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1. Introduction

We assume that F is an infinite field of arbitrary characteristic p = charF > 0. All vector spaces,
algebras and modules are over F and all algebras are associative with unity unless otherwise
stated.

We denote by M = M(xq,...,x7) the semigroup (without unity) freely generated by letters
X1,...,Xq and denote by My = Mp(x1,...,xq) the vector space with the basis M. Let

M

Npag=Npa(X1,....%0) = +—F7——
n,d = Nn,da(x1 ) i | x € M)
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be the relatively free algebra with the identity x" = 0. The connection between this algebra and ana-
logues of the Burnside problems for associative algebras suggested by Kurosh and Levitzky is discussed
in recent survey [27] by Zelmanov.

We write

Cpg=min{c>0]|as---ac=0forallay,...,ac € Ny g4}

for the nilpotency degree of N; 4. Since C; 4 =1 and C,,1 =n, we assume that n,d > 2 unless other-
wise stated. Obviously, C, 4 depends only on n, d, and p.
We consider the following three cases:

By the well-known Nagata-Higman Theorem (see [22] and [12]), which at first was proved by Dubnov
and Ivanov [9] in 1943, C; 4 < 2" in cases (a) and (c). As it was pointed out in [6], Cp ¢ > d in case (b);
in particular, Cp g — oo as d — oo. Thus, the case (b) is drastically different from cases (a) and (c).
In 1974 Razmyslov [24] proved that Cp g4 < n% in case (a). As about lower bounds on Cn.a, in 1975
Kuzmin [14] established that C;, 4 > %n(n—i— 1) in cases (a) and (c) and conjectured that C; 4 is actually
equal to %n(n+ 1) in these cases. A proof of the mentioned lower bound was reproduced in books [8]
and [3] (see p. 341). Kuzmin’s Conjecture is still unproven apart from some partial cases. Namely, the
conjecture holds for n =2 and n = 3 (for example, see [15]). In case (a) the conjecture was proved for
n =4 by Vaughan-Lee [26] and for n =5, d =2 by Shestakov and Zhukavets [25].

Using approach by Belov [2], Klein [13] obtained that for an arbitrary characteristic the inequalities
Cna < gn®d" and Cpg < ﬁn'ﬁdm hold, where m = [n/2]. Here [a] (where a € R) stands for the
largest integer b < a. Recently, Belov and Kharitonov [4] established that C, 4 < 218 . n12logs(M+28¢
(see Remark 4.8 for more details). Moreover, they proved that a similar estimation also holds for the
Shirshov Height of a finitely generated Pl-algebra. We can summarize the above mentioned bounds
on the nilpotency degree as follows:

o if p=0, then Jn(n+1) < Cpg <n?;
o if 0 <p<n, then d < Cpg < §nd" and Gy 4 < 218 - n12108sM+284;
e if p >n, then %n(n +1)<Chg<2".

For d > 0 and arbitrary characteristic of the field the nilpotency degree Cp 4 is known for n =2 (for
example, see [6]) and n =3 (see [15] and [16]):

6, ifp=0orp >3,
3, ifp=0orp>2, 6, ifp=2andd=2,
Cra= . and C3g= .
’ d+1, ifp=2 ’ d+3, ifp=2andd=>2,
3d+1, ifp=3.

In this paper we obtained the following upper bounds on Cp 4:
o Cpg <nl°®Gd+2+1 in case p > I (see Corollary 3.1). Therefore, we establish a polynomial upper

bound on C, 4 under assumption that the number of generators d is fixed.
e Chg<4- 22d for % < p <n (see Corollary 4.1). Modulo Conjecture 4.6, we prove that Cpq <
n®In(n)d for % < p <n (see Corollary 4.7).

e (44 is described with deviation 3 for all d under assumption that p # 2 (see Theorem 5.1).
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Note that even in the partial case of p >n and d =2 a polynomial bound on C,4 has not been
known. If n is fixed and d is large enough, then the bound from Corollary 4.1 is better than that
from Corollary 3.1. In Remark 4.8 we show that for p > % 4 < n <2000, and all d the bound from
Corollary 4.1 is at least 10%° times better than the bounds by Belov and Kharitonov [4].

As an application, we consider the algebra RCL™ of GL(n)-invariants of several matrices and de-
scribe a finite generating set for R®™ in terms of C, 4 (see Theorem 6.2). We conjecture that RC/™
is actually generated by its elements of degree less or equal to C, 4 (see Conjecture 6.3).

