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ABSTRACT. – In a previous work, the first author has identified three-dimensional boundary conditions
“of von Kármán’s type” that lead, through a formal asymptotic analysis of the three-dimensional solution, to
the classical von Kármán equations, when they are applied to the entire lateral face of a nonlinearly elastic
plate.

In this paper, we consider the more general situation where only a portion of the lateral face is subjected to
boundary conditions of von Kármán’s type, while the remaining portion is subjected to boundary conditions
of free edge. We then show that the asymptotic analysis of the three-dimensional solution still leads in this
case to a two-dimensional boundary value problem that is analogous to, but is more general than, the von
Kármán equations. In particular, it is remarkable that the boundary conditions for the Airy function can still
be determined solely from the data. 2001 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Dans un travail antérieur, le premier auteur a identifié des conditions aux limites tri-
dimensionnelles “de von Kármán” qui, lorsqu’elles sont appliquées à la totalité de la face latérale d’une
plaque non linéairement élastique, conduisent, au moyen d’une analyse asymptotique formelle de la solution
tri-dimensionnelle, aux équations classiques de von Kármán.

Dans ce travail, on considère la situation plus générale où seule une partie de la face latérale est soumise
aux conditions aux limites de von Kármán, la partie restante étant soumise à des conditions aux limites de
bord libre. On établit alors que l’analyse asymptotique de la solution tri-dimensionnelle conduit encore dans
ce cas à un problème aux limites bi-dimensionnel plus général que les équations de von Kármán, mais qui
leur reste analogue. Il est en particulier remarquable que les conditions aux limites pour la fonction d’Airy
puissent être encore déterminées à partir des seules données. 2001 Éditions scientifiques et médicales
Elsevier SAS

1. Outline

The notations not defined here are defined in Section 2. Consider a nonlinearly elastic plate,
with reference configurationΩ

ε = ω × [−ε, ε], ω ⊂ R
2, made with aSt Venant–Kirchhoff

materialwith Lamé constantsλ > 0 andµ> 0, subjected tobody forcesin its interior, tosurface
forceson its upper and lower faces, and to “von Kármán surface forces” on a portionγ1×[−ε, ε]
of its lateral face, whereγ1 ⊂ γ = ∂ω andlengthγ1 > 0. Such von Kármán surface forces have
been proposed by Ciarlet [5]. The remaining portion(γ − γ1) × [−ε, ε] of the lateral face is
free. Theunknown displacement fielduε = (uεi ) then satisfies the following three-dimensional
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boundary value problem:
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As shown in Ciarlet [5], the classicaltwo-dimensional von Kármán equationsare obtained by
applying the method of formal asymptotic expansions to the solution to this problem,under the
assumption thatγ2 = ∅. The purpose of this paper is toconsider the more general case where
lengthγ2 > 0.

Following a by now well-established procedure (see, e.g., [7, Chaps. 4 and 5]), this more
general problem is first put invariational, or weak, form and “scaled” over thefixed domain
Ω = ω×]−1,1[. It is then assumed that its solutionu(ε) :Ω → R

3 admits a formal asymptotic
expansion of the form:

u(ε)= u0 + εu1 + ε2u2 + ε3u3 + ε4u4 + · · · .
It is first shown that the leading termu0 = (u0

i ) of this expansion is such that

u0
α = ζα − x3∂αζ3 and u0

3 = ζ3,

where the fieldζ = (ζi) satisfies atwo-dimensional problem, which may be expressed either
as avariational problem(Theorem 3; theexistenceof a solution to the variational problem is
established in Theorem 4) or as aboundary value problem(Theorem 5). The main result of this
paper (Theorem 7) then consists in showing that, if the solution to this variational problem is
smooth enough, it also satisfies aboundary value problem that generalizes the well-known von
Kármán equations(a converse property also holds; cf. Theorem 8). More specifically, assume
thatω is simply connected, that its boundaryγ is smooth, and thatζα ∈H 3(ω) andζ3 ∈H 4(ω).
Then there exists anAiry functionφ ∈H 4(ω) that satisfies

∂11φ =N22, ∂12φ = −N12, ∂22φ =N11 in ω,

where

Nαβ = 4λµ

λ+ 2µ
E0
σσ (ζ )δαβ + 4µE0

αβ(ζ ),

E0
αβ(ζ )= 1

2
(∂αζβ + ∂βζα + ∂αζ3∂βζ3).

In addition, the pair(ζ3, φ) ∈ H 4(ω) × H 4(ω) satisfies the followinggeneralized von Kármán
equations:
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8µ(λ+µ)

3(λ+ 2µ)
"2ζ3 = [φ, ζ3] + p3 in ω,

"2φ = −µ(3λ+ 2µ)

λ+µ
[ζ3, ζ3] in ω,

ζ3 = ∂νζ3 = 0 onγ1,

mαβνανβ = 0 onγ2,

(∂αmαβ)νβ + ∂τ (mαβνατβ)= 0 onγ2,

φ = φ0 and ∂νφ = φ1 onγ,

where

mαβ = −1

3

{
4λµ

λ+ 2µ
"ζ3δαβ + 4µ∂αβζ3

}
,

andφ0 andφ1 are known functions in terms of the given functionshεα .
In particular then, theboundary conditions on the Airy functioncan still be determined from

the sole knowledge of the data even iflengthγ2 > 0. Furthermore, the pair(ζ3, φ) satisfies a
boundary value problem that generalizes the well-knownvon Kármán equations, corresponding
to the case whereγ2 = ∅.

These results were announced in [9].

2. The three-dimensional problem

Greek indices, corresponding to the “horizontal” coordinates, vary in the set{1,2}, while
Latin indices vary in the set{1,2,3}, the index 3 corresponding to the “vertical” coordinate.
The summation convention with respect to repeated indices is systematically used. The notions
needed below fromthree-dimensional nonlinear elasticityare detailed in, e.g., [6].

