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INTRODUCTION

In this paper, we extend the ideas of [4] to significantly greater general-
ity and, in particular, we derive a new general statement about local
control of the number of nontrivial conjugacy classes of a finite group. We
anticipate that the ideas and methods used in the proof, especially those of
Section 1, will find further applications beyond the result presented here.

Let G be a finite group and .A(G) denote the simplicial complex
associated to the poset of non-trivial solvable subgroups of G. For a chain,
o €. AG), V, denotes the initial subgroup of o. We let .##(G) denote
the set of non-empty chains in .(G). When a group X acts by conjugation
on another group Y, we will denote the number of X-conjugacy classes of
Y by ky(Y) (as usual, we abbreviate k,(X) to k(X)). We will denote the
number of X-conjugacy classes of Y# by k%(Y) If Y is normal in X, and
w is an irreducible (complex) character of Y, we let k(X, u) denote the
number of irreducible (complex) characters of X which have w as an
irreducible constituent of their restriction to Y. For a simplex o €. A(G).
we let |o | denote the number of non-trivial subgroups in o.

We let %, (G) denote the subcomplex of (G) consisting of those
chains in which every subgroup occurring is the intersection of the maxi-
mal solvable subgroups containing it (together with the empty chain). We
remark that every subgroup with this last property contains sol(G), the
largest solvable normal subgroup of G. Our main result is:

THEOREM. Let G be any finite group. Then we have
(G = X (=R,
ceS*(G)/G
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Furthermore, in the expression on the right hand side, #(G) can be replaced
by Z,(G).

1. FINESSING COCYCLES VIA SUBGROUP COMPLEXES

Let IV be a non-trivial solvable subgroup of our group chosen finite
group G. Let H be a finite group with a central subgroup, Z, such that
H=H/Z is a subgroup of N;(VV)/V. Let AG,V) denote the set of
chains in A(G) whose initial subgroup is V. This may be identified with
the subcomplex A(G). , with appropriate adjustment of the length of
chains, and this identification is compatible with the action of N;(}).

Let p be a prime divisor of |H|, and let R be a complete discrete
valuation ring of characteristic 0, with unique maximal ideal = such that
F =R/m is algebraically closed of characteristic p, where H acts on
AG, V) via the action of H, and H_ acts on RHU via conjugation. Let A
be a linear character of Z, and let E, = X,_,Az ")z Then (by an
argument similar to that used in [4]), E, RH is @ monomial module when
viewed as an RH-module via conjugation action, and {E,t:t T} is a

“monomial basis,” where T is a fixed transversal to Z in H.

We wish to consider the virtual module

Y  (-1"'ind (E,RH,)

e AG,V)/H

(in the Green ring for RH), where H acts on A(G, V) via the action of H.

If possible, let Q be a p-subgroup of H which strictly contains O,(Z).
Let Q, be the full pre-image of Q in N;(V). Then SAG)E, is NH(Q)
contractible via X — XQ, — Q,. We explain how this |mpI|es that the
virtual module we are considering involves no summand with vertex Q.
The ideas of the proof can be found in [4], but since this situation is
somewhat different, we give the proof in detail here. First, it suffices, by
the Burry—Carlson—Puig theorem, to show that the restriction of the
virtual module to N,(Q) involves no summand with vertex Q. The restric-
tion in question is

Y (—1)"""\nd¥Q) (E,RH, ),
c€AG,V)/Ny(Q)

and it is clear that only Q-stable chains can give any summands with vertex
0, so we need to determine the summands with vertex Q which occur in

> (—1)"'Ind}n8) (E,RH, ).
o€ S(G,V)2/Hu(Q)
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We note that (arguing as in Section 1 of [4]), for each o € .A(G, V)2, the
summands of IndNHfg) (RH,) with vertex Q are the summands of
Ind%ﬁggg (RCy (Q/O (Z))) with vertex Q. We note that if 4 is an element
of H such that h* ehZ for all x € O, then & normalizes OZ = Q X
0,(Z), so that h normalizes Q (and centralizes Q/0,(Z)).

Nowwe choose acham o eAG, V), say o= V< vV, < - <V, and
we construct a chain o' # o as foIIows choose m maximal such that
Q, £V, (regarding V" as V,, there is always such an m). If V.., = Q,V,.,
let o’ V<---<V <V, ., < <V, (if m=n—1 just omit V).
Otherwise, let ¢’ =V < - <V, < QV,, <V, ., < - <V, (ifm=n,
just insert Q,V, after V). Then it is easy to see that ¢” = o, and that
Ny (Q), = Ny(Q), . Thus Cy, (Q/0,(Z)) = Cy (Q/0,(Z)), and the sum-
mands with vertex Q from the chains o and o’ cancel each other. Thus
the virtual module in question involves no indecomposable module with
vertex Q.

As Q is arbitrary, we conclude that the virtual module we are consider-
ing is a difference of O,(Z)-projective RH-modules (so is really a virtual
projective RH-module, as Z acts trivially on all modules involved). We
deduce that the virtual character afforded by

Y  (-1"'Ind% (E,CH,)
ceAG,V)/H

is an integer multiple of the regular character of H, since_the above
argument shows that it vanishes on p-singular elements of H for every
prime divisor p of |H|. It is easy to see that dim.(E,CH,) =[H, : Z], so
counting dimension tells us that the given virtual character is
X, c 56,y n(—D"! times the regular character of H. On the other hand,
counting the multiplicity of the trivial module in the above virtual module
by Frobenius reciprocity shows that the multiplicity of the trivial module is

Y (—1)"dim(EZ(CH,)).
ceAG,V)/H

This last integer is

Y (-1)"k(H,, ).

ceAG,V)/H

Hence we have

Y (—1)(k(H, A) -1)=0.

ceAG,V)/H
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2. PROOF OF THE MAIN THEOREM

Let G,V be as in Section 1. Let N denote N;(V). We wish to compute
the alternating sum X, c o ), n(—1'"'k(G,). Using elementary Clifford
theory, this may be written as

Y (-0 Y k(I (w).m).

ceAG,V)/N nwelr(V)/G,

We may change the order of summation, and re-write the last double sum
as

)Y Y (DI () n).

welr(V)/N oG, V)/Iy(p)

Now we fix a choice of u for a while, and let ﬁ=IN(M)/V. By
standard Clifford theory, there are a central extension, H, of H, with a
cyclic central subgroup Z, and a linear character A of Z, such that
H = H/Z and such that there is a bijection between irreducible characters
of I,(w) which lie over u and irreducible characters of H which lie over
A. Then H acts on AG, V) via the action of H, with Z acting trivially.
Furthermore, for each chain o € AG,V), we have k(I;(w), n) =
k(H,, A). Thus we have ’

)y (-0%k(Ig(n)n)= L (-1)%k(H,, 2.

ceAG,V) /Iy 1) ceAG,V)/H

By the results of Section 1, this last expression is dey(GyV)/H(—l)‘”'.
Applying this argument to each u € Irr(V7), we conclude that

Y (-1)"%(G,)

oceAG,V)/N

- X Y () k(Ig () 1)
welr(V)/N a€AG,V)/Iy(wn)

> ) (-1

welr(V)/N 0 €AG, V) /Iy 1)

But we may change the order of summation again, and we find that
the last double sum is Y, o) nZucimay o —D =
Eaey(c V)/N( Dl k,, (V)

Let .#, denote the set of non-trivial solvable subgroups of G. We may
apply the above argument for 17 running through a set of representatives
of a non-trivial conjugacy classes of solvable subgroups of G to conclude
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that

Y (-1D"'(G,)

ceAG)/G

—k(G) - X ) (-1)"""k(G,)
Vey/G aeAG,V)/N;(V)

—k(G) - X Y (—1)' "k (V).

VeSy/G oeAG,V)/Ng(V)

It was proved in [3] that ¥, c gy, 6(— D7 I(k(G,) — 1) = 0 (this result
may also be recovered by modifying the arguments of Section 1 of this
paper to treat the case IV = 1, and taking H = G, Z = 1,). Substituting
this in the previous expression, we obtain

k(G)—1= % ) (—1) " ke (V) — 1),

VeSy/G o€ G, V)/NeV)

which is easily seen to be equivalent to the first formula in the main
theorem.

To prove the last assertion of the main theorem, we consider the
inclusion-preserving map f:., — %, defined by f(X) = Ny c )M,
where .#Z(X) is the set of maximal solvable subgroups of G which contain
X. Then f(X$) =f(X)¢ for all X €%, all g G, so that N;(X)
normalizes f(X) for each such X. We show that the contribution to the
above alternating sum from chains in .(G)* which are not f-stable is 0
(and by definition the f-stable chains in .(G)* are precisely the chains in
Z(G)*). As usual, given a chain o which is not f-stable, we produce
another chain ¢’ which is also not f-stable, such that ¢” = o and
G, = G, ., so that the contributions from o and o' cancel each other.
Furthermore, we do this in such a way that ¢ and o’ have the same initial
subgroup.

Suppose, then, that o =V, < -+ <V, is not f-stable. Choose m maxi-
mal so that V, = f(V,). If V., #f(V,), let ¢’ =V, < - <V, <
f,) <V, ., < - <V, (insert f(V,) at the end if n = m in this case).
fV,,.=fW)leto =Vy< - <V, <V, ,,< - <V, (delete V,
if m = n — 1 in this case). This construction yields the required cancella-
tions, and completes the proof of the main theorem.
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