (1 DA-’ D-‘I(,d-‘; 

hence,[[A-‘[lco = IIDA-lD-l[l, G dj[&,. Q.E.D. 

As we shall show in a moment, the matrix A = (h,x,) has all minors non- 
negative, so that Lemma 2.4 applies. Further, by definition (2.3) of xI and (2.5) 
of h, 

4 xj = m(tj+, - tj) s 1:‘” g(L - * *9 tl+m; t)g(tj, * * -9 tj+m; t)dt9 

and, therefore, by Lemma 2.3 (i), 

Xix, = 0 if ti+m G tj or tj+, < t,. 

This implies that A is a band matrix, and that 

h*x, =A-,Ltl+*9 * * *, 4+2m--lb i,j=-mfl, . . 

where 

i 

m&h, - 4 s 1; ghl, * * ‘, %I; t>&r, 
m-In+,9 * * *, sznt-1) = for[rl <m- 1, 

0 otherwise. 

(2.7) 



458 DE BOOR 

Also, if Y-~,,,+~, . . ., Y,,+,,,-~ are any scalars, and (2.2) holds, then 
n-1 i-i-m-1 

Z: h(Yj xj) = 2 4(Yjxj>9 i=-m+l,...,n-1, 
J=-m+l j=i-m+l 

(2.9) 

since by (2.2) and (2.7), 

hixJ=O for j<-m+l and j>n+m--2. 

Therefore, if yj = C(t,, . . ., tjtm), for all j where C is some function of m + 1 
variables, then 

n-l m-l 

j=& w)*-‘uY,~j) = ,=I+, C-1)’ wi+r, 1. *, ~i+r+mML-m+l9 * * *3 h+2m-1) 

= JTfi-m+l, . * ~3 f1+2m--1)9 i=-m+l,...,n-1. 

(2.10) 

With this, Lemma 2.4 shows that bounding ((A-‘11, independently of r reduces 
to showing that for some choice of the function C in (2. IO), with 

IWO, * * *, sm)l<l whenever s~~...~s,,,;s~~s,, 

the function P defined by (2. IO) satisfies 

F(sm+ I 3 . . .) S&l) > d-’ > 0, 

whenever s+,,+, Q . . . G s~,,,-~ ; s1 < Si+m, for all i. 

Theorem 2.1. Let C(s,, . . ., s,,,) be a real-valuedjiimction dejined on 

T= {(sJl’lb E Rm+’ : so < s1 < . . . < s,,,; so -c s,,,> 

and continuous there, which satisfies 

suplC(s0, . . *, %J < 1. 
T 

Further, dejine F on 

T= {(sJ:~:~+, E R3m-’ : s-,,,+~ =ZZ . . . < s~,,+~ ; Sj < s,+, for all j} 

by 
m-l 

fly,,+,, . . ., ~2nd = ,;-2$+, t-1)’ Ctsj9 - + a3 Sj+Jaj, (2.11) 

where 

aj = m(fj+, - sj> Ji,D ds07 * * -3 sm; t)g(sj, * * *, sj+m; t>d, 

j=-m+l , . ..) n- 1. (2.12) 
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If 
infF(s+,,+,, . . ., sZmJ > d;’ > 0, 

T 

then 
WAI, G dm for all partitions 7~. (2.13) 

Proof. By the corollary to Lemma 2.3, it is sufficient to prove that IIA-‘jjm G d, 
with A = (h,xJ. 

It follows from ([II]; Ch. 10, Theorem 4.1) or ([7]; Ch. III, Section 2 (3)) 
that all minors of the matrix 

MS*, ***s Si+m; ujlX.j=l 

are nonnegative, provided 

SlfS2<***<SS,;SjcSj+m for allj; uI < u2 <. . . < u,, 

and r > 1. Since, with the condition (2.2), 

hi Xj = m(tj,, - tj) iig(ti, * * *, tt+m; t>dtj, * * *, tj+m; t>dt, 

i,j=-1 i-m, . . . . n - 1, 

the “basic composition formula” ([12] ; pp. 16-17) implies that all minors of 
the matrix A are nonnegative.’ This, together with the discussion preceding the 
theorem, concludes the proof. Q.E.D. 

Remark. Since the function F defined by (2.11) and (2.12) is continuous on p, 
it is sufficient to show that 

F(L,+,, . . ., SZ,,,-,) > d,’ 

for all s-,,,+~ < s-,,,+~ < . . . < s~,,,-~, to prove (2.13). 