Let ω be adomainin R
2, i.e., a bounded, open, and connected subset ofR

2 with a Lipschitz-
continuous boundaryγ , the setω being locally situated on a same side with respect toγ . Let
γ = γ1 ∪ γ2 be a partition ofγ such thatlengthγ1 > 0.

Consider anonlinearly elastic platewith middle surfaceω and thickness 2ε > 0, made with
a St Venant–Kirchhoff materialwith Lamé constantsλε > 0 andµε > 0. In particular then, the
material constituting the plate ishomogeneousand isotropic and thereference configuration
ω× [−ε, ε] of the plate is anatural state.

Remark. – Although the “simplest” among all nonlinearly elastic materials that satisfy these
assumptions, St Venant–Kirchhoff materials admittedly suffer from severe mechanical and
mathematical drawbacks. They can nevertheless be safely employed for justifying, as here,
nonlinear plate theories by means of an asymptotic analysis of the three-dimensional solution,
because the two-dimensional nonlinear equations that are eventually obtained as the outcome of
the asymptotic analysis are essentially the same as those that are obtained when more satisfactory
models of nonlinearly elastic materials are used at the onset, but then at the expense of increased
technical difficulties. Compare for instance the analysis of Ciarlet and Destuynder [8] and that of
Davet [12] or the analysis of Le Dret and Raoult [18] and that of Ben Belgacem [3].

The plate is subjected tobody forcesin its interiorΩε = ω×]−ε, ε[, with density(f ε
i ) ∈

L2(Ωε); to surface forceson its upper and lower facesΓ ε+ = ω× {ε} andΓ ε− = ω× {−ε}, with
density(gεi ) ∈ L2(Γ ε+ ∪Γ ε−); and finally, tohorizontal surface forceson the portionγ1 × [−ε, ε]
of its lateral face, whose only theresultant after integration across the thickness, with density
(hεα) ∈ L2(γ1), is known.
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Let xε = (xεi ) denote a generic point in the setΩε , let ∂εi = ∂/∂xεi , let (nεi ) denote the unit
outer normal vector along the boundary of the setΩε, and finally, let(να) denote the horizontal
unit outer normal vector along the boundaryγ of the setω. The unknown displacement field
uε = (uεi ) :Ω → R

3 then satisfies the followingthree-dimensional boundary value problem:
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The stressesσεij :Ωε → R are the components of thesecond Piola–Kirchhoff stress tensor
and thestrainsEε

ij (u
ε) are those of theGreen–St Venant strain tensor. The partial differential

equations inΩε together with the boundary conditions involving the stressesσεij form the
equilibrium equations, while the relations between the stressesσεij and the strainsEij (uε) form
theconstitutive equation. The boundary conditions onγ1 ×[−ε, ε] together with those onγ1 are
of the form proposed by Ciarlet [5] for justifying, in the special case whereγ1 = γ , the well-
known von Kármán equationsthrough a formal asymptotic analysis of the three-dimensional
solution, with the thickness as the “small” parameter.

Our objective consists in extending this asymptotic analysis to the more general case where
lengthγ2 > 0, i.e., where the plate is also subjected to a boundary condition offree edgeon the
portionγ2 × [−ε, ε] of its lateral face.

3. The method of formal asymptotic expansions

Following a by now well-established procedure (see, e.g., [7, Chaps. 4 and 5]), we begin by re-
writing the boundary value problem of Section 2 in the weak form of theprinciple of virtual work.
To this end, we simply use theGreen formula, which shows that any smooth enough solution
uε = (uεi ) to the boundary value problem of Section 2 also satisfies the followingvariational
problemP(Ωε):
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Note that the boundary conditions onγ1 × [−ε, ε] imposed on the fieldsvε ∈ V(Ωε) insure
that the boundary conditions onγ1 appearing in the boundary value problem are indeed recovered
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by means of Green formula. The regularity imposed on the elements in the spaceV(Ωε) merely
guarantees that all the integrals found in the variational problemP(Ωε) make sense.

We next define an equivalent variational problem, but now posed over a domainΩ that is
independent ofε. This transformation involvesad hoc assumptions on the dataλε, µε, f ε

i ,
gεi , andhεα , regarding their asymptotic behaviors as functions ofε, and ad hoc scalingson
the unknownsuεi and also on thestressesσεij . That we also scale the stresses mean that we
use the “displacement-stress approach” originally advocated by Ciarlet and Destuynder [8],
then justified by Raoult [21] who showed its equivalence with the otherwise more natural, but
substantially more delicate, “displacement approach” (see also [7, Sections 4.3 and 4.7]).

More specifically, letΩ = ω×]−1,1[, letΓ± = ω× {±1}, let x = (xi) denote a generic point
in the setΩ , and let∂/∂i . We then define thescaled displacementsui(ε) :Ω → R and thescaled
stressesσij (ε) :Ω → R by letting:

uεα
(
xε
)= ε2uα(ε)(x), uε3

(
xε
)= εu3(ε)(x),

σ εαβ
(
xε
)= ε2σαβ(ε)(x), σ εα3

(
xε
)= ε3σα3(ε)(x), σ ε33

(
xε
)= ε4σ33(ε)(x)

for all xε = πεx ∈ Ωε, whereπε(x1, x2, x3) = (x1, x2, εx3). We nextassumethat there exist
constantsλ > 0 andµ > 0 and functionsfi ∈ L2(Ω), gi ∈ L2(Γ+ ∪ Γ−), andhα ∈ L2(γ1) that
are allindependent ofε, such that

λε = λ and µε = µ,

f ε
i

(
xε
)= ε3fi(x) for all xε = πεx ∈Ωε,

gεi
(
xε
)= ε4gi(x) for all xε = πεx ∈ Γ ε+ ∪ Γ ε−,

hεα(y)= ε2hα(y) for all y ∈ γ1.

