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INTRODUCTION

w xIn this paper, we extend the ideas of 4 to significantly greater general-
ity and, in particular, we derive a new general statement about local
control of the number of nontrivial conjugacy classes of a finite group. We
anticipate that the ideas and methods used in the proof, especially those of
Section 1, will find further applications beyond the result presented here.

Ž .Let G be a finite group and SS G denote the simplicial complex
associated to the poset of non-trivial solvable subgroups of G. For a chain,

Ž . aŽ .s g SS G , V denotes the initial subgroup of s . We let SS G denotes

Ž .the set of non-empty chains in SS G . When a group X acts by conjugation
on another group Y, we will denote the number of X-conjugacy classes of

Ž . Ž Ž . Ž ..Y by k Y as usual, we abbreviate k X to k X . We will denote theX X
a a Ž .number of X-conjugacy classes of Y by k Y If Y is normal in X, andX

Ž . Ž .m is an irreducible complex character of Y, we let k X, m denote the
Ž .number of irreducible complex characters of X which have m as an

Ž .irreducible constituent of their restriction to Y. For a simplex s g SS G .
< <we let s denote the number of non-trivial subgroups in s .

Ž . Ž .We let SS G denote the subcomplex of SS G consisting of thosem
chains in which every subgroup occurring is the intersection of the maxi-

Ž .mal solvable subgroups containing it together with the empty chain . We
Ž .remark that every subgroup with this last property contains sol G , the

largest solvable normal subgroup of G. Our main result is:

THEOREM. Let G be any finite group. Then we ha¨e
< <s q1a ak G s y1 k V .Ž . Ž . Ž .Ý G ss

aŽ .sgSS G rG
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Ž .Furthermore, in the expression on the right hand side, SS G can be replaced
Ž .by SS G .m

1. FINESSING COCYCLES VIA SUBGROUP COMPLEXES

Let V be a non-trivial solvable subgroup of our group chosen finite
group G. Let H be a finite group with a central subgroup, Z, such that
˜ Ž . Ž .H s HrZ is a subgroup of N V rV. Let SS G, V denote the set ofG

Ž .chains in SS G whose initial subgroup is V. This may be identified with
Ž .the subcomplex SS G with appropriate adjustment of the length of) V

Ž .chains, and this identification is compatible with the action of N V .G
< <Let p be a prime divisor of H , and let R be a complete discrete

valuation ring of characteristic 0, with unique maximal ideal p such that
F s Rrp is algebraically closed of characteristic p, where H acts on

˜Ž .SS G, V via the action of H, and H acts on RH via conjugation. Let ls s

Ž y1 . Žbe a linear character of Z, and let E s Ý l z z. Then by anl z g Z
w x.argument similar to that used in 4 , E RH is a monomial module whenl

˜ � 4viewed as an RH-module via conjugation action, and E t : t g T is al

‘‘monomial basis,’’ where T is a fixed transversal to Z in H.
We wish to consider the virtual module

< <s Hy1 Ind E RHŽ . Ž .Ý H l ss

Ž .sgSS G , V rH

˜ ˜Ž . Ž .in the Green ring for RH , where H acts on SS G, V via the action of H.
Ž .If possible, let Q be a p-subgroup of H which strictly contains O Z .p

˜ QŽ . Ž . Ž .Let Q be the full pre-image of Q in N V . Then SS G is N Q -0 G ) V H
contractible via X ª XQ ª Q . We explain how this implies that the0 0
virtual module we are considering involves no summand with vertex Q.

w xThe ideas of the proof can be found in 4 , but since this situation is
somewhat different, we give the proof in detail here. First, it suffices, by
the Burry]Carlson]Puig theorem, to show that the restriction of the

Ž .virtual module to N Q involves no summand with vertex Q. The restric-H
tion in question is

< <s N ŽQ.Hy1 Ind E RH ,Ž . Ž .Ý N ŽQ. l sH s

Ž . Ž .sgSS G , V rN QH

and it is clear that only Q-stable chains can give any summands with vertex
Q, so we need to determine the summands with vertex Q which occur in

< <s N ŽQ.Hy1 Ind E RH .Ž . Ž .Ý H ŽQ. l sH s
QŽ . Ž .sgS G , V rH QH
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Ž w x. Ž .QWe note that arguing as in Section 1 of 4 , for each s g SS G, V , the
NH ŽQ. Ž .summands of Ind RH with vertex Q are the summands ofN ŽQ. sH sNH ŽQ. Ž Ž Ž ...Ind RC QrO Z with vertex Q. We note that if h is an elementN ŽQ. H pH s s

of H such that h x g hZ for all x g Q, then h normalizes QZ s Q =
Ž . Ž Ž ..O Z , so that h normalizes Q and centralizes QrO Z .p9 p

Ž .QNow we choose a chain s g SS G, V , say s s V - V - ??? - V , and1 n
we construct a chain s 9 / s as follows: choose m maximal such that

Ž .Q g V regarding V as V , there is always such an m . If V s Q V ,0 m 0 mq1 0 m
Ž .let s 9 s V - ??? - V - V - ??? - V if m s n y 1, just omit V .m mq2 n n

ŽOtherwise, let s 9 s V - ??? - V - Q V - V - ??? - V if m s n,m 0 m mq1 n
.just insert Q V after V . Then it is easy to see that s 0 s s , and that0 n n

Ž . Ž . Ž Ž .. Ž Ž ..N Q s N Q . Thus C QrO Z s C QrO Z , and the sum-H s H s 9 H p H ps s 9

mands with vertex Q from the chains s and s 9 cancel each other. Thus
the virtual module in question involves no indecomposable module with
vertex Q.

As Q is arbitrary, we conclude that the virtual module we are consider-
Ž . Žing is a difference of O Z -projective RH-modules so is really a virtualp

˜ .projective RH-module, as Z acts trivially on all modules involved . We
deduce that the virtual character afforded by

< <s Hy1 Ind E C HŽ . Ž .Ý H l ss

Ž .sgSS G , V rH

˜is an integer multiple of the regular character of H, since the above
˜argument shows that it vanishes on p-singular elements of H for every

< < Ž . w xprime divisor p of H . It is easy to see that dim E C H s H : Z , soC l s s

counting dimension tells us that the given virtual character is
< s < ˜Ž .Ý y1 times the regular character of H. On the other hand,s g SS ŽG, V .r H

counting the multiplicity of the trivial module in the above virtual module
by Frobenius reciprocity shows that the multiplicity of the trivial module is

< <sy1 dim E Z C H .Ž . Ž .Ž .Ý C l s
Ž .sgSS G, V rH

This last integer is

< <sy1 k H , l .Ž . Ž .Ý s
Ž .sgSS G, V rH

Hence we have

< <sy1 k H , l y 1 s 0.Ž . Ž .Ž .Ý s
Ž .sgSS G , V rH
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2. PROOF OF THE MAIN THEOREM

Ž .Let G, V be as in Section 1. Let N denote N V . We wish to computeG
Ž . < s < Ž .the alternating sum Ý y1 k G . Using elementary Cliffords g SS ŽG, V .r N s

theory, this may be written as

< <sy1 k I m , m .Ž . Ž .Ž .Ý Ý Gs

Ž . Ž .sgSS G , V rN mgIrr V rGs

We may change the order of summation, and re-write the last double sum
as

< <sy1 k I m , m .Ž . Ž .Ž .Ý Ý Gs

Ž . Ž . Ž .mgIrr V rN sgSS G, V rI mN

˜ Ž .Now we fix a choice of m for a while, and let H s I m rV. ByN
˜standard Clifford theory, there are a central extension, H, of H, with a

cyclic central subgroup Z, and a linear character l of Z, such that
H̃ ( HrZ and such that there is a bijection between irreducible characters

Ž .of I m which lie over m and irreducible characters of H which lie overN
˜Ž .l. Then H acts on SS G, V via the action of H, with Z acting trivially.

Ž . Ž Ž . .Furthermore, for each chain s g SS G, V , we have k I m , m sGs

Ž .k H , l . Thus we haves

< < < <s sy1 k I m , m s y1 k H , l .Ž . Ž . Ž . Ž .Ž .Ý ÝG ss

Ž . Ž . Ž .sgSS G, V rI m sgSS G, V rHN

Ž . < s <By the results of Section 1, this last expression is Ý y1 .s g SS ŽG, V .r H
Ž .Applying this argument to each m g Irr V , we conclude that

< <sy1 k GŽ . Ž .Ý s
Ž .sgSS G, V rN

< <ss y1 k I m , mŽ . Ž .Ž .Ý Ý Gs

Ž . Ž . Ž .mgIrr V rN sgSS G, V rI mN

< <ss y1 .Ž .Ý Ý
Ž . Ž . Ž .mgIrr V rN sgSS G, V rI mN

But we may change the order of summation again, and we find that
Ž . < s <the last double sum is Ý Ý y1 ss g SS ŽG , V .r N m g I r r ŽV .r Gs

Ž . < s < Ž .Ý y1 k V .s g SS ŽG, V .r N ss

Let SS denote the set of non-trivial solvable subgroups of G. We may0
apply the above argument for V running through a set of representatives
of a non-trivial conjugacy classes of solvable subgroups of G to conclude
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that

< <sy1 k GŽ . Ž .Ý s
Ž .sgSS G rG

< <s q1s k G y y1 k GŽ . Ž . Ž .Ý Ý s
Ž . Ž .VgSS rG sgSS G, V rN V0 G

< <s q1s k G y y1 k V .Ž . Ž . Ž .Ý Ý Gs

Ž . Ž .VgSS rG sgSS G, V rN V0 G

w x Ž . < s <Ž Ž . . ŽIt was proved in 3 that Ý y1 k G y 1 s 0 this results g SS ŽG.r G s

may also be recovered by modifying the arguments of Section 1 of this
.paper to treat the case V s 1 , and taking H s G, Z s 1 . SubstitutingG G

this in the previous expression, we obtain

< <s q1k G y 1 s y1 k V y 1 ,Ž . Ž . Ž .Ž .Ý Ý Gs

Ž . Ž .VgSS rG sgSS G, V rN V0 G

which is easily seen to be equivalent to the first formula in the main
theorem.

To prove the last assertion of the main theorem, we consider the
Ž .inclusion-preserving map f : SS ª SS defined by f X s l M,0 0 M g MM Ž X .

Ž .where MM X is the set of maximal solvable subgroups of G which contain
Ž g . Ž . g Ž .X. Then f X s f X for all X g SS , all g g G, so that N X0 G
Ž .normalizes f X for each such X. We show that the contribution to the

Ž .aabove alternating sum from chains in SS G which are not f-stable is 0
Ž Ž .aand by definition the f-stable chains in SS G are precisely the chains in

Ž .a.SS G . As usual, given a chain s which is not f-stable, we producem
another chain s 9 which is also not f-stable, such that s 0 s s and
G s G , so that the contributions from s and s 9 cancel each other.s s 9

Furthermore, we do this in such a way that s and s 9 have the same initial
subgroup.

Suppose, then, that s s V - ??? - V is not f-stable. Choose m maxi-0 n
Ž . Ž .mal so that V / f V . If V / f V , let s 9 s V - ??? - V -m m mq1 m 0 m

Ž . Ž Ž . .f V - V - ??? - V insert f V at the end if n s m in this case .m mq1 n m
Ž . ŽIf V s f V , let s 9 s V - ??? - V - V - ??? - V delete Vmq 1 m 0 m mq2 n n

.if m s n y 1 in this case . This construction yields the required cancella-
tions, and completes the proof of the main theorem.
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