3. QUINTIC SPLINE INTERPOLATION 

The simplest case covered by the analysis of the preceding section is that of 
cubic spline interpolation, i.e., k = 4 or m = 2. In this case, the a,‘s of (2.12) are 
given by 

1 The author gratefully acknowledges that this argument was pointed out to him by W. 
Studden. 
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Hence, with C(S,, sl, sz) E 1, one gets 

F(L,, . . ..s+. ( 
s1 -so - s +2--f* =+* 
2 0 s2 - so I 

Therefore, JJLn2jlm Q 3. 
The next simplest case is quintic spline interpolation, i.e., k = 6 or m = 3. 

In this case 

c 

Sl --so L- 9 
$3 - so 

j=-2, 

flo - a-2 + 2 
SI + s2 - 2.70 

s3-ssg ' 
j=-1, 

2(3 - PO), j= 0, 

2s3 - s2 - S] 
PO - a2 + z-777- , j= 1, 

s3 - s2 
PI---9 j = 2, 

s3 -so 
where 

pJ = (s1+3 

(s,+2 - $+,I2 
- sj+,wj+2 - s.J’ 

for all j. (3.1) 

One computes 

10 i (--l)‘aJ = 2 - 4S, + ~[P-,(s, - SO) + pl(~3 - ~2)]/(~3 - SO). (3.2) 
j=-2 

Hence, as 
0</3,~1, forallj, 

the choice C(so, . . ., s3) z 1 will not give the desired result. We shall now show 
that with 

qso, * * *, 83) = 3u + Iso), 
one gets 

One finds that 

- 2@-,(s, - SO> + 1463 - s2)l/(f3 - SO) 

- /3- 1 MS2 - so> - B-1 ($1 - ~o)lKJ3 - so) 

- /% [2(S3 - s,) - h(S3 - s2)1/(S3 - So> 

+ P-1 s-2h - soY(s3 - SO) + ,% p2(s3 - sZ)/(s3 - SO). 

(3.3) 



ODD-DEGREE SPLINE INTERPOLATION 461 

Hence, by omitting the last two terms in (3.3) (which are nonnegative) and 
combining (3.2) with (3.3), one gets 

2OF(s-2, . . .) 4 a 2 + 15& - al - /L - B*> 
+ (s3 - so>-’ uwL(~* - h3> - 2b* - so>> 
+ Bdb(~3 - 82) - 203 - m. (3.4) 

Now, 
2 

s3 - s2 
h = (s3 (y&;$ s2) G _I = 

82 - Sl 
s3 - s1 

l--, 
s3 -s1 

hence 

Similarly, 

Therefore, 
--plJ -/I-, > -1. 

Next, 
h(s) = s[s(q - so) - 2(s2 - so)] 

has negative slope on 0 < s < 1. Hence, since 

one has 
81 - so 

P-1 uL(~l - so) - 2b, - SON 2 I_ 
61 - soI2 
-__ 

s2 - so [ 692 - so - 2(s, - so) 1 61 - soI3 = (s2 - so)2 - 2(s, - so). 

(3.5) 

(3.6) 

Combining (3.4), (3.5) and (3.6) (with an analogous estimate for the term in 
(3.4) involving /3,), one gets 

2OF(s-,, . . ., sg) > ($1 - soI3 (s3 - s213 __- 
($2 - soj2 + ($3 - sJ2 

___ + 2b2 - 81) 1 KS3 - so). (3.7) 

Now set 
s, - so = a, s2 - s1 = b, s3 - s2 = c, 

to simplify notation. Then by (3.7), 

20F(sm2, . . ., ST> > [(a’ + b(a + b)2)(b + c)’ + (c3 + b(c + b)2)(a + b)2]/ 

/(a f b + c) (a + b)2 (c + b)2. (3.8) 



462 DE BOOR 

One has 

hence, 

a3+b(a+b)2=u3+a2b+2ab2+b3 

= $(a + jb) (a + b)2 + -$(a(~ - b)2 + ab* + 2b3) 

> +(a + +b) (a + b)2, 

since a, b, and c are all nonnegative. Therefore, 

20F(s2, . . ., $5) > +[(a + +b)(a i b)’ + (c + $b)(c + b)2 (a + b>2]/ 

/(a + b + c) (a + b)2 (c + b)2 
= 3. (3.9) 

Because of Theorem 2.1 and its corollary, this proves 

Theorem 3.1. For allpartitions rr of [0, 11, the linearprojectorL,3 on C [0, l] of 
least-squares approximation by Sn3 is boundedin the uniform norm, independently 
of 7. One has the estimate 

llLn311m G 30. 

Hence, there exists a constant I& such that for all partitions v of [0, I] and all 
f E C5 [0, 11 with w( f f5), S) Q 8, for all 6 > 0, 

11 f (‘) - (1,6f)(“(/m < &~j%-~~6-J, j = 0, . . ., 3, 

where In6 denotes interpolation by quintic sphnes as defined in (1 .l). 
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