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Abstract

We study the compact embedding from W
1,2
0 (Ω) to Lq(x)(Ω) with a variable critical exponent 1 � q(x) � 2N/(N − 2), N � 3

if there exist a point x0 ∈ Ω , a small η > 0, 0 < l < 1 and C0 > 0 such that q(x0) = 2N/(N − 2) and q(x) � 2N/(N − 2) − C0/

(log(1/|x −x0|))l for |x −x0| � η. As an application, we show an existence of a positive solution to the nonlinear elliptic boundary
value problem −�u = uq(x)−1 in Ω , u(x) = 0 on ∂Ω .
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and main results

There are many studies on properties of the generalized Lebesgue–Sobolev spaces Wk,p(x)(Ω) with vari-
able exponent p(x), especially the embedding theorem from Wk,p(x)(Ω) to Lq(x)(Ω) with 1 � p(x) � q(x) �
Np(x)/(N − kp(x)) under certain assumptions on the domain Ω ⊂ RN and p(x). Here Lp(x)(Ω) and Wk,p(x)(Ω)

are defined by

Lp(x)(Ω) =
{
u: u is a real-valued measurable function on Ω,

∫
Ω

∣∣u(x)
∣∣p(x)

dx < +∞
}
,

Wk,p(x)(Ω) = {
u ∈ Lp(x)(Ω): Dαu ∈ Lp(x)(Ω), |α| � k

}
.

It is known that Lp(x)(Ω) and Wk,p(x)(Ω) become Banach spaces with the following norm:
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|u|p(x) = inf

{
λ > 0:

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣
p(x)

dx � 1

}
,

‖u‖Wk,p(x) = |u|p(x) +
∑

|α|�k

∣∣Dαu
∣∣
p(x)

.

Suppose Ω is a bounded domain with smooth boundary for simplicity. Then, it is known that for a Lipschitz continuous
function p(x) and a measurable function q(x) satisfying 1 < infx∈Ω p(x) � supx∈Ω p(x) < N and p(x) � q(x) �
Np(x)/(N −p(x)) for x ∈ Ω , there is a continuous embedding from W 1,p(x)(Ω) to Lq(x)(Ω) (see [11, Theorem 1.1]).
Actually, the Lipschitz continuity of p(x) has been weekend to the local uniform continuity condition

∣∣p(x) − p(y)
∣∣ � C

|log |x − y|| , x, y ∈ Ω,

where C is a positive constant (see [5, Corollary 5.3]). Furthermore, if ess infx∈Ω(Np(x)/(N − p(x)) − q(x)) > 0,
then for a continuous function p(x) there exists a continuous compact embedding from W 1,p(x)(Ω) to Lq(x)(Ω)

(see [11, Theorem 1.3]). For other properties of the generalized Lebesgue–Sobolev spaces, we refer the reader to
papers [5,7,11,16] and references therein.

However, as far as we know, even in the simplest case p(x) ≡ 2 and N � 3 there are no results on the compact
embedding from W

1,2
0 (Ω) to Lq(x)(Ω) when 1 � q(x) � 2N/(N −2), x ∈ Ω and q(x0) = 2N/(N −2) at some point

x0 ∈ Ω . In this paper we study this problem and give a condition for q(x) to assure the compact embedding from
W

1,2
0 (Ω) to Lq(x)(Ω). As an application, we discuss an existence of a positive solution u ∈ W

1,2
0 (Ω) to the following

nonlinear elliptic boundary value problem with variable exponent 2 < q(x) � 2N/(N − 2),

−�u(x) = u(x)q(x)−1, x ∈ Ω, u(x) = 0, x ∈ ∂Ω. (1)