The paper is organized as follows. In Section 2 we establish a key recursive formula for an upper

n

bound on Cp ¢ that holds in case p=0 or p > 3 (see Theorem 2.5):

n
Cn,dgdZ(i_l)C[n/i],d-i-L (1)
i=2

The main idea of proof of Theorem 2.5 is the following one. We introduce some partial order >
on M and the x-equivalence on Mp in such a way that f =< h if and only if the image of f —h
in Ny 4 belongs to F-span of elements that are bigger than f —h with respect to >. Since Ny 4 is
homogeneous with respect to degrees, there exists a w € M satisfying w %0 and C, g =degw + 1.
Thus we can deal with the x<-equivalence instead of the equality in N, 4. Some relations of Ny g4
modulo x<-equivalence resembles relations of Ny 4 for k <n (see formula (2)). This fact allows us to
obtain the upper bound on Cj 4 in terms of Cy 4, where k < n. To illustrate the proof of Theorem 2.5,
in Example 2.7 we consider the partial case of n =5 and p # 2. Note that a similar approach to the
problem of description of C, 4 can be originated from every partial order on M.

In Section 3 we apply recursive formula (1) several times to obtain the polynomial bound from
Corollary 3.1. On the other hand, in Section 4 we use formula (1) together with the Nagata-Higman
Theorem to establish Corollary 4.1. Formula (1) is applied to the partial case of n <9 in Corol-
lary 4.5.

In Section 5 we develop the approach from Section 2 for n =4 to prove Theorem 5.1. We define a
new partial order > on M, which is weaker than >, and obtain a new ~-equivalence on M, which
is stronger than x<-equivalence. Considering relations of N4 4 modulo ~-equivalence, we obtain the
required bounds on Cy 4.

Section 6 is dedicated to the algebras of invariants of several matrices.

We end up this section with the following optimistic conjecture, which follows from Kuzmin’s
Conjecture. We write Cy g p for Cy g.

Conjecture 1.1. For all p > n we have Cy, 4.0 = Cn 4, p-

This conjecture holds for n =2, 3 (see above). Note that Conjecture 4.6 follows from Conjecture 1.1
by the above mentioned result by Razmyslov.

2. Recursive upper bound

We start with some notations. Let N ={1,2,...}, No = Nu {0}, and F* = F\{0}. Denote M; =
Mu {1}, ie, we endow M with the unity. Given a letter x, denote by M™ the set of words
ai ---ar € M such that neither letter a; nor letter a, is equal to x and r > 0.

For a € M7 and a letter x we denote by deg,(a) the degree of a in the letter x and by mdeg(a) =

(degy, (@), ..., deg, (a)) the multidegree of a. For short, we write 1" for (1,...,1) (r times) and say
that a is multilinear in case mdeg(a) =1".
Given o = (a1, ..., ar) e NI, we set #a =71, |o| =1 + - + o, and °™ = (@o(1), - .-, o) for a

permutation o € S; such that as1) > -+ > &g (). If r =0, then we say that « is an empty vector and
write o = . Note that for o = ¢ we also have ¢°™ = ¢,

Given 6 € Nj with |§| =n and a4, ..., ar € M, denote by Ty (a1, ...,ar) the coefficient of afl -~~afr
in (@1a; + --- + ara;)", where «; € F. Since the field F is infinite, standard Vandermonde arguments
give that Ty(ay,...,a;) =0 holds in N 4.
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Definition 2.1 (of pwr,(a)). Let x be a letter and a = a1x*! ---a,x%a,4q € M, where r > 0,
ai,ary1 € My, az,...,ar € M, o1,...,0 > 0, and deg,(a;) = 0 for all i. Then we denote by
pwr,(a) = (a1, ..., ar) the x-power of a. In particular, if deg,(a) =0, then pwr,(a) = 7.

Let @ €N, B € N° (r,5s > 0) satisfy « =°d and B= ﬁ"rd. Then we write @ > g if one of the
following conditions holds:

e r<sSs;
er=sand a1 =p1,...,00 =P, g1 > P41 for some 0 <l <.

As an example, (2,2,2)<3,2,1)<4,1,1)<3,3) <4,2) <(5,1) < (6) <.

Definition 2.2. Let x be a letter and a, b € M. Introduce the partial order > and the =-equivalence
on M as follows:

e a > b if and only if pwrx(a)Ord > pwrx(b)Ord for some letter x and pwry(a)Ord > pwry(b)Ord for
every letter y;
e a =D if and only if pwr,(a)° = pwr, (b)°™ for every letter y; in particular, mdega = mdegb.

Remark 2.3. There is no an infinite chain a; < a < --- such that a; € M and deg(a;) = deg(a;) for
all i, j.

Definition 2.4 (of the <-equivalence).

1. Let f =), aja; € Mp, where o; € F*, a; € M, and a; 2 ay for all i,i’. Then f <0 if f =01in Npq
or f= Z]- Bjbj in Ny 4 for some g; € F*, bj € M satisfying b; > a; for all i, j.
2.If f=) fk e Mr and fi <0 satisfies conditions from part 1 for all k, then f <0.