Remarks. – (1) The assumptions on the functionsf ε
α andgεα will ultimately guarantee that the

functionsNαβ found in Theorem 5 satisfy∂αNαβ = 0 inω. These relations in turn insure that an
Airy functionmay be associated with the two-dimensional problem found at the outcome of the
asymptotic analysis; cf. Theorem 7.

(2) The above scalings and assumptions on the data have been justified by Miara [20], who
showed that they constitute the necessary preliminaries to any asymptotic analysis that lead to
a nonlinear Kirchhoff–Love plate theory, such as that found here (naturally, the assumptions on
the data may take a more general form, asλε = εtλ, f ε

i (x
ε) = ε3+t fi (x), etc., witht any fixed

real number).

Thanks to these scalings and assumptions on the data, problemP(Ωε) now takes the form of
a variational problemP(ε;Ω) posed over thefixeddomainΩ :

THEOREM 1. –The scaled displacement fieldu(ε) = (ui(ε)) satisfies the following varia-
tional problemP(ε;Ω):

u(ε) ∈ V(Ω)= {
v = (vi) ∈ W1,4(Ω); vα independent ofx3 andv3 = 0 onγ1 × [−1,1]},

∫
Ω

σij (ε)∂j vi dx +
∫
Ω

σij (ε)∂iu3(ε)∂j v3 dx + ε2
∫
Ω

σij (ε)∂iuα(ε)∂j vα dx
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=
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1
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2
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}+ ε4

2µ
σ33(ε). ✷

The variational problemP(ε;Ω) constitutes the point of departure of our asymptotic analysis,
inasmuch as its specific dependence on the parameterε makes it amenable to themethod of
formal asymptotic expansions(for details about this well-known method, see, e.g., [2, Chap.
XIV, Section 14] or [7, Section 4.3]):

THEOREM 2. –Assume that the scaled displacements and stresses can be written as formal
asymptotic expansions of the form:

u(ε)= u0 + εu1 + · · · and σij (ε)= σ 0
ij + εσ 1

ij + · · ·

and that the leading terms of these expansions satisfy

u0 = (
u0
i

) ∈ V(Ω), ∂3u
0
3 ∈ C0(Ω), σ 0

ij = σ 0
ji ∈ L2(Ω).

Then the cancellation of the factors ofε0 in problemP(ε;Ω) shows that the leading termu0

should satisfy the following “limit” problemPKL(Ω):

u0 ∈ VKL(Ω)= {
v = (vi) ∈ H1(Ω); vα independent ofx3 andv3 = 0

onγ1 × [−1,1], ∂iv3 + ∂3vi = 0 in Ω
}
,

∫
Ω

σ 0
αβ∂βvα dx +

∫
Ω

σ 0
αβ∂αu

0
3∂βv3 dx

=
∫
Ω

f3v3 dx +
∫

Γ+∪Γ−

g3v3 dΓ + 1

2

∫
γ1

{ 1∫
−1

vα dx3

}
hα dγ

for all v ∈ VKL(Ω), where



PH.G. CIARLET, L. GRATIE / J. Math. Pures Appl. 80 (2001) 263–279 269

σ 0
αβ = 2λµ

λ+ 2µ
E0
σσ

(
u0)δαβ + 2µE0

αβ

(
u0),

E0
αβ

(
u0)= 1

2

(
∂αu

0
β + ∂βu

0
α + ∂αu

0
3∂βu

0
3

)
.

Proof. –The proof is analogous to that corresponding to a clamped plate (see [7, Theorem 4.7-
2]) and for this reason is omitted. Suffice it to say that the above variational equations indeed
make sense for vector fieldsv = (vi) ∈ H1(Ω) satisfying∂iv3 + ∂3vi = 0 inΩ , as these relations
imply that their third componentv3 is inH 2(Ω); cf. [7, Theorem 1.4-4]. ✷

ProblemPKL(Ω), like its two-dimensional counterpartP(ω) studied in the next section, is
called a “limit” problemto remind that, since it is satisfied by theleading termu0 of the formal
asymptotic expansion of the scaled unknownu(ε), it formally corresponds to lettingε = 0. The
subscript “KL” reminds thatu0 is a (scaled)Kirchhoff–Love displacement field(cf. Thm. 3).

4. The limit two-dimensional “displacement” problem

We now show thatthe three-dimensional limit problemPKL(Ω) found in Theorem2 is in effect
a two-dimensional problem“ in disguise”, in that any solutionu0 = (u0

i ) :Ω → R
3 to PKL(Ω)

can be computed from a solutionζ = (ζi) : ω → R
3 to a two-dimensional problem, denoted

P(ω) below. This problem is called a “displacement” problemto reflect that its unknown is the
(scaled)displacement fieldof the middle surfaceω of the plate.

THEOREM 3. – (a)Define the space(∂ν denotes the outer normal derivative alongγ ):

V(ω)= {
η = (ηi) ∈H 1(ω)×H 1(ω)×H 2(ω); η3 = ∂νη3 = 0 onγ1

}
.

Then there existsζ = (ζi) ∈ V(ω) such that the components of the leading termu0 = (u0
i )

satisfying problemPKL(Ω) are of the form

u0
α = ζα − x3∂αζ3 and u0

3 = ζ3.

(b) Let

aαβστ = 4λµ

λ+ 2µ
δαβδστ + 2µ(δασδβτ + δατ δβσ ),

E0
αβ(η)= 1

2
(∂αηβ + ∂βηα + ∂αη3∂βη3),

p3 =
1∫

−1

f3 dx3 + g3(·,1)+ g3(·,−1).

Thenu0 = (u0
i ) satisfiesPKL(Ω) if and only ifζ = (ζi) satisfies the following two-dimensional

variational problemP(ω): ζ ∈ V(ω) and∫
ω

aαβστ ∂στ ζ3∂αβη3 dω+
∫
ω

aαβστE
0
στ (ζ )∂αζ3∂βη3 dω+

∫
ω

aαβστE
0
στ (ζ )∂βηα dω

=
∫
ω

p3η3 dω+
∫
γ1

hαηα dγ

for all η = (ηi) ∈ V(ω).
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Proof. –It is known (see, e.g., [7, Theorem 1.4-4]) thatv = (vi) ∈ VKL(Ω) if and only if there
existsη = (ηi) ∈ V(ω) such thatvα = ηα − x3∂αη3 andv3 = η3. Thanks to this equivalence, the
variational equations of problemPKL(Ω) are easily converted into those of problemP(ω), and
vice versa. ✷

We next establish theexistenceof a solution to problemP(ω).
THEOREM 4. –Letω be a domain inR2, letγ1 be a subset of its boundary that satisfieslength

γ1 > 0, let p3 ∈ L2(ω) and hα ∈ L2(γ1) be given functions, and letP(ω) be the variational
problem found in Theorem3.

(a)A necessary condition for the existence of a solution toP(ω) is that the functionshα satisfy
the compatibility conditions:∫

γ1

h1 dγ =
∫
γ1

h2 dγ =
∫
γ1

(x1h2 − x2h1)dγ = 0.

(b) If the necessary condition of(a) is satisfied and the norms‖hα‖L2(γ1)
are small enough,

P(ω) has at least one solution.

Proof. –To begin with, we specify some notations: First, givenη = (ηi) ∈ V(ω), we let:

ηH = (ηα) and eαβ(ηH)= 1

2
(∂αηβ + ∂βηα).

We then define the space:

V0
H (ω)= {

ηH = (ηα) ∈ H1(ω); eαβ(ηH)= 0 inω
}

= {
ηH = (ηα); η1 = a1 − bx2, η2 = a2 + bx1 with a1, a2, b ∈ R

}
.

Finally, we let| · |0,ω and‖ · ‖m,ω denote the norms in the spacesL2(ω) andHm(ω), or L2(ω)

andHm(ω) (boldface letters mean that we consider spaces of vector-valued functions).
(i) We first note that, if the variational equations of problemP(ω) are satisfied forη = (ηi) ∈

V(ω), they must also be satisfied byη′ = (η1 +a1 −bx2, η2 +a2 +bx1, η3) for any constantsa1,
a2, b, sinceη′ is again inV(ω). Hencewe must have

∫
γ1
hαηα dγ = 0 for all ηH = (ηα) ∈ V0

H(ω),
since the other terms in the variational equations are unaltered; or equivalently∫

γ1

h1 dγ =
∫
γ2

h2 dγ =
∫
γ1

(x1h2 − x2h1)dγ = 0.

Hence (a) is proved.
(ii) We next show thatsolving problemP(ω) is equivalent to finding the stationary points of

anad hocfunctional over anad hocfunction space.
To this end, we first define a functionJ : V(ω)→ R by letting:

J (η)= 1

2

∫
ω

{
1

3
aαβστ ∂στ η3∂αβη3 + aαβστE

0
στ (η)E

0
αβ(η)

}
dω−

(∫
ω

p3η3 dω+
∫
γ1

hαηα dγ

)
,

for any η ∈ V(ω). NotingX/Y the quotient space ofX by Y , we then define the space (here,
H1(ω)= (H 1(ω))2)

Ṽ(ω)= {
H1(ω)/V0

H(ω)
}× V3(ω),
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where

V3(ω)= {
η3 ∈H 2(ω); η3 = ∂νη3 = 0 onγ1

}
.

Given anyηH = (ηα) ∈ H1(ω), let η̃H ∈ H1(ω)/V0
H (ω) denote the equivalence class ofηH , and

let η̃ = (η̃H ,η3), with η̃H ∈ H1(ω)/V0
H (ω) andη3 ∈ V3(ω), denote a generic element in the

spaceṼ(ω).
If the necessary condition of (a) is satisfied, we haveJ (ηH ,η3)= J (ζH ,η3) for anyζH ∈ η̃H .

Hence we can unambiguously define afunctionalJ̃ : Ṽ(ω)→ R by letting, for each̃η = (η̃H ,η3),

J̃ (η̃)= J (ζH ,η3) for anyζH ∈ η̃H .

We then note that, as a sum of continuous multi-linear forms, the functionalJ̃ is differentiable
(in fact, infinitely so) over the spacẽV(ω), equipped with its “natural” norm‖ · ‖Ṽ(ω) defined for
any η̃ = (η̃H ,η3) by

‖η̃‖Ṽ(ω) = ‖η̃H‖H1(ω)/V0
H(ω)

+ ‖η3‖2,ω,

where

‖η̃H‖H1(ω)/V0
H(ω)

= inf
ζH∈η̃H

‖ζH ‖H1(ω).

For arbitrary elements̃ζ , η̃ ∈ Ṽ(ω), the Gâteaux derivatives̃J ′(ζ̃ )(η̃) are obtained by
computing the linear part with respect toη̃ in the difference{J̃ (ζ̃ + η̃)− J̃ (ζ̃ )}. This gives

J̃ ′(ζ̃ )(η̃)=
∫
ω

aαβστ ∂στ ζ3∂αβη3 dω+
∫
ω

aαβστE
0
στ (ζ )∂αζ3∂βη3 dω

+
∫
ω

aαβστE
0
στ (ζ )∂βηα dω−

(∫
ω

p3η3 dω+
∫
γ1

hαηα dγ

)
.

Henceζ ∈ V(ω) satisfies problemP(ω) if and only if J̃ ′(ζ̃ ) = 0, i.e., if and only if ζ̃ is a
stationary point of the functional̃J over the spacẽV(ω).

(iii) The functionalJ̃ is sequentially weakly lower semi-continuous over the spaceṼ(ω).
Thequadraticpart

η̃ = (η̃H ,η3)→ 1

6

∫
ω

aαβστ ∂στ η3∂αβη3 dω+ 1

2

∫
ω

aαβστ eστ (η̃H)eαβ(η̃H)dω

of the functionalJ̃ is weakly lower semi-continuous, as a strongly continuous and convex
function (the convexity is a consequence of the inequalityaαβστ tστ tαβ � 4µtαβtαβ , which holds
for all symmetric matrices(tαβ)).

Let next(ζ̃ k)∞k=0 be a weakly convergent sequence inṼ(ω) and letζ̃ denotes its weak limit.
Thelinear part

L : η̃ → −
(∫
ω

p3η3 dω+
∫
γ1

hαηα dγ

)

of the functionalJ̃ is such that

L
(
ζ̃ k
)→ L(ζ̃ ) ask → ∞,

by definition of weak convergence, sinceL is strongly continuous.
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To study to behavior of thecubicandquartic parts, we first observe that there existηkH ∈ ζ̃ kH
andηH ∈ ζ̃H such that (weak convergence is denoted⇀)

ηkH ⇀ ηH in H1(ω).

Then the weak convergenceseαβ(ηkH ) ⇀ eαβ(ηH) in L2(ω) together with the compact
imbedding ofH 1(ω) intoL4(ω) implies that∫

ω

aαβστ eστ
(
ηkH
)
∂αζ

k
3∂βζ

k
3 dω→

∫
ω

aαβστ eστ (η)∂αζ3∂βζ3 dω

ask → ∞; the same compact imbedding implies that∫
ω

aαβστ ∂σ ζ
k
3∂τ ζ

k
3 ∂αζ

k
3∂βζ

k
3 dω→

∫
ω

aαβστ ∂σ ζ3∂τ ζ3∂αζ3∂βζ3 dω

ask → ∞.
(iv) If the norms‖hα‖L2(γ1)

are small enough, the functionalJ̃ is coercive on the spacẽV(ω).

An inspection of the various terms found in the functionalJ̃ shows that:

J̃ (η̃)� 2µ

3
|η3|22,ω + 2µ

∑
α,β

∣∣E0
αβ(η̃)

∣∣2
0,ω

− c1|η3|0,ω − c2‖η̃H‖H1(ω)/V0
H (ω)

for all η̃ = (η̃H ,η3) ∈ Ṽ(ω), where|η3|22,ω =∑
α,β |∂αβη3|20,ω, c1 = |p3|0,ω, and

c2 = χ

{∑
α

‖hα‖2
L2(γ1)

}1/2

,

χ denoting the norm of the trace operator fromH 1(ω) intoL2(γ1).
There exists a constantc3 > 0 such that

‖η̃H‖H1(ω)/V0
H(ω)

� c3

∑
α,β

∣∣eαβ(η̃H)∣∣0,ω
for all η̃H ∈ H1(ω)/V0

H (ω) (this two-dimensional Korn inequality in the quotient space
H1(ω)/V0

H(ω) is established as in [14, Chap. 3, Theorem 3.4]). This inequality, combined with
the definition of the functionsE0

αβ(η̃) and with the continuous imbedding ofH 1(ω) intoL4(ω),
shows that there exists a constantc4 such that:

c−1
3 ‖η̃H ‖H1(ω)/V0

H (ω)
�
∑
α,β

∣∣E0
αβ(η̃)

∣∣
0,ω + 1

2

∑
α,β

‖∂αη3‖L4(ω)‖∂βη3‖L4(ω)

�
∑
α,β

∣∣E0
αβ(η̃)

∣∣
0,ω + c4‖η3‖2

2,ω

for all η̃ = (η̃H ,η3) ∈ Ṽ(ω). Since length γ1 > 0, there exists a constantc5 > 0 such that
c5‖η3‖2,ω � |η3|2,ω for all η3 ∈ V3(ω).
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Together, the previous inequalities thus give

J̃ (η̃)�
(

2µ

3
c2

5 − c2c3c4

)
‖η3‖2

2,ω − c1‖η3‖2,ω + 2µ
∑
α,β

∣∣E0
αβ(η̃)

∣∣2
0,ω − c2c3

∑
α,β

∣∣E0
αβ(η̃)

∣∣
0,ω

for all η̃ = (η̃H ,η3) ∈ Ṽ(ω). Consequently, if 2µc2
5 > 3c2c3c4, i.e., if the norms‖hα‖L2(γ1)

are
small enough, there exist constantsc6 > 0, c7 > 0, andc8 such that

J̃ (η̃)� c6‖η3‖2
2,ω + c7

∑
α,β

∣∣E0
αβ(η̃)

∣∣2
0,ω + c8

for all η̃ = (η̃H ,η3) ∈ Ṽ(ω). To conclude, we then simply observe that the relation

‖η̃‖Ṽ(ω) = (‖η̃H ‖H1(ω)/V0
H(ω)

+ ‖η3‖2,ω
)→ +∞

implies that(
∑

α,β |Eαβ(η̃)|20,ω + ‖η3‖2
2,ω)→ +∞, hence thatJ̃ (η̃)→ +∞. ✷

We next write theboundary value problemthat is, at least formally, equivalent to the variational
problemP(ω). In what follows,(να) denotes the unit outer normal vector alongγ , (τα) denotes
the unit tangential vector defined byτ1 = −ν2, τ2 = ν1, and∂ν and ∂τ denote the associated
normal and tangential derivatives alongγ .

THEOREM 5. –Assume that the boundaryγ is smooth enough. Then any smooth enough
solutionζ = (ζi) of the variational problemP(ω) found in Theorem3 also satisfies the following
boundary value problem:

8µ(λ+µ)

3(λ+ 2µ)
"2ζ3 −Nαβ∂αβζ3 = p3 in ω,

∂βNαβ = 0 in ω,

ζ3 = ∂νζ3 = 0 onγ1,

Nαβνβ = hα onγ1,

mαβνανβ = 0 onγ2,

(∂αmαβ)νβ + ∂τ (mαβνατβ)= 0 onγ2,

Nαβνβ = 0 onγ2,

where

mαβ = −1

3
aαβστ ∂στ ζ3 = −1

3

{
4λµ

λ+ 2µ
"ζ3δαβ + 4µ∂αβζ3

}
,

Nαβ = aαβστE
0
στ (ζ )= 4λµ

λ+ 2µ
E0
σσ (ζ )δαβ + 4µE0

αβ(ζ ).

Proof. –The proof rests on theGreen formulas

−
∫
ω

mαβ∂αβη3 dω= −
∫
ω

(∂αβmαβ)η3 dω+
∫
γ

{
(∂αmαβ)νβ + ∂τ (mαβνατβ)

}
η3 dγ

−
∫
γ

mαβνανβ∂νη3 dγ,
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ω

Nαβ∂αζ3∂βη3 dω= −
∫
ω

{
∂β(Nαβ∂αζ3)

}
η3 dω+

∫
γ

(Nαβ∂αζ3)νβη3 dγ,

∫
ω

Nαβ∂βηα dω= −
∫
ω

(∂βNαβ)ηα dω+
∫
γ

Nαβνβηα dγ,

valid for all vector fieldsη = (ηi) ∈ H 1(ω)×H 1(ω)× H 2(ω) and all functionsmαβ ∈ H 2(ω)

andNαβ ∈H 1(ω)). Also used are the relation

∂αβmαβ = 8µ(λ+µ)

3(λ+ 2µ)
"2ζ3,

the relations∂βNαβ = 0 in ω, which allow to replace∂β(Nαβ∂αζ3) by Nαβ∂αβζ3 in the first
partial differential equation inω, and the relationsNαβνβ = 0 onγ2, which allow to cancel the
term(Nαβ∂αζ3)νβ otherwise appearing in the second boundary condition onγ2. ✷

In order that this boundary value problem be expressed in terms of “physical” quantities, it
remains to “de-scale” the unknowns: To this end we are naturally led, in view of the scalings
made in Section 3, to define the “limit” displacement fieldζ ε = (ζ εi ) :ω → R

3 of the middle
surface of the plate through thede-scalings:

ζ εα = ε2ζα and ζ ε3 = εζ3 in ω.

Together with the assumptions on the data made in Section 3, these de-scalings lead to
the following immediate corollary to Theorem 5 (naturally, the variational problemP(ω) of
Theorem 3 could be likewise de-scaled):

THEOREM 6. –Assume that the boundaryγ is smooth enough and thatζ = (ζi) is a smooth
enough solution of problemP(ω). Then the corresponding de-scaled limit displacement field
ζ ε = (ζ εi ) satisfies the following boundary value problem:

8µε(λε +µε)

3(λε + 2µε)
ε3"2ζ ε3 −Nε

αβ∂αβζ
ε
3 = pε3 in ω,

∂βN
ε
αβ = 0 in ω,

ζ ε3 = ∂νζ
ε
3 = 0 onγ1,

Nε
αβνβ = hεα onγ1,

mε
αβνανβ = 0 onγ2,

(∂αm
ε
αβ)νβ + ∂τ (m

ε
αβνατβ)= 0 onγ2,

Nε
αβνβ = 0 onγ2,

where

mε
αβ = −ε3

3

{
4λεµε

λε + 2µε
"ζ ε3δαβ + 4µε∂αβζ ε3

}
,

Nε
αβ = ε

{
4λεµε

λε + 2µε
E0
σσ

(
ζ ε
)
δαβ + 4µεE0

αβ

(
ζ ε
)}
,

E0
αβ(ζ

ε)= 1

2

(
∂αζ

ε
β + ∂βζ

ε
α + ∂αζ

ε
3∂βζ

ε
3

)
,
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pε3 =
ε∫

−ε
f ε

3 dxε3 + gε3(·, ε)+ gε3(·,−ε).

The partial differential equations inω found in Theorem 6 show that the limit two-dimensional
equations justified here belong to thenonlinear Kirchhoff–Love plate theory, like those of a
nonlinearly elastic clamped platejustified by a similar method by Ciarlet and Destuynder [8].
We recall that a nonlinear Kirchhoff–Loveplate theory is essentially characterized by the scalings
that are made at the onset of the asymptotic analysis, of order two and one with respect to the
horizontal and vertical components of the displacement, respectively. These scalings eventually
produce semilinear partial differential equations of the fourth order with respect to the vertical
componentζ ε3 and of the second order with respect to the horizontal componentsζ εα , which
reduce to those of thelinear Kirchhoff–Love plate theory(see, e.g., [7, Section 1.7]) when only
the linear terms with respect to the unknowns are retained. The same scalings also produce a
limit displacement field across the thickness of the plate that is aKirchhoff–Love displacement
field, i.e., that is of the form((ζ εα − xε3∂αζ

ε
3 ), ζ

ε
3 ).

For further comments about the nonlinear Kirchhoff–Love theory, see in particular [7, Section
4.9]. For its relation and difference with other “limit” two-dimensional nonlinear theories for
planar elastic bodies, see in particular [15], where the crucial influence of the scalings in this
respect is particularly well highlighted.

Remark. – The coefficient8µ
ε(λε+µε)

3(λε+2µε) factorizing"2ζ ε3 in the first partial differential equation
is theflexural rigidity of the plate.

5. Equivalence of the limit two-dimensional displacement problem with generalized
von Kármán equations

Under the crucial assumption that the domainω is simply connected, we now establish (in two
stages; cf. Theorems 7 and 8) theequivalence, within the class of smooth solutions, of the two-
dimensional “displacement” boundary value problem found in Section4 with a two-dimensional
problem that generalizes the well-known von Kármán equations. While the unknowns in the
former problem are the three componentsζ εi of the limit displacement fieldζ ε of the middle
surface of the plate, there are only two unknowns in the latter, one being the vertical component
ζ ε3 of the displacement fieldζ ε of the middle surface of the plate and the other being anAiry
functionφε , from the knowledge of which the horizontal componentsζ εα can be determined.

Without loss of generality, we henceforth assume that the origin 0 belongs to the boundaryγ

of ω.

THEOREM 7. –Assume that the domainω is simply connected and that its boundaryγ is
smooth enough. Let there be given a solution(ζ εi ) of the boundary value problem found in
Theorem6 with the regularity

ζ εα ∈H 3(ω) and ζ ε3 ∈H 4(ω).

Then the functions̃hεα :γ → R defined byh̃εα = hεα on γ1 and byh̃εα = 0 on γ2 necessarily
belong to the spaceH 3/2(γ ) and they necessarily satisfy the compatibility relations:

∫
γ

h̃ε1 dγ =
∫
γ

h̃ε2 dγ =
∫
γ

(
x1h̃

ε
2 − x2h̃

ε
1

)
dγ = 0.
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In addition, there exists anAiry function φε ∈ H 4(ω), uniquely determined by the
requirements thatφε(0)= ∂αφ

ε(0)= 0, such that

Nε
11 = ε∂22φ

ε, Nε
12 = −ε∂12φ

ε, Nε
22 = ε∂11φ

ε in ω.

Finally, the pair(ζ ε3 , φ
ε) ∈H 4(ω)×H 4(ω) satisfies the followinggeneralized von Kármán

equations:

8µε(λε +µε)

3(λε + 2µε)
ε3"2ζ ε3 = ε

[
φε, ζ ε3

]+ pε3 in ω,

"2φε = −µε(3λε + 2µε)

λε +µε

[
ζ ε3 , ζ

ε
3

]
in ω,

ζ ε3 = ∂νζ
ε
3 = 0 onγ1,

mε
αβνανβ = 0 onγ2,(

∂αm
ε
αβ

)
νβ + ∂τ

(
mε
αβνατβ

)= 0 onγ2,

φε = φε0 and ∂νφ
ε = φε1 onγ,

wheremε
αβ , Nε

αβ , andpε3 are defined as in Theorem6, and

[η,χ] = ∂11η∂22χ + ∂22η∂11χ − 2∂12η∂12χ,

φε0(y)= −y1

∫
γ (y)

h̃ε2 dγ + y2

∫
γ (y)

h̃ε1 dγ +
∫

γ (y)

(
x1h̃

ε
2 − x2h̃

ε
1

)
dγ, y ∈ γ,

φε1(y)= −ν1(y)

∫
γ (y)

h̃ε2 dγ + ν2(y)

∫
γ (y)

h̃ε1 dγ, y ∈ γ,

whereγ (y) denotes the oriented arc joining0 to y alongγ .

Proof. –For convenience, the proof is given in terms of “scaled” unknownsζi andφ defined
by ζ ε3 = εζ3, ζ εα = ε2ζα , andφε = ε2φ and in terms of “scaled” dataλ, µ, p3, andhα defined as
in Sections 3 and 4.

(i) The assumed regularity on the functionsζi imply thatNαβ ∈H 2(ω) andNαβνβ = h̃α on the
entireboundaryγ . Hence the functions̃hα belong to the spaceH 3/2(γ ). Besides, they satisfy the
announced compatibility relations, as these are simply a re-statement of part (a) in Theorem 4.

(ii) Since the domainω is simply connected, the equation∂βNαβ = 0 inω imply that there exist
distributionsψα ∈ D′(ω), unique up to the addition of constants, such that (see [23, Theorem VI,
p. 59]):

N1α = ∂2ψα and N2α = −∂1ψα.

Since the equationN12 = N21 in ω implies that∂αψα = 0, there likewise exists a distribution
φ ∈D′(ω), unique up to the addition of polynomials of degree� 1, such that

ψ1 = ∂2φ and ψ2 = −∂1φ,

hence such that

N11 = ∂22φ, N12 = −∂12φ, N22 = ∂11φ.



PH.G. CIARLET, L. GRATIE / J. Math. Pures Appl. 80 (2001) 263–279 277

As shown by Amrouche and Girault [1], a domainω is a Nikodym setin the sense of Deny
and Lions [13, p. 328], i.e., any distributionT ∈ D′(ω) such that∂αT ∈ L2(ω) is in L2(ω).
Consequently, the assumed regularitiesNαβ ∈ H 2(ω) imply thatφ ∈H 4(ω). Clearly,φ is then
uniquely defined if we impose thatφ(0)= ∂αφ(0)= 0.

(iii) The relations just established between the functions∂αβφ andNαβ show that

∂τ (∂2φ)= ν1∂22φ − ν2∂21φ =N1βνβ = h̃1,

−∂τ (∂1φ)= −ν1∂12φ + ν2∂11φ =N2βνβ = h̃2,

along the boundaryγ . For anyy ∈ γ , we thus have

∂1φ(y)= −
∫

γ (y)

h̃2 dγ and ∂2φ(y)=
∫

γ (y)

h̃1 dγ,

so that

∂νφ(y)= −ν1(y)

∫
γ (y)

h̃2 dγ + ν2(y)

∫
γ (y)

h̃1 dγ,

∂τφ(y)= −τ1(y)

∫
γ (y)

h̃2 dγ + τ2(y)

∫
γ (y)

h̃1 dγ.

Hence

φ = φ0 and ∂νφ = φ1 onγ,

where the functionsφ0 andφ1 are of the form given in the theorem. Note in passing that these
boundary conditions provide another means of deriving the compatibility conditions that must
be satisfied by the functions̃hα .

(iv) The expression of the functionsNαα in terms of the functionsζi show that

"2φ ="(Nαα)= 2µ(3λ+ 2µ)

λ+ 2µ

{
2"(∂αζα)+"(∂αζ3∂αζ3)

}
.

Thanks to the relations∂αNαβ = 0, which imply in particular that

0 = ∂αβNαβ = 8µ(λ+µ)

λ+ 2µ
"(∂αζα)+ 2λµ

λ+ 2µ
"(∂αζ3∂αζ3)+ 2µ∂αβ(∂αζ3∂βζ3),

the expression"(∂αζα) in "2φ can be replaced by a function ofζ3 only. In this fashion, we
obtain

"2φ = −µ(3λ+ 2µ)

λ+µ
[ζ3, ζ3],

and the proof is complete.✷
Remarks. – (1) The regularity and compatibility conditions satisfied by the functionsh̃εα are

consequences of theassumptionof the existence of a solution(ζ εi ) with ad hocregularity to the
boundary value problem found in Theorem 6. There is otherwise no reason why these properties
should be satisfiedin general.

(2) Naturally, the classicalvon Kármán equationsare recovered by lettingγ1 = γ .
(3) The situation is substantially more delicate ifω is not simply connected. In this direction,

see in particular [11] and [16].
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The next result is the converse to Theorem 7.

THEOREM 8. –Assume that the functions̃hεα defined as in Theorem7 are in the space
H 3/2(γ ). Let there be given a solution(ζ ε3 , φ

ε) of the generalized von Kármán equations of
Theorem7 with the regularity

ζ ε3 ∈H 4(ω) and φε ∈H 4(ω).

Then the functions̃hεα necessarily satisfy the same compatibily relations as in Theorem7.
Next, define functionsNε

αβ ∈H 2(ω) by letting:

Nε
11 = ε∂22φ

ε, Nε
12 =Nε

21 = −ε∂12φ
ε, Nε

22 = ε∂11φ
ε in ω.

Then there exist functionsζ εα ∈H 3(ω) such that

Nε
αβ = ε

{
4λεµε

λε + 2µε
E0
σσ

(
ζ ε
)
δαβ + 4µεE0

αβ

(
ζ ε
)}
,

whereζ ε = (ζ εi ) and

E0
αβ

(
ζ ε
)= 1

2

(
∂αζ

ε
β + ∂βζ

ε
α + ∂αζ

ε
3∂βζ

ε
3

)
,

and the vector fieldζ ε satisfies the boundary value problem found in Theorem6.

Proof. –As the proof is essentially the same as that of Theorem 5.6-1(b) in [7] (see also
[5, Theorem 5.1]), it is omitted. We simply mention that the field(ζ εα) ∈ H3(ω) is uniquely
determined up to the addition of fields(ηα) with components of the formη1 = a1 − bx2,
η2 = a2 + bx1. ✷

6. Conclusions and commentary

We have thus generalized the asymptotic analysis of Ciarlet [5], by showing that a nonlinearly
elastic plate may be again modeled by equations generalizing the von Kármán equations, even
if the three-dimensional “von Kármán surface forces” are only applied to aportion of its lateral
face, the remaining portion being free.

To this end, we established in particular the somewhat unexpected result that theboundary
conditions on the Airy functionφε (which otherwise always exists; see the proof of Theorem 7)
can still be determined on the entire boundaryγ solely from the datahεα on γ1, a circumstance
that in turn affords the possibility of writing a boundary value problem withζ ε3 andφε as sole
unknowns (Theorem 7).

Other three-dimensional boundary conditions may surely lead to similar generalized von
Kármán equations, for instance, boundary conditions corresponding to “live” von Kármán
surface forces, as considered by Blanchard and Ciarlet [4], or boundary conditions of “simple
support” onγ2 × [−ε, ε], as considered by Schaeffer and Golubitsky [22] and Gratie [17]; see
Ciarlet and Gratie [10].

However, there seem to be counter-examples. For instance, if the boundaryγ of ω is
partitioned asγ = γ0∪γ1∪γ2, the three-dimensional boundary conditions being the same as here
onγ1 × [−ε, ε] andγ2 × [−ε, ε], and of the formuεi = 0 onγ0 × [−ε, ε], it seems unlikely that
the boundary conditions on the Airy function could still be determined along the entire boundary
γ solely from the data of the three-dimensional problem; see again Ciarlet and Gratie [10].
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The equivalence between the limit “displacement” boundary value problem of Theorem 6
and the generalized von Kármán equations of Theorem 7 is established under the assumption
of existence ofsmoothsolutions to either problem. Whereas such an assumption is not unduly
restrictive whenγ2 = φ (because von Kármán equations have smooth solutions for smooth data;
see [19, Theorem 4.4, p. 56]), it undoubtedly becomes a severe, but seemingly unavoidable,
restriction in the more general case (treated here) wherelengthγ2 > 0.

This restriction does not prevent, however, a mathematical analysis of the generalized von
Kármán equations “for themselves”.
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