When 2 < ess infx∈Ω q(x) � ess supx∈Ω q(x) < 2N/(N − 2), the existence of a positive solution to (1) can be
shown by using the standard mountain pass theorem for any bounded domain Ω even if the exponent q(x) is
variable (see e.g., [22]). However, when q(x) ≡ 2N/(N − 2) in (1), the existence of nontrivial solutions to (1)
depends on the geometry and topology of the domain Ω and there are many works on the solvability of (1) (see
e.g., [3,14,17,19–21] and references therein). For example, when q(x) = 2N/(N − 2) and Ω is star-shaped then
it is known that there exists no nontrivial solutions to (1). On the other hand, if Ω is an annulus, more gener-
ally if Ω has a nontrivial topology [3], then there exists a positive solution. Recently, under the uniform sub-
critical condition, i.e. ess infx∈Ω(Np(x)/(N − p(x)) − q(x)) > 0, nonlinear elliptic boundary value problems of
the type −div(|∇u|p(x)−2∇u) = |u|q(x)−2u with variable exponents has been studied by using the critical point
theory (see [4,6,8–10,12] and references therein). In [2], Alves and Souto studied the existence of nonnegative so-
lutions of −∇(|∇u|p(x)−2∇u) = uq(x)−1 in RN under the following conditions on p(x) and q(x): p(x) and q(x)

are radially symmetric, 1 < ess infx∈RN p(x) � ess supx∈RN p(x) < N , p(x) � q(x) � 2N/(N − 2), and that there
exist positive constants δ and R such that δ < R, q(x) = 2N/(N − 2) for |x| � δ and |x| � R, and p(x) = 2
for |x| � δ and |x| � R. However, even for the case p(x) ≡ 2 there are no other results for the critical case, i.e.
ess infx∈Ω(Np(x)/(N − p(x)) − q(x)) = 0.

By using our main result (Theorem 2) on the compact embedding, we give a partial answer to the existence of
positive solutions u ∈ W

1,2
0 (Ω) of (1) with a critical variable exponent p(x) (Theorem 3).

Theorem 1. Let Ω be a bounded domain in RN with N � 3. Let q(x) be a measurable function on Ω satisfying
1 � q(x) � 2N/(N − 2) for almost every x ∈ Ω . If there exist a point x0 ∈ Ω and constants C0 > 0, η > 0 such that

q(x) � 2N

N − 2
− C0

log(1/|x − x0|) for a.e. x ∈ Ω with |x − x0| � η, (2)

then the embedding from W
1,2
0 (Ω) to Lq(x)(Ω) is not compact.

The condition above is sharp in the following sense.
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Theorem 2. Let N , Ω and q(x) be as in Theorem 1. Suppose that there exist a point x0 ∈ Ω and constants C0 > 0,
η > 0 and 0 < l < 1 such that

ess sup
x∈Ω, |x−x0|�η

q(x) <
2N

N − 2

and

q(x) � 2N

N − 2
− C0

(log(1/|x − x0|))l for a.e. x ∈ Ω with |x − x0| � η.

Then the embedding from W
1,2
0 (Ω) to Lq(x)(Ω) is compact.

Remark 1. The logarithmic condition in Theorem 1 also appears in other situations. For example, for the mapping
properties of fractional integral operators in the Hölder spaces of variable order, see [15,23]; for regularity theories in
the study of partial differential equations with p(x)-growth, see [1,13]; for the Lavrentev phenomenon and an energy
concentration in variational integrals with p(x)-growth conditions, see [18,24].

As a consequence of Theorem 2, we obtain the following result.

Theorem 3. Let N , Ω and q(x) be as in Theorem 1 and suppose all hypotheses in Theorem 2. Suppose also that ∂Ω

is smooth and ess infx∈Ω q(x) > 2. Then there exists a positive solution u ∈ W
1,2
0 (Ω) to (1). Moreover, the solution u

satisfies u ∈ W 2,r (Ω) ∩ C1(Ω) for any r > 1.

Note that we have 2 < ess infx∈Ω q(x) � ess supx∈Ω q(x) � 2N/(N − 2) and ess supx∈Ω∩{|x−x0|�η} q(x) <

2N/(N − 2) for each small η > 0, and that we may have q(x) → 2N/(N − 2) as x → x0. This paper seems a
first attempt to consider the existence of a positive solution to (1) with variable exponent q(x) which coincides with
the critical exponent 2N/(N − 2) at some point x0 ∈ Ω .

Remark 2. If we assume the cone property on Ω , one can see that the embedding from W 1,2(Ω) to Lq(x)(Ω)

is also compact under the same assumptions on q(x) from the proof of Theorem 2 and the following fact. Under
the cone property on Ω , it is known that the embedding from W 1,2(Ω) to Lq(x)(Ω) is compact if 1 � q(x) �
ess supx∈Ω q(x) < 2N/(N −2) (see, e.g., [11]). Furthermore, from the proofs of Theorems 1 and 2, it is rather straight-

forward to generalize Theorems 1 and 2 for embeddings from W
1,p

0 (Ω) or W 1,p(Ω) to Lq(x)(Ω) with 1 < p < N ,
when q(x) satisfies same assumptions with replacing all 2N/(N − 2) by pN/(N − p) in Theorems 1 and 2, respec-
tively.

Remark 3. It is easy to see from the proof that Theorems 2 and 3 also hold when q(x) coincides with the critical
exponent 2N/(N − 2) at finite number of points in Ω and satisfies the growth condition above near a neighborhood
of the points.

In Section 2, we show Theorems 1–3. In Appendix A, by using a blow-up analysis we give another proof of
Theorem 3, when Ω is a ball and p(x) is radially symmetric for future reference.

2. Proofs of Theorems 1–3

Theorem 1 can be shown as in a similar way as in the well-known case q(x) ≡ 2N/(N − 2).

Proof of Theorem 1. Suppose that there exist a point x0 ∈ Ω and constants C0 > 0, η > 0 satisfying (2). We may
assume x0 = 0. We set r(x) = 2N/(N − 2) − q(x) for x ∈ Ω . Let φ ∈ C∞

0 (RN) be a function satisfying φ(x) = 1
for |x| � 1/2 and suppφ ⊂ {x ∈ RN : |x| � 1}. For n ∈ N, define φn(x) = n(N−2)/2φ(nx). Then, for large n we have
φn ∈ C∞

0 (Ω),∫ ∣∣∇φn(x)
∣∣2

dx =
∫ ∣∣∇φ(y)

∣∣2
dy
Ω |y|<1
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and ∫
Ω

∣∣φn(x)
∣∣q(x)

dx = nN

∫
|x|<1/n

∣∣φ(nx)
∣∣q(x)

n− N−2
2 r(x) dx

=
∫

|y|<1

∣∣φ(y)
∣∣q(

y
n
)
n− N−2

2 r(
y
n
) dy.

Since φ(y) = 1 on |y| � 1/2 and r(x) � C0/|log |x|| for small |x| by the assumption, we obtain

∫
|y|<1

∣∣φ(y)
∣∣q(

y
n
)
n− N−2

2 r(
y
n
) dy �

∫
|y|�1/2

(
1

n(N−2)/2

)r(
y
n
)

dy

�
∫

|y|�1/2

(
1

n(N−2)/2

) C0|log(|y|/n)|
dy.

For 1/4 � |y| � 1/2, it follows |log(|y|/n)| = |logn − log |y|| � (1/2) logn for large n. Therefore we arrive at∫
Ω

∣∣φn(x)
∣∣q(x)

dx �
∫

1/4�|y|�1/2

e
− N−2

2
C0|log(|y|/n)| logn

dy

�
∫

1/4�|y|�1/2

e
− N−2

2
2C0 logn

logn dy

= e−(N−2)C0
∣∣{y: 1/4 � |y| � 1/2

}∣∣ ≡ δ > 0.

Since
∫
Ω

|∇φn|2 dx � C, there exist a subsequence {φnk
} and ψ ∈ W

1,2
0 (Ω) such that {φnk

} converges to ψ weakly

in W
1,2
0 (Ω). But, since

∫
Ω

|φn(x)|2 dx = n−2
∫

RN |φ|2 dy → 0 as n → +∞, we have ψ ≡ 0. On the other hand,∫
Ω

|φn(x)|q(x) dx � δ > 0 for large n. This concludes the proof of Theorem 1. �
Proof of Theorem 2. We may assume x0 = 0 and η > 0 is small enough. For the sake of simplicity, we set 2∗ =
2N/(N − 2). First, we note that if A is a measurable subset of Ω and q(x) � q̄ < 2∗ on A, then∫