Given h € My, we write f <h if f —h=<0.

It is not difficult to see that =< is actually an equivalence on the vector space My, i.e., < have
properties of transitivity and linearity over [F. Note that part 2 of Definition 2.4 is necessary for < to
be an equivalence.

Theorem 2.5. Let p =0 or p > 5. Then

n
Cha < dZ(l — 1)C[n/i],d + 1.
i=2

Proof. There exists a w € M with deg(w) = Cpg—1 and w # 0 in Nj, 4. Moreover, by Remark 2.3 and
N-homogeneity of N, 4 we can assume that w 3 0. Given a letter x, we write d(x') for the number of
ith in the x-power of w, i.e,,

ord

pwr,(W)*" = (a1, ..., 0,0, ..., 0, B1,..., Bs),
——

d(x)

where o, < i < 1. Obviously, d(xi) =0fori>n.
Let 2 <i<n and x be a letter. Then n =ki + r for k = [n/i] 21 and 0 <r < i. Consider elements

ar,...,ax € M7 and 8 = ((i — 1k +r, 1¥). Note that for ay = x"1as(1)---x " layx' "', o € Sy, the
following statements hold:
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e a5 2 ay forall o, T € ;.

e Let iq,...,ig > 0 satisfy i1 +---+is=(G{—1)(k+ 1) and eop,...,es € My be such products of
ai, ...,a; that for every 1< j <k, a; is a factor of one and only element from the set {eg, ..., es}.
Moreover, we assume that eq,...,es_; € M. Define e = epxile1xi2 .. .xise; £ a, for all o € Sy.
Then e > a, for all o € Sy.

To prove the second claim, we notice that there are two cases. Namely, in the first case s=k+1, eg =
ek+1 =1, and ey =dz(1), ..., e =ar () for some 7 € Si; and in the second case #pwr,(e) < #pwr,(as)
for all o € Si. In both cases we have pwrx(e)"rd > pwrx(ag)Ord and pwry(e)ord > pwr, (as)°" for any
letter y #x and any o € Sk. The claim is proven.

Since Ty (x, a1, .. L @)X 1 =0in N, 4, we have Zaesk ay = 0. Moreover,

Z Vagw <0 (2)

O'ESk

for all v, w € Mj such that if v #1 (w # 1, respectively), then its last (first, respectively) letter is
not x.

Let D=2K —1. Since p=0or p> % > k, the Nagata-Higman Theorem implies that C p < 2k 1.
For short, we write C for Cy p. Thus y1---yc =0 in Ny p(¥1,...,yp), where y1,...,yp are new
letters. Since y1 --- yc is multilinear, an equality

Y1 "'}’C=ZagUOT1k(u1~--»uk)uk+1 (3)

u
holds in Mp(y1,...,Yc), where the sum ranges over (k + 2)-tuples u = (uo, ..., Ug+1) such that
ug, Ugr1 € M1(y1,....¥c), Ut,..., Uk € M(y1,...,¥c), and the number of non-zero coefficients

ay € F is finite.

Given by,...,bc e M™ and 0 <1< k+ 1, denote by v; € M; the result of substitution y; —
xi‘lbj (1< j <C)in u;. We apply these substitutions to equality (3) and multiply the result by xi~1.
Thus,

X Ty X Tpexi—1 = ZagvoT]k(vL e VIV X!
u
in Mp = Mp(x1, ...,xq). For every u there exist aj, ..., a; € M™ satisfying v; = x'~'q; for all 1<
I <k If up 1 # 1, then we also have vy =x"lagyq for some gy € M7*. Since Ty (v1,..., Vi) =

Dges, Vo) -+ Vo k), We have

i—1
T1’<(V17~--7Vk)vk+]xl = Z as f,
oeSy

where f stands for 1 in case ug+1 =1 and for g1 X'
equalities with equivalence (2), we obtain

~1in case u4 # 1. Combining the previous two

X~ 1hy - X hex 1 < 0. (4)

Hence, the equivalence box'~1hy---xi~'bc4q =< 0 holds for all by,...,bc € M™ and bg, bc41 € My
such that if by # 1 (bc+1 # 1, respectively), then its last (first, respectively) letter is not x. Since
w % 0, we obtain
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d(¥~") < Cinjina:
and therefore degy(w) < 3q_j<, (i — 1)Cpnyij.a for every letter x. The proof is completed. O

Remark 2.6. Since C1 4 =1, we can reformulate the statement of Theorem 2.5 as follows. Let p =0 or
p > 5 and m = [n/2]. Then Cy g < Apd + 1, where

= 1
An= (i=DCprira+ S m =1 —m).
i=2

Example 2.7. To illustrate the proof of Theorem 2.5, we repeat this proof in the partial case of n =5
and p # 2. We wrrite a, b, ¢ for some elements from M™.

