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ABSTRACT. — In a previous work, the first author has identified three-dimensional boundary conditions
“of von Karman'’s type” that lead, through a formal asymptotic analysis of the three-dimensional solution, to
the classical von Karméan equations, when they are applied to the entire lateral face of a nonlinearly elastic
plate.

In this paper, we consider the more general situation where only a portion of the lateral face is subjected to
boundary conditions of von Karman'’s type, while the remaining portion is subjected to boundary conditions
of free edge. We then show that the asymptotic analysis of the three-dimensional solution still leads in this
case to a two-dimensional boundary value problem that is analogous to, but is more general than, the von
Karman equations. In particular, it is remarkable that the boundary conditions for the Airy function can still
be determined solely from the dafa2001 Editions scientifiques et médicales Elsevier SAS

RESUME. — Dans un travail antérieur, le premier auteur a identifié des conditions aux limites tri-
dimensionnelles “de von Karman” qui, lorsqu’elles sont appliquées a la totalité de la face latérale d'une
plaque non linéairement élastique, conduisent, au moyen d'une analyse asymptotique formelle de la solution
tri-dimensionnelle, aux équations classiques de von Karman.

Dans ce travail, on considére la situation plus générale ou seule une partie de la face latérale est soumise
aux conditions aux limites de von Karman, la partie restante étant soumise a des conditions aux limites de
bord libre. On établit alors que I'analyse asymptotique de la solution tri-dimensionnelle conduit encore dans
ce cas a un probléme aux limites bi-dimensionnel plus général que les équations de von Karman, mais qui
leur reste analogue. Il est en particulier remarquable que les conditions aux limites pour la fonction d’Airy
puissent étre encore déterminées a partir des seules donn@ee1 Editions scientifiques et médicales
Elsevier SAS

1. Outline

The notations not defined here are defined in Section 2. Consider a nonlinearly elastic plate,
with reference configuratio@g =o x [—¢,¢], » C R?, made with aSt Venant—Kirchhoff
materialwith Lamé constants > 0 andu > 0, subjected tdody forcesn its interior, tosurface
forceson its upper and lower faces, and t@h Karman surface forcésn a portionys x [—¢, €]
of its lateral face, wherg; C y = dw andlengthy; > 0. Such von Karman surface forces have
been proposed by Ciarlet [5]. The remaining portigh— y1) x [—e, €] of the lateral face is
free. The unknown displacement fielsf = (u{) then satisfies the following three-dimensional
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boundary value problem:
—8]?(0,?]- +o,fj8,§uf) =f5 in$°,

u;, independent of5 andus =0 onyy x [—e¢, €],

&

1
; / (685 + oty 0Fus v g = S, ony,
—&
(05' + Glfjalf”f)”

j’- =0 onyxx[—¢,¢],
e £ e E\,E _ €
(O’ij —}—Ukjakui)nj =g Onhwx{—¢,¢},

wherey> =y — y1 and

o = rE,,(U)8i; +2nE]; (u?) and Ej;(uf) = %(Sfuj + 5u; 4 87 uy, O5uy,).-

As shown in Ciarlet [5], the classicalko-dimensional von Ka&rman equatioase obtained by
applying the method of formal asymptotic expansions to the solution to this probletar the
assumption thay, = @. The purpose of this paper is tmnsider the more general case where
lengthy» > 0.

Following a by now well-established procedure (see, e.g., [7, Chaps. 4 and 5]), this more
general problem is first put imariational, or weak form and ‘scaled over thefixed domain
2 =wx -1, 1[. ltis then assumed that its solutiae) : 2 — R3 admits a formal asymptotic
expansion of the form:

u@) = +eut + 2ul + But + et + - - -
It is first shown that the leading tero? = (M?) of this expansion is such that

u = ¢y —x30,03 and ud=g¢s,

where the field; = (¢;) satisfies @awo-dimensional problemwvhich may be expressed either

as avariational problem(Theorem 3; theexistenceof a solution to the variational problem is
established in Theorem 4) or abaundary value problerfTheorem 5). The main result of this
paper (Theorem 7) then consists in showing that, if the solution to this variational problem is
smooth enough, it also satisfiebaundary value problem that generalizes the well-known von
Karman equationga converse property also holds; cf. Theorem 8). More specifically, assume
thatw is simply connected, that its boundanjis smooth, and that, € H3(w) andzz € H*(w).

Then there exists afiry functiong € H*(w) that satisfies

011¢ = N22, 012¢ = —N12, 9220 = N11 Inw,

where

Ahpn

_ 0 0
= mE(m (&)dup + 4MEaﬂ ©),

Nyg

1
Eqp (&) = 5 (alp + 0pta + But3dpta).

In addition, the pair(zs, ¢) € H*(w) x H*(w) satisfies the followingieneralized von Karman
equations
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Buh+u) o _
MA t3=1[¢, 31+ ps Ino,
29— T2 .
A= o [£3,¢3] Inw,

{3=0dvg3=0 onyy,
magVevg =0 0Nnys,
(0umap)vp + 0r (Mapvats) =0 ONyy2,
¢p=¢o and dp=¢1 ony,

where
1 du
Map =3 { MAQ%/B + 4M3aﬁ§3},

and¢g and¢; are known functions in terms of the given functidris

In particular then, thé&oundary conditions on the Airy functi@an still be determined from
the sole knowledge of the data everdhgthy> > 0. Furthermore, the paiics, ¢) satisfies a
boundary value problem that generalizes the well-kngam Karman equationgorresponding
to the case wherg, = 0.

These results were announced in [9].

2. Thethree-dimensional problem

Greek indices, corresponding to the “horizontal” coordinates, vary in th¢lsgf, while
Latin indices vary in the sefl, 2, 3}, the index 3 corresponding to the “vertical” coordinate.
The summation convention with respect to repeated indices is systematically used. The notions
needed below frorthree-dimensional nonlinear elasticitéye detailed in, e.g., [6].

Let w be adomainin R?, i.e., a bounded, open, and connected subskfafith a Lipschitz-
continuous boundary, the setw being locally situated on a same side with respect thet
y = y1 U y2 be a partition ofy such thatengthy; > 0.

Consider anonlinearly elastic platevith middle surfacés and thickness 2> 0, made with
a St Venant—Kirchhoff materiatith Lamé constants® > 0 andu® > 0. In particular then, the
material constituting the plate isomogeneouand isotropic and thereference configuration
w x [—¢, ] of the plate is anatural state

Remark— Although the “simplest” among all nonlinearly elastic materials that satisfy these
assumptions, St Venant—Kirchhoff materials admittedly suffer from severe mechanical and
mathematical drawbacks. They can nevertheless be safely employed for justifying, as here,
nonlinear plate theories by means of an asymptotic analysis of the three-dimensional solution,
because the two-dimensional nonlinear equations that are eventually obtained as the outcome of
the asymptotic analysis are essentially the same as those that are obtained when more satisfactory
models of nonlinearly elastic materials are used at the onset, but then at the expense of increased
technical difficulties. Compare for instance the analysis of Ciarlet and Destuynder [8] and that of
Davet [12] or the analysis of Le Dret and Raoult [18] and that of Ben Belgacem [3].

The plate is subjected toody forcesin its interior 2¢ = wx ]—e¢, e[, with density(f°) €
L2(£2¢); to surface force®n its upper and lower facds) = w x {e} andI"® = w x {—¢}, with
density(g?) € LZ(Fi U I'?); and finally, tohorizontal surface forcesn the portiony; x [—e¢, €]
of its lateral face, whose only tiresultant after integration across the thicknegsth density
(h%) € L2(y1), is known.
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Let x® = (x;) denote a generic point in the ser, let 07 =9/dx;, let (n7) denote the unit
outer normal vector along the boundary of the @&t and finally, let(v,) denote the horizontal
unit outer normal vector along the boundaryof the setw. The unknown displacement field
u® = (uf) : 2 — R3 then satisfies the followinthree-dimensional boundary value problem

—8;(01-3- —I—G,fja,fuf) = ff in°,
u;, independent of§ andug =0 onyy x [—¢, ¢,

e
1

- / (08, + 000 up dx§ = b, ony,
—&

(O’i‘; —i—o,fja,fuf) i =0 onyz x[—s,c¢l,
(O’i‘j- —i—a,fjalfuf)n‘; =g onIyure,
where
1
ofy =M Epy ()8 + 20 Ejy (u7) - and  Ej; (u°) = 5(07uf + 5u + 07 uy, djuy, ).

The stressesr; : 2° — R are the components of treecond Piola—Kirchhoff stress tensor
and thestrains E;; (u®) are those of theGreen—St Venant strain tensdrhe partial differential
equations ing2® together with the boundary conditions involving the stressgsform the
equilibrium equationswhile the relations between the stressgsand the straing;; (u®) form
theconstitutive equationrhe boundary conditions ga x [—e, ] together with those opy are
of the form proposed by Ciarlet [5] for justifying, in the special case where y, the well-
knownvon Karman equationthrough a formal asymptotic analysis of the three-dimensional
solution, with the thickness as the “small” parameter.

Our objective consists in extending this asymptotic analysis to the more general case where

lengthy» > 0, i.e., where the plate is also subjected to a boundary conditiree@t&dgeon the
portiony» x [—e, €] of its lateral face.

3. Themethod of formal asymptotic expansions

Following a by now well-established procedure (see, e.g., [7, Chaps. 4 and 5]), we begin by re-
writing the boundary value problem of Section 2 in the weak form optireciple of virtual work
To this end, we simply use th@reen formulawhich shows that any smooth enough solution
u® = (uf) to the boundary value problem of Section 2 also satisfies the followamgtional
problemP(£2¢):

u® e V(2°) = |v* = (vf) e WH4(2¢); v independent of§ andv§ =0 ony x [—¢, £1},
&
1
[ oty = [ o+ [ gupart+ 5/{ [ dxg}hg dy
¢ ¢ F_f_UFf YL "~ —¢
for all vé € V(£2°¢), where

of; = )\.SEZP(US)(SZ']' + 2 E;; (u*) and Ej; RES %(afuj +05uf + 3f“fnafufn)~

Note that the boundary conditions ¢f x [—e, ¢] imposed on the fields® € V(£2¢) insure
that the boundary conditions ga appearing in the boundary value problem are indeed recovered
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by means of Green formula. The regularity imposed on the elements in the\sp@ég merely
guarantees that all the integrals found in the variational proli¢fm®) make sense.

We next define an equivalent variational problem, but now posed over a damn#nat is
independent of. This transformation involvead hoc assumptions on the dat&, u®, f,
g, and hj,, regarding their asymptotic behaviors as functions: oindad hoc scalingson
the unknownsy; and also on thestresses>/’;. That we also scale the stresses mean that we
use the displacement-stress approdcariginally advocated by Ciarlet and Destuynder [8],
then justified by Raoult [21] who showed its equivalence with the otherwise more natural, but
substantially more delicategisplacement approacifsee also [7, Sections 4.3 and 4.7]).

More specifically, let2 = wx ]—1, 1[, let I'y = w x {£1}, letx = (x;) denote a generic point
in the set2, and letd/d;. We then define thecaled displacements(¢) : 2 — R and thescaled
stresses;; (¢) : 2 — R by letting:

ug (x°) = &%y (8)(x), ug(x®) = eus(e)(x),

0ip(xF) = Poup(e)(x),  ofa(x") =e%0ua(e)(x),  oga(xf) =to33(e) (x)
for all x® = 7fx € £2°¢, wherem?®(x1, x2, x3) = (x1, x2, £x3). We nextassumehat there exist

constants. > 0 andu > 0 and functionsf; € L2(£2), g; € L%(I'y U T'_), andh, € L?(y1) that
are allindependent ot, such that

Af=x1 and uf=upu,
ff(xs) =e3f;(x) forallx® =n’x € 2°,
g (x%) = etgi(x) forallx®=nxe ryure,

hE (y) = £2hg (y) forall y e 1.

Remarks— (1) The assumptions on the functioffsandg’, will ultimately guarantee that the
functionsNyg found in Theorem 5 satisf§, Nog = 0 in w. These relations in turn insure that an
Airy functionmay be associated with the two-dimensional problem found at the outcome of the
asymptotic analysis; cf. Theorem 7.

(2) The above scalings and assumptions on the data have been justified by Miara [20], who
showed that they constitute the necessary preliminaries to any asymptotic analysis that lead to
anonlinear Kirchhoff-Love plate thegrguch as that found here (naturally, the assumptions on
the data may take a more general formaas= ¢'A, f°(x*) = 3t £ (x), etc., withr any fixed
real number).

Thanks to these scalings and assumptions on the data, prétle) now takes the form of
a variational problernP (e; £2) posed over théixeddomains2:

THEOREM 1. —The scaled displacement fielde) = (u;(¢)) satisfies the following varia-
tional problemP (e; £2):

u(e) € V(2) = {v= (v;)) e W-*(£2); v, independent afs andvz = 0onyy x [-1, 11},

/a,»j(s)ajv,» dx—}—/aij(s)&iug(s)éﬂjvgdx—i—sz/aij(s)&iua(s)&jva dx
Q Q Q
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1

1
/ g3v3d1"+§/{/vadxg}hady

Iy ur— i -1

+82(/favadx+ / gavadf)
Q

Iy ur-
for all v e V(£2), the scaled displacements(e) and the scaled stresses (¢) being related by

=/ﬁmm+
2

g2

2 Oalle (8)8/3”0 (&)

1
§(3auﬁ(8)ﬁ-3ﬁua(8)%-3au3(8)3ﬁu3(8))-F
A

1
2
= ) —_— s
23120 {ore(€) + £%033(8) }8ap + 5,7 (&)

1 2 2
E(aaMB(g) + 03uq (8) + qu3(e)d3us(e)) + %aauo(e‘)@sua(e) = ;—Moas(e‘),

1 g2
03u3(e) + 533u3(8)33u3(8) + 533%(8)33%(8)
- P 2, (e) + o)) + o). O
= @20 %077 (€) + €"033(e 2M033 g).

The variational probler® (¢; £2) constitutes the point of departure of our asymptotic analysis,
inasmuch as its specific dependence on the paramatakes it amenable to theethod of
formal asymptotic expansior{for details about this well-known method, see, e.g., [2, Chap.
XIV, Section 14] or [7, Section 4.3]):

THEOREM 2. —Assume that the scaled displacements and stresses can be written as formal
asymptotic expansions of the farm

u@Ee) =w-+eut+--- and o (e) :gicj’. —{—go’i:}‘. 4.
and that the leading terms of these expansions satisfy
=) ev), au3ec®®R), o)=0lel?).

Then the cancellation of the factorsd¥in problemP (¢; £2) shows that the leading terof
should satisfy the following “limit” problenPg  (£2):

W e Vg, (2) = {v=(v;) e H}(£2); v, independent af; andvz = 0
ony1 x [—1, 1], 8;v3 + d3v; = 0in 2},

/Uu?ﬂE)ﬁva dx+/ao?ﬂ8aug8ﬁv3dx
Q Q

1
1
/ g3v3d1"+§/{/vadxg}hady

I ur— n -1

=/hmm+
2

forall ve Vg (£2), where



PH.G. CIARLET, L. GRATIE / J. Math. Pures Appl. 80 (2001) 263-279 269

BN+ 2u

EQo (U%)up + 21 Egp(u°),

1
Egﬂ (uo) = E(Z)au% + 8,3u2 + 8au88/3ug).

Proof. —The proof is analogous to that corresponding to a clamped plate (see [7, Theorem 4.7-
2]) and for this reason is omitted. Suffice it to say that the above variational equations indeed
make sense for vector fielets= (v;) € H1(£2) satisfyingd; vz + d3v; = 0 in £2, as these relations
imply that their third componens is in H?($2); cf. [7, Theorem 1.4-4]. O

ProblemPx 1 (£2), like its two-dimensional counterpaf(w) studied in the next section, is
called a limit” problemto remind that, since it is satisfied by theading termu® of the formal
asymptotic expansion of the scaled unknaw¢n), it formally corresponds to letting= 0. The
subscript ‘K L” reminds that© is a (scaledKirchhoff-Love displacement fie(df. Thm. 3).

4. Thelimit two-dimensional “ displacement” problem

We now show thathe three-dimensional limit proble®k 1. (£2) found in Theorer is in effect
a two-dimensional problerfin disguisé, in that any solutioru® = (u?) 12 > R3t0 Pxr(2)
can be computed from a solutign= (¢;) : @ — R® to a two-dimensional problem, denoted
P(w) below. This problem is called alfsplacemeritproblemto reflect that its unknown is the
(scaleddisplacement fieldf the middle surfac® of the plate.

THEOREM 3. — (a)Define the spac@, denotes the outer normal derivative alopy
V(@) ={n=(m) € H'() x H'(@) x H*@); 13=3n3=00ny1}.

Then there existg = (;) € V(w) such that the components of the leading tarfn= (u?)
satisfying problenPg 1 (§2) are of the form

u2=§a—xgaa§3 and ug=§‘3.

(b) Let
Ahu

m‘saﬁaar + ZM((SMI(S/ST + 8ardp0)s

doBotr =

ﬁﬂﬁ=%%w+%w+%%%%%
1
p3= / fadxz +g3(-, 1) + g3(-, —1).
-1
Thenu® = (u?) satisfiesPk (£2) if and only if¢ = (¢;) satisfies the following two-dimensional
variational problemP(w): ¢ € V(w) and

/aaﬁaraorg38aﬁ773dw+/aaﬁarEgt(C)aaC38ﬁn3dw+/aaﬁarEgt(C)aﬁna dow

w w w

:/p3n3dw+/hanady

@ Y1

forall n = (5;) € V(w).
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Proof. —Itis known (see, e.g., [7, Theorem 1.4-4]) that (v;) € V. (£2) if and only if there
existsy = (n;) € V(w) such that, = n, — x304n3 andvz = n3. Thanks to this equivalence, the
variational equations of problefk ; (£2) are easily converted into those of probléhw), and
vice versa. O

We next establish thexistencef a solution to problenP (w).

THEOREM 4. —Letw be a domain ifR?, lety1 be a subset of its boundary that satisfiersgth
y1> 0, let p3 € L%(w) and hy € L2(y1) be given functions, and 162(w) be the variational
problem found in Theorei®

(a) A necessary condition for the existence of a soluticR (@) is that the functiong,, satisfy
the compatibility conditions

/hldy =fhzdy - /(xlhz — xzh1)dy =0.
Y1

1 Y1

(b) If the necessary condition ¢&) is satisfied and the normigi |l 2(,,) are small enough,
P(w) has at least one solution.

Proof. —To begin with, we specify some notations: First, gives (n;) € V(w), we let:

1
Ny = () and eaﬂ(ﬂH):E(ganﬁ+8ﬁ77a)~

We then define the space:

VY (@) = {1y = (na) e HX(®); eap(py) =0inw}
= {ﬂH =ng); n1=a1—bxz,n2 =az+ bxywithai,az,b € R}.

Finally, we let| - 0., and| - |ln.. denote the norms in the space$(w) and H” (w), or L?(w)
andH™ (w) (boldface letters mean that we consider spaces of vector-valued functions).

(i) We first note that, if the variational equations of probl@rw) are satisfied fop = (;) €
V(w), they must also be satisfied py= (71 + a1 — bx2, n2 + a2 + bx1, n3) for any constantsy,
az, b, sincep’ is againinV (w). Hencewe must havg“y1 hongdy =0forall pg = (ny) € V(},(w),
since the other terms in the variational equations are unaltered; or equivalently

/hldyZ/hzdyzf(xlhz—xzhl) dy =0.

Y1 Y2 Y1

Hence (a) is proved.

(i) We next show thasolving problenfP(w) is equivalent to finding the stationary points of
anad hocfunctional over arad hocfunction space

To this end, we first define a functioh: V(w) — R by letting:

1 1
J(p) = E / { §aaﬁ0r3arn33aﬁn3 + aaﬁarEgr(Tl)ESﬂ (77)} dw — (/ pan3dw + / haNe d)’),

@ 1

for anyn € V(w). Noting X/Y the quotient space of by Y, we then define the space (here,
HY() = (H'(®))?)

V() = {HY @)V (@)} x Va(w),
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where

Va(w) = |13 € H?(w); 13 =dynz =0o0ny1}.
Given anyn; = (o) € HY(w), leti, € H(w)/VY (0) denote the equivalence classigf, and
let ij = (i, n3), with 75 € HX(0)/VY (w) andns € V3(w), denote a generic element in the
spaceV (w).

If the necessary condition of (a) is satisfied, we hawgy , n3) = J({ i, n3) forany¢ 4 € .
Hence we can unambiguously defirfeiactional : V(w) > R by letting, for each) = (14, n3),

J@) =J &y, n3) foranysy eiy.

We then note that, as a sum of cpntinuous multi-linear forms, the functioisadifferentiable
(in fact, infinitely so) over the spadé(w), equipped with its “natural” nornj - ||\~,(w) defined for
anyn = (g, n3) by

”7]”\"/(0,) = ”ﬁH”Hl(w)/V%(w) + Im3ll2.0,
where

1 0 = inf 1)+
”nH”Hl(w)/VH(w) ¢ i 1€ f Il (@)

For arbitrary elements, 7 € V(w), the Gateaux derNivativesf’(E)N(ﬁ) are obtained by
computing the linear part with respectijon the differenceJ (¢ + i) — J(£)}. This gives

j/(g)(ﬁ):/aaﬂdtaotCBE}aﬂrIBdw‘i‘/aaﬂthgf(C)aaCBE)ﬂrBdw

w w

+/aaﬂotE2r(€)aﬂrla dw — (/p3n3dw+/harla d]/)

w w Y1

Hence¢ € V(w) satisfies problen‘P(w) if and only if J'(£)=0,ie.ifand only if ¢ is a
stationary point of the functional over the spac¥ ().

(iii) The functional/ is sequentially weakly lower semi-continuous over the sp4@8.

Thequadraticpart

- - 1 1 - -
=g, n3) —> 6 / aaﬁaraarn38aﬁr/3 dw + 5 / aaﬁarear(ﬂH)eaﬁ M) dw

O]

of the functionalJ is weakly lower semi-continuous, as a strongly continuous and convex
function (the convexity is a consequence of the inequalipy < fo - tap > 4ittaptap, Which holds
for all symmetric matrices/qg)).

Let next(z:'k),f‘;o be a weakly convergent sequencéVitw) and letZ denotes its weak limit.

Thelinear part
Lif?—>—</173n3dw+/hanad)f)

w Y1

of the functional/ is such that
L(E¥) = L) ask— oo,

by definition of weak convergence, sinkds strongly continuous.
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To study to behavior of theubicandquartic parts, we first observe that there enjé; € E’;I
andn € ¢ such that (weak convergence is denote}l
11];_1 — g in Hl(a)).

Then the weak convergence@,g(n’;) — eqg(y) In L?%(w) together with the compact
imbedding ofH(w) into L4(w) implies that

/aaﬁarear(ﬂ]fn;)f?a(é{%(é{ dw — /aaﬁarear(ﬂ)3ag33ﬁg3dw
)

[0

ask — oo; the same compact imbedding implies that

/aaﬁor80C§81§§8a§§8ﬁ§§ dow — /aaﬁarZ)a;Sar;Saa;Saﬂ;de
®

w

ask — oo.
(iv) If the normg|| A, 22,y are small enough, the functionalis coercive on the spacfé(w).

An inspection of the various terms found in the functionahows that:

~ 21 2
T@) > 3 Inal3 , +21 ) _|E@o,,
op
= c1lnzlo.w = 2l b o) VO, (o)

for all 7 = (i, n3) € V(w), wherelna|3 , = Y, 410upm3l3 ,» c1=p3lo.., and

1/2
co= X{Z ||ha||§2(m} :
o

x denoting the norm of the trace operator fréf(w) into L2(y1).
There exists a constang > 0 such that

||ﬁH HHl(w)/V%(w) <c3 Z|eaﬂ(ﬁH) |0,w
a,p

for all 5y € Hl(a))/V%(a)) (this two-dimensional Korn inequality in the quotient space
Hl(a))/v(},(w) is established as in [14, Chap. 3, Theorem 3.4]). This inequality, combined with
the definition of the functionﬁgﬁ(ﬁ) and with the continuous imbedding &f!(w) into L4(w),
shows that there exists a constansuch that:

1~ . 1
¢ Nin vt 00 < D Eap Do, + 5 D 181320 13573 40

a,B a,B
<D |EQ g, + callnzlg,
a,p

for all 3 = (y,n3) € V(w). Sincelength y;1 > 0, there exists a constant > 0 such that
cslnsliz.e < |n3l2,e for all nz € Va(w).
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Together, the previous inequalities thus give

_ 21 ~\ 12 =
TG > <?c§ - czc3c4) 3113, — c1lnzllzw + 20 Y |EQs (D], — c2c3 Y |EQs(]q,
a,B a,B

forall 3 = (g, n3) € \7(a)). Consequently, if Bcg > 3cocscea, i.€., if the norms1|ha||Lz(y1) are
small enough, there exist constangs> 0, c7 > 0, andcg such that

. Y
T (@) > cellnal3,,, +c7 Y | ES (g, + cs
a,B

forall p =y, n3) € V (w). To conclude, we then simply observe that the relation
”ﬁ||\~/(w) = (”f,H”Hl(w)/V%(w) + “773”2,(0) — 400

implies that(}", 4 |Eas (13, + In3ll3,,) — +oo, hence thatl () — +oo. O

We next write thdoundary value problethat is, at least formally, equivalentto the variational
problemP(w). In what follows,(v,,) denotes the unit outer normal vector along(z,) denotes
the unit tangential vector defined by = —v,, 72 = v1, andd, andd; denote the associated
normal and tangential derivatives alopg

THEOREM 5. —Assume that the boundagy is smooth enough. Then any smooth enough
solution¢ = (¢g;) of the variational problen (w) found in Theorer3 also satisfies the following
boundary value problem

Bu(r+ )

A%03 — Nogdopla = inw,
30+ 20) &3 «p9apl3 = p3

9sNegp =0 inw,
{3=10v¢3=0 onyx,
Nggvg =he ONy1,
magVevg =0 0Nnya,
(damap)vp + 0 (Mapvatp) =0 ONy2,
Nggvg =0 onyz,

where
1 1( 4rn
Map = _gaaﬂﬂtadté‘:g = _5{ A+ 20 AL3ap + 4#30(,3{3},
Naﬁ :aaﬁarEgr(C) = S Ega (C)S‘w +4I’LE8,3(C)'
A+ 21

Proof. —The proof rests on th&reen formulas

_/maﬂaaﬂUBdwz_/(aaﬂmaﬂ)nde+/{(8057”05/3)‘)/3 +8t(ma,BVaT,3)}n3dV
)

w 14

- / MgV Vg dynzdy,
14
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/Naﬂaa§38ﬂrl3dw=_/{aﬂ(Naﬂaa§3)}n3dw+/(Naﬂ8a§3)vﬂn3dy,
19} 14

w

/Naﬂaﬂna dwz—/(aﬂNaﬂ)na dw+/NaﬂVﬂ’7a dy,
w w Y

valid for all vector fields) = (1;) € H(w) x HY(w) x H?(») and all functionsnys € H2(w)
andN,s € H'()). Also used are the relation

8+
1 ( M) AZCB,

0, =
wBMef = 36 ¥ 210

the relationsdgNog = 0 in w, which allow to replaceés(Nusdwt3) by Negdepta in the first
partial differential equation iw, and the relation®,gvg = 0 ony», which allow to cancel the
term (Nyp 0 £3)vg Otherwise appearing in the second boundary conditioppon O

In order that this boundary value problem be expressed in terms of “physical” quantities, it
remains to “de-scale” the unknowns: To this end we are naturally led, in view of the scalings
made in Section 3, to define thémit” displacement field® = (/) o — R3 of the middle
surface of the plate through tlie-scalings

tE=e%, and ¢S=ecz inw.

Together with the assumptions on the data made in Section 3, these de-scalings lead to
the following immediate corollary to Theorem 5 (naturally, the variational protiig@) of
Theorem 3 could be likewise de-scaled):

THEOREM 6. —Assume that the boundapyis smooth enough and that= (¢;) is a smooth
enough solution of proble®(w). Then the corresponding de-scaled limit displacement field
¢¢ = (/) satisfies the following boundary value probtem

%—;ﬁffssAzg’g — Ngpdopls =p3 iNw,
8/3N§/3 =0 inow,
¢3=0¢3=0 ony,
Nggvg =hg ony,
mggvavg =0 o0nyz,
(damgg)vp + dz (mggvate) =0 0Ny,
Néﬂ vg=0 onys,
where
£

e A e e
aff — 3 X“f—i—Z,uf é-3 of H O‘/SC3 ’

40E uf
ap = 8{mE20 (¢7)3up +4u" Eqe(¢°) }

0 & _} & £ £ £
Eqp (6% =5 (3t + 9p¢5 + 0u850p83).
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£
p5 = / £5 e+ €50 ) + g5, —6).
—&

The partial differential equations infound in Theorem 6 show that the limit two-dimensional
equations justified here belong to thenlinear Kirchhoff-Love plate thearjike those of a
nonlinearly elastic clamped plafestified by a similar method by Ciarlet and Destuynder [8].

We recall that a nonlinear Kirchhoff-Love plate theory is essentially characterized by the scalings
that are made at the onset of the asymptotic analysis, of order two and one with respect to the
horizontal and vertical components of the displacement, respectively. These scalings eventually
produce semilinear partial differential equations of the fourth order with respect to the vertical
component; and of the second order with respect to the horizontal comporgntahich

reduce to those of thenear Kirchhoff-Love plate theorfsee, e.g., [7, Section 1.7]) when only

the linear terms with respect to the unknowns are retained. The same scalings also produce a
limit displacement field across the thickness of the plate thakischhoff-Love displacement

field, i.e., thatis of the forni(¢; — x500¢3), ¢3)-

For further comments about the nonlinear Kirchhoff-Love theory, see in particular [7, Section
4.9]. For its relation and difference with other “limit” two-dimensional nonlinear theories for
planar elastic bodies, see in particular [15], where the crucial influence of the scalings in this
respect is particularly well highlighted.

Remark— The coeﬁicien% factorizingA2§§ in the first partial differential equation

is theflexural rigidity of the plate.

5. Equivalence of the limit two-dimensional displacement problem with generalized
von Karman equations

Under the crucial assumption that the domaiis simply connected, we now establish (in two
stages; cf. Theorems 7 and 8) tguivalence, within the class of smooth solutions, of the two-
dimensional “displacement” boundary value problem found in Sectiaith a two-dimensional
problem that generalizes the well-known von Karman equatidftsle the unknowns in the
former problem are the three componetytsof the limit displacement field® of the middle
surface of the plate, there are only two unknowns in the latter, one being the vertical component
¢5 of the displacement fielg® of the middle surface of the plate and the other beingham
functiong?®, from the knowledge of which the horizontal componegjtgan be determined.

Without loss of generality, we henceforth assume that the origin 0 belongs to the boyndary
of w.

THEOREM 7. —Assume that the domain is simply connected and that its boundaryis
smooth enough. Let there be given a solutigf)) of the boundary value problem found in
Theoren®t with the regularity

tfe H3(w) and ¢§ e HYw).

Then the functiong?, : y — R defined bya? = hZ, on y1 and byiZ = 0 on y2 necessarily
belong to the spac# /2(y) and they necessarily satisfy the compatibility relations

/ﬁidy:/fz%dy:/(xlfz%—xzfzi) dy =0.

14 4 4
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In addition, there exists arAiry function ¢° € H*w), uniquely determined by the
requirements thap® (0) = 9, ¢* (0) = 0, such that

N:Ié:l = £0220°, Nfz = —£012¢°%, N§2 =¢£011¢° inw.
Finally, the pair (¢§, ¢°) € H*(») x H*(w) satisfies the followingeneralized von K arman

equations:
BUf (A + 1) 5, o , .
30¢ F o) © At =elot ]ty ine,
pe (3A° +2u°)
)\’S + MS
C?f = 8v§§ =0 onyy,

mzﬁ vevg =0 onys,

A%t = [¢5.25] no.

(aamgﬁ)Uﬂ + 0; (mgﬁ Vo tﬂ) =0 onyy,
¢*=¢y and 9,¢°=¢] ony,
wherem?

apr Nag, and p are defined as in Theoref and

[, x]=011n022x + d22nd11x — 20121012,

5 =—y / hsdy + y2 / R dy + /(xlfz%—xzﬁi)d% yEY,
y(y) y(y) y(y)

$7(») = —v1(y) / hdy + v2(y) / hidy, yey,
146D y()
wherey (y) denotes the oriented arc joinir@to y alongy .

Proof. —For convenience, the proof is given in terms of “scaled” unknogyrand¢ defined
by ¢§ = et3, £& = %4y, ande® = e2¢ and in terms of “scaled” date, i, p3, andh, defined as
in Sections 3 and 4.

(i) The assumed regularity on the functignsmply thatNug H?(w) andNygvg = he onthe
entireboundaryy . Hence the functionk, belong to the spacE®2(y). Besides, they satisfy the
announced compatibility relations, as these are simply a re-statement of part (a) in Theorem 4.

(i) Since the domaim is simply connected, the equatiopN,s = 0 in w imply that there exist
distributionsy,, € D'(w), unique up to the addition of constants, such that (see [23, Theorem VI,
p. 59]):

Nloz=821/foz and N2a=_3H”ov

Since the equatiotv12 = N»1 in @ implies thatd, v, = 0, there likewise exists a distribution
¢ € D'(w), unique up to the addition of polynomials of degred, such that

Y1=020 and v =-019,
hence such that

N11= 0200, N1p = —012¢, Nop = 011¢.
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As shown by Amrouche and Girault [1], a domainis a Nikodym setn the sense of Deny
and Lions [13, p. 328], i.e., any distributidh € D' (w) such thatd, T € L%(w) is in L?(w).
Consequently, the assumed regulariiiég < H?(w) imply that¢ € H*(w). Clearly,¢ is then
uniquely defined if we impose that(0) = 9,¢ (0) = 0.

(iii) The relations just established between the functigyg andN.g show that

3z (92¢0) = V19220 — v20216 = N1gvp = h,
—3; (1) = —v1312¢ + 120110 = Nogvg = ha,
along the boundary. For anyy € y, we thus have

NP (y) = — / hody and 3¢(y) = / hidy,

() ()
so that
B (3) = —v1() / oy + va() / Fady,
v () vy ()
9:h(y) = —12(y) / Fady +2(9) / Fady.
v () r()
Hence

¢p=¢o and dp=¢1 ony,
where the functiongg and¢s are of the form given in the theorem. Note in passing that these
boundary conditions provide another means of deriving the compatibility conditions that must
be satisfied by the functioris, .
(iv) The expression of the functior,, in terms of the functions; show that

2 (3r+2u)

¢ = A(Nao) o

{ZA(aaCa) + A(aa§38a§3)}-

Thanks to the relation&, N,s = 0, which imply in particular that

Bu(r + ) 20
— A0, A (0430 21048(04 30
Nt 21 (Owla) + At 21 (0 $30083) + 210 aﬁ( 3 /3§3)’

0=04sNug =

the expressiom (3,Z,) in A% can be replaced by a function ¢f only. In this fashion, we
obtain

_ HBA+2u)

A2p =
¢ A+

[¢3, ¢3],

and the proof is complete.O

Remarks— (1) The regularity and compatibility conditions satisfied by the functfcgnare
consequences of trssumptiorof the existence of a solutiog;”) with ad hocregularity to the
boundary value problem found in Theorem 6. There is otherwise no reason why these properties
should be satisfieth general

(2) Naturally, the classicalon Karman equationare recovered by lettings = y .

(3) The situation is substantially more delicataifs not simply connected. In this direction,
see in particular [11] and [16].
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The next result is the converse to Theorem 7.

THEOREM 8. —Assume that the functions, defined as in Theoreri are in the space
H3/?(y). Let there be given a solutioft§, ¢°) of the generalized von Karman equations of
Theoreni with the regularity

¢ e HYw) and ¢° e H*w).

Then the function?, necessarily satisfy the same compatibily relations as in The@rem
Next, define function§;; € H%(w) by letting

Nf1=8322¢8, Nfzz N§l= —£012¢°, N§2=8311¢8 inw.

Then there exist function$ € H3(w) such that

NEy = el 2 EO (0950 + a0 EQ, (¢°)
af = A 2uE 00 af M LEop )

where¢® = (¢f) and

1
Eqp(£°) = 5 (0utf + 025 + 0aL50525).
and the vector fiel¢® satisfies the boundary value problem found in Theaosem

Proof. —As the proof is essentially the same as that of Theorem 5.6-1(b) in [7] (see also
[5, Theorem 5.1)), it is omitted. We simply mention that the fiélg) H3(w) is uniquely
determined up to the addition of fieldg,) with components of the formy; = a1 — bxa,
n2=az+bxi. O

6. Conclusions and commentary

We have thus generalized the asymptotic analysis of Ciarlet [5], by showing that a nonlinearly
elastic plate may be again modeled by equations generalizing the von Karméan equations, even
if the three-dimensional “von Karman surface forces” are only appliedptorion of its lateral
face, the remaining portion being free.

To this end, we established in particular the somewhat unexpected result thututieary
conditions on the Airy functiop® (which otherwise always exists; see the proof of Theorem 7)
can still be determined on the entire boundargolely from the data, on y1, a circumstance
that in turn affords the possibility of writing a boundary value problem wittand¢® as sole
unknowns (Theorem 7).

Other three-dimensional boundary conditions may surely lead to similar generalized von
Karman equations, for instance, boundary conditions corresponding to “live” von Karman
surface forces, as considered by Blanchard and Ciarlet [4], or boundary conditions of “simple
support” ony, x [—e, €], as considered by Schaeffer and Golubitsky [22] and Gratie [17]; see
Ciarlet and Gratie [10].

However, there seem to be counter-examples. For instance, if the boupdafyw is
partitioned ay = ypUy1Uy», the three-dimensional boundary conditions being the same as here
ony1 x [—e, e] andy2 x [—¢, €], and of the form:{ =0 onyp x [—¢, €], it seems unlikely that
the boundary conditions on the Airy function could still be determined along the entire boundary
y solely from the data of the three-dimensional problem; see again Ciarlet and Gratie [10].
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The equivalence between the limit “displacement” boundary value problem of Theorem 6
and the generalized von Karman equations of Theorem 7 is established under the assumption
of existence obmoothsolutions to either problem. Whereas such an assumption is not unduly
restrictive when, = ¢ (because von Karman equations have smooth solutions for smooth data;
see [19, Theorem 4.4, p. 56]), it undoubtedly becomes a severe, but seemingly unavoidable,
restriction in the more general case (treated here) whargthy, > 0.

This restriction does not prevent, however, a mathematical analysis of the generalized von
Karman equations “for themselves”.
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