A

∣∣v(x)
∣∣q(x)

dx � |A| + C2∗
1 ‖v‖q̄

W
1,2
0 (Ω)

|A| 2∗−q̄

2∗ for each v ∈ W
1,2
0 (Ω), (3)

where C1 is a constant such that C1 > 1 and ‖w‖L2∗
(Ω) � C1‖w‖

W
1,2
0 (Ω)

for each w ∈ W
1,2
0 (Ω). Indeed, we have

∫
A

∣∣v(x)
∣∣q(x)

dx =
∫

A∩{v<1}

∣∣v(x)
∣∣q(x)

dx +
∫

A∩{v�1}

∣∣v(x)
∣∣q(x)

dx

� |A| +
∫
A

∣∣v(x)
∣∣q̄ dx � |A| +

(∫
A

∣∣v(x)
∣∣2∗

dx

) q̄

2∗
|A| 2∗−q̄

2∗

� |A| + C2∗
1

(∫
Ω

∣∣∇v(x)
∣∣2

dx

) q̄
2 |A| 2∗−q̄

2∗

for each v ∈ W
1,2
0 (Ω). Let C2 > 1. We will show

lim
ε→+0

sup

{ ∫ ∣∣v(x)
∣∣q(x)

dx: v ∈ W
1,2
0 (Ω), ‖v‖

W
1,2
0 (Ω)

� C2

}
= 0. (4)
Bε(0)
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Let ε ∈ (0, η) and define ξ (= ξ(ε)) by (ξ/2)1/N = ε. We set an = (ξ/2)n/N for n ∈ N. We note that Bε(0) \ {0} =⋃∞
n=1(Ban(0) \ Ban+1(0)) and q(x) � 2∗ − C0/(log |1/an+1|)l on Ban(0) \ Ban+1(0). We denote by σN the volume of

the unit ball B1(0). Then for each sufficiently small ξ > 0 and for each n ∈ N, we have

∣∣Ban(0) \ Ban+1(0)
∣∣ C0

2∗(log |1/an+1|)l =
[
σN

{(
ξ

2

)n

−
(

ξ

2

)n+1}] C0Nl

2∗(n+1)l (log 2−log ξ)l

� σ

C0Nl

2∗(n+1)l (−2 log ξ)l

N

(
ξ

2

) C0Nl

2∗(−2 log ξ)l
( n

n+1 )ln1−l

� C3δ
n1−l

, (5)

where C3 is a positive constant satisfying σ
C0N

l/(2∗2l (n+1)l (− log ξ)l )

N � C3 for each sufficiently small ξ > 0 and for

each n ∈ N, and δ (= δ(ξ)) is defined by (ξ/2)C0N
l/(2∗22l (− log ξ)l ). Using (3) and (5), we have

∫
Bε(0)

∣∣v(x)
∣∣q(x)

dx =
∞∑

n=1

∫
Ban (0)\Ban+1 (0)

∣∣v(x)
∣∣q(x)

dx

�
∞∑

n=1

(∣∣Ban(0) \ Ban+1(0)
∣∣ + C2∗

1 C2∗
2

∣∣Ban(0) \ Ban+1(0)
∣∣ C0

2∗(log |1/an+1|)l )

= ∣∣Bε(0)
∣∣ + C2∗

1 C2∗
2

∞∑
n=1

∣∣Ban(0) \ Ban+1(0)
∣∣ C0

2∗(log |1/an+1|)l

�
∣∣Bε(0)

∣∣ + C2∗
1 C2∗

2 C3

∞∑
n=1

δn1−l

.

Since
∑∞

n=1 δn1−l � δ + ∫ ∞
1 δx1−l

dx < ∞ for each δ ∈ (0,1) and δ = δ(ξ(ε)) → 0 as ε → +0, we have∑∞
n=1 δn1−l → 0 as ε → +0. Hence, we have shown (4). Let {vn} be a sequence in W

1,2
0 (Ω) which converges weakly

to v ∈ W
1,2
0 (Ω). Since W

1,2
0 (Ω) is compactly embedded into L2(Ω), there exists a subsequence {vni

} which con-

verges to v almost everywhere. By (4) and the compactness of the embedding from W
1,2
0 (Ω) into Lq̄(Ω) for each

q̄ ∈ [1,2∗), we have
∫
Ω

|vni
(x) − v(x)|q(x) dx → 0, which means |vni

− v|q(x) → 0. This completes the proof. �
Remark 4. We remark that the numerical series construction in Theorem 2 is close to the one appears in the proof of
Theorem 8.2 in [18].

Once we have Theorem 2, it is easy to show Theorem 3 by using the standard mountain pass theorem in the critical
point theory and elliptic regularity theorems. For the reader’s convenience, we recall an abstract statement of the
mountain pass theorem and give a proof of Theorem 3.

Let E be a Banach space and let J be a C1 functional on E. We say u ∈ E is a critical point of J if the Fréchet
derivative J ′(u) of J at u is zero. We also say J satisfies (PS) condition, if any sequence {un}∞n=1 ⊂ E such that
{J (un)}∞n=1 is bounded and J ′(un) → 0 as n → +∞ in the dual space E′, has a convergent subsequence.

Theorem 4 (Mountain pass theorem). Let E be a Banach space and let J be a C1 functional on E satisfying (PS)

condition. Suppose J (0) = 0 and

(i) there exist positive constants α, r such that J (u) � 0 for any u ∈ E satisfying ‖u‖ � r and J (u) � α for any
u ∈ E satisfying ‖u‖ = r ;

(ii) there exists an element e ∈ E such that J (e) < 0 and ‖e‖ > r .

Define c = infγ∈Γ max0�t�1 J (γ (t)), where Γ = {γ ∈ C([0,1];E): γ (0) = 0, J (γ (1)) < 0}. Then, there exists a
critical point u ∈ E with J (u) = c.
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As in the proof of [22, Theorem 2.2], we can easily give a proof of Theorem 4.

Proof of Theorem 3. We define a functional J from W
1,2
0 (Ω) into R by

J (u) =
∫
Ω

1

2
|∇u|2 dx −

∫
Ω

(u+(x))q(x)

q(x)
dx, u ∈ W

1,2
0 (Ω),

where u+ = max(u,0). Since 2 < ess infx∈Ω q(x) � q(x) � 2N/(N − 2) and W
1,2
0 (Ω) is continuously embedded

into L2N/(N−2)(Ω), it is easy to check that J ∈ C2(W
1,2
0 (Ω);R) and (i) and (ii) in Theorem 4 hold. We will show

that J satisfies (PS) condition. Let {un} be a sequence in W
1,2
0 (Ω) such that {J (un)} is bounded and J ′(un) → 0 as

n → +∞. Since we can easily see that {un} is bounded in W
1,2
0 (Ω), there are a subsequence {uni

} of {un} and an

element u of W
1,2
0 (Ω) such that {uni

} converges weakly to u in W
1,2
0 (Ω). Noting∫

Ω

∣∣∇(uni
− u)

∣∣2
dx =

∫
Ω

∇uni
∇(uni

− u)dx −
∫
Ω

∇u∇(uni
− u)dx,

it is sufficient to show
∫
Ω

∇uni
∇(uni

− u)dx → 0 as i → +∞. Using J ′(uni
) → 0 and Theorem 2, we have

lim
i→∞

∣∣∣∣
∫
Ω

∇uni
∇(uni

− u)dx

∣∣∣∣ = lim
i→∞

∣∣∣∣
∫
Ω

(uni
)
q(x)−1
+ (uni

− u)dx

∣∣∣∣
� C lim

i→∞
∣∣(uni

)
q(x)−1
+

∣∣
q(x)/(q(x)−1)

|uni
− u|q(x)

= C lim
i→∞

∣∣(uni
)+

∣∣
q(x)

|uni
− u|q(x) = 0,

where C is a positive constant due to the generalized Hölder inequality (see e.g. [16, Theorem 2.1]). Thus, we have
shown that J satisfies (PS) condition. Now, we can apply Theorem 4 to assure the existence of a nontrivial critical
point u ∈ W

1,2
0 (Ω). Then u is a weak solution to

−�u = u
q(x)−1
+ , x ∈ Ω, u(x) = 0, ∂Ω.

By the maximum principle we have u(x) > 0 for x ∈ Ω and u ∈ W 2,r (Ω)∩C1(Ω) for any r > 1 by elliptic regularity
theorems. �
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Appendix A

We give another proof of Theorem 3 by using a blow-up analysis, when Ω is a ball and q(x) is radially symmetric.
Here we just use the compact embedding from W

1,2
0 (Ω) to Lq(x)(Ω) with ess supx∈Ω q(x) < 2N/(N − 2).

Assume Ω is a ball and q(x) = 2N/(N −2)−r(x) with radially symmetric r(x) satisfying r(x) � C0/(log(1/|x|))l
near x = 0 for some 0 < l < 1. For k ∈ N, define rk(x) = r(x) for |x| � 1/k and rk(x) = r(1/k) for |x| � 1/k. Put
qk(x) = 2N/(N − 2) − rk(x). Then qk(x) satisfies 2 < ess infx∈Ω qk(x) � ess supx∈Ω qk(x) < 2N/(N − 2). So for
each k, by using Theorem 4 on radially symmetric space W

1,2
0,r (Ω) = {u ∈ W

1,2
0 (Ω): u(x) = u(|x|)}, we obtain a

positive solution uk ∈ W
1,2
0,r (Ω) to the approximated problem

−�u = uqk(x)−1, x ∈ Ω, u(x) = 0, x ∈ ∂Ω.

Actually, uk satisfies J ′(uk) = 0 in (W
1,2

(Ω))′ and Jk(uk) = ck , where
k 0,r



1392 K. Kurata, N. Shioji / J. Math. Anal. Appl. 339 (2008) 1386–1394
Jk(u) =
∫
Ω

1

2
|∇u|2 dx −

∫
Ω

(u+(x))qk(x)

qk(x)
dx, u ∈ W

1,2
0,r (Ω),

ck = inf
γ∈Γk

max
0�t�1

Jk

(
γ (t)

)
.

Here, Γk = {γ ∈ C([0,1];W 1,2
0,r (Ω)): γ (0) = 0, Jk(γ (1)) < 0}. Choose a function u0 ∈ W

1,2
0,r (Ω) ∩ C∞

0 (Ω) such
that suppu0 ⊂ {x ∈ Ω: κ � |x|} for small κ > 0. Let γ0(t) = t (s0u0(x)) for sufficiently large s0 > 0. Then we have
γ0 ∈ Γk and that, by the definition of qk(x),

0 < ck � max
0�t�1

Jk

(
γ0(t)

) = max
0�t�1

J
(
γ0(t)

) ≡ d1

for any k � 1/κ . Combining
∫
Ω

|∇uk|2 dx − ∫
Ω

u
qk(x)
k dx = 0 with

∫
Ω

|∇uk|2/2dx − ∫
Ω

u
qk(x)
k /qk(x) dx = ck, we

have ∫
Ω

(
1

2
− 1

qk(x)

)
u

qk(x)
k dx = ck � d1.

This implies∫
Ω

|∇uk|2 dx =
∫
Ω

u
qk(x)
k dx � C (A.1)

for some constant C. Since uk(x) is radially symmetric, uk(r), r = |x|, satisfies

−(
rN−1u′

k(r)
)′ = rN−1uk(r)

qk(r)−1.

Integrating over (0, r), we have

−rN−1u′
k(r) =

r∫
0

sN−1uk(s)
qk(s)−1 ds > 0

which implies u′
k(r) < 0 for r > 0. Thus uk(0) = maxx∈Ω uk(x) = ‖uk‖L∞(Ω).

We claim that there exists a positive constant K independent of k such that ‖uk‖L∞(Ω) � K . If not, we may assume
‖uk‖L∞(Ω) → +∞ as k → +∞. Define

εk = (‖uk‖L∞(Ω)

)− 2
N−2 , vk(y) = uk(yεk)

‖uk‖L∞(Ω)

, y ∈ Ωk ≡ Ω/k.

Then εk → 0 as k → +∞ and vk(0) = maxx∈Ωk
vk(x) = ‖vk‖L∞(Ωk) = 1. Then we have

−�vk(y) = ε2
k

‖uk‖L∞(Ω)

‖uk‖qk(yεk)−1
L∞(Ω) vk(y)qk(yεk)−1

= ‖uk‖−rk(yεk)

L∞(Ω) vk(y)qk(yεk)−1 ≡ hk(y)

for y ∈ Ωk . Note that

rk(yεk) � C0

(log |1/(yεk)|)l
for any k, even if |yεk| � 1/k. Thus it follows that

‖uk‖−rk(yεk)

L∞(Ω) = e−rk(yεk) log(‖uk‖L∞(Ω)) � e
− C0

(log |1/(yεk)|)l log(‖uk‖L∞(Ω))

= e
− C0 log‖uk‖L∞(Ω)

( 2
N−2 log‖uk‖L∞(Ω)−log |y|)l → 0

as k → +∞ for any y �= 0. Now, for any bounded open subset G ⊂ RN such that 0 ∈ G, since 0 � vk(y) � 1 we have∣∣hk(y)
∣∣ � ‖uk‖−rk(yεk)∞ � 1 for y ∈ G and sufficiently large k.
L (Ω)
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This implies |�vk(y)| � 1 on G and ‖vk‖L∞(G) = 1. By the interior elliptic W 2,t -estimate, we have for some
α ∈ (0,1) that ‖vk‖C1,α(G) � C = C(G). Therefore there exist a subsequence {vkl

} and v such that {vkl
} converges

to v in C1
loc(R

N). It follows∫
G

∇v · ∇ψ dy = 0

for any ψ ∈ C∞
0 (G) and v(0) = 1 = ‖v‖L∞(G). Since G is arbitrary, v is a bounded harmonic function and

v(0) = ‖v‖L∞(RN) = 1. This implies v(x) is constant and hence v(x) ≡ 1. On the other hand, by Sobolev’s inequality
and (A.1) we have

S

(∫
Ωk

|vk| 2N
N−2

)N−2
N

dy �
∫
Ωk

|∇vk|2 dy =
∫
Ω

|∇uk|2 dx � C

for some positive constants C and S independent of k and G. This yields

S

(∫
G

|v| 2N
N−2 dy

)N−2
N

� C

for any G and hence

S

( ∫

RN

|v| 2N
N−2 dy

)N−2
N

� C.

This contradicts v = 1.
Now, let {uk} converge weakly to u ∈ W

1,2
0 (Ω). It is easy to see that the mountain pass value ck also has a uniform

lower bound: 0 < d2 � ck � d1 for k � 1. Indeed, if ck → 0 as k → +∞, then it is easy to see that
∫
Ω

|∇uk|2 dx → 0.
Note that tqk(x) � tq0 + t2N/(N−2) for t � 0, where q0 = ess infx∈Ω qk(x) > 2. Thus we have for large k∫

Ω

|∇uk|2 dx =
∫
Ω

u
qk(x)
k dx �

∫
Ω

u
q0
k dx +

∫
Ω

u
2N

N−2
k dx

� C

((∫
Ω

|∇uk|2 dx

) q0
2 +

(∫
Ω

|∇uk|2 dx

) N
N−2

)
� 2C

(∫
Ω

|∇uk|2 dx

) q0
2

.

It follows
∫
Ω

|∇uk|2 dx � δ > 0 for some constant δ independent of k, which contradicts
∫
Ω

|∇uk|2 dx → 0.
Now, there exist positive constants C,C′ such that

0 < C �
∫
Ω

(
uk(x)

)qk(x)
dx � C′.

Then, by using ‖uk‖L∞(Ω) � K , it is easy to see that there exist a constant δ > 0 and a compact subset G0 ⊂ Ω \ {0}
such that |Ω| − |G0| is small enough and that∫

G0

uq(x) dx � δ > 0.

It follows u �= 0. Since
∫
Ω

∇uk · ∇φ dx = ∫
Ω

u
qk(x)
k φ dx for every φ ∈ C∞

0 (Ω), we have
∫
Ω

∇u · ∇φ dx =∫
Ω

uq(x)φ dx and that u is a desired positive solution by the maximum principle.
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