Let i =2.Then k=[n/i] =2 and r = 1. Since T311(x,a,b) =0 in N5 4, we have the following partial
case of (2):

xaxbx + xbxax < 0. (5)

Note that C.p =3 for all D > 2. We rewrite the proof of this fact, using formula (5) instead of the
equality uv +vu=0in Np p:

Xax - bxc - x < —xb(xcxax) =< (xbxax)cx =< —xaxbxcx.

Here we use dots and parentheses to show how we apply (5). Thus we obtain the partial case of
formula (4): xaxbxcx =< 0. Therefore, d(x) < 3.

Let i =3. Then k=[n/i]=1 and r = 2. Since T4;(x,a) =0 in N5 4, we have x2ax? =< 0. Considering
i=4,5, we can see that x3ax®> =< 0 and x*ax* < 0. Thus, d(x)) < C;p=1 for j=2,3,4.

The obtained restrictions on d(x/) for 1 < j < 4 imply that degw < 12d. Hence, Csq<12d+1.

3. Polynomial bound
This section is dedicated to the proof of the next result.

Corollary 3.1.If p > 1, then C; g < n08234+2+1,

Theorem 2.5 together with the inequality C;_; 4 < Cjq4 for all j > 2 implies that

k

Cha < dz YiCiny2ia +1
=

for yj=Q/ —1)+2/ +... 4+ /71 —2) =32/ —1)2/~" and k > 0 satisfying 1 < 7% < 2. Thus,

k

3d ;
Cna < 2 21341C[n/21],d7 (6)
]:

where § < 2k <n.
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Let us fix some notations. If a is an arrow in an oriented graph, then we denote the head of a by
a’ and the tail of a by a’, i.e.,
a

O O)

We say that a” is a predecessor of @’ and a is a successor of a”.
For every [ > 1 we construct an oriented tree T; as follows.

The underlying graph of T is a tree.

Vertices of T; are marked with O, ..., L

e Let a vertex v be marked with i. Then v has exactly i successors, marked with 0,1,...,i — 1. If
i <[, then v has exactly one predecessor. If i =1, then v does not have a predecessor and it is
called the root of T.

e If a is an arrow of T; and @', a” are marked with i, j, respectively, then a is marked with 4/~1s,

where § =3d/2.

Example 3.2.

T1: T3:

©
©

Here we write a number that is prescribed to a vertex (an arrow, respectively) in this vertex (near
this arrow, respectively).

If b is an oriented path in T;, then we write degb for the number of arrows in b and |b| for the
product of numbers assigned to arrows of b. Denote by P; the set of maximal (by degree) paths in T;.
Note that there is 1-to-1 correspondence between P; and the set of leaves of T, i.e., vertices marked
with 0. We claim that

Cna< Y Ibl.

bEPk
To prove this statement we use induction on n > 2. If n =2, then k=1 and C, 4 < 4§ by (6), and

therefore the statement holds. For n > 2 formulas (6) and [[n/2/1]/2/2] = [n/2/1+12] for all ji, j» >0
together with the induction hypothesis imply that

k
Cna<), Y, 480bl.

j=1bePy_;

The statement is proven.
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Since the sum of exponents of 4 along every maximal path is k, we obtain that
degb
3d
k
Cra< Y 4 (7> . (7)
bEPk

Given 1 <r <k, denote by Py, the set of b € P, with degh =r. We claim that

k—1
#Pk,r = <r . 1)7 (8)

where #Py , stands for the cardinality of Py ;. To prove the claim we notice that Py, is the set of r-
tuples (j1, ..., jr) satisfying ji,..., jr > 1 and ji+---+ jr = k. Hence #Py , is equal to the cardinality
of the set of all (r — 1)-tuples (q1,...,qr—1) such that 1 <q1 <--- < ¢r—1 <k —1 since we can set
1=91,j2=92—q1, ..., jr =k —qr—1. The claim is proven.

Applying (8) to inequality (7), we obtain

k r k—1 r k—1
3d\" (k-1 3d 3d\ (k-1 3d 3d

Cng <4 (= =4=3"(= =4—(1+=) .
nd = <2>(r—1> 2 <2><r> 2<+2>

r=1 r=0

Thus,

B ﬁk
Cra <41+ ).

Since 2K < n, we have

) 3d log, (n) log, (143442 log, (3d+2)+1
Cog <n?(14+ = s = .

2
Corollary 3.1 is proven.
4. Corollaries
Corollary 4.1. Let p > 3. Then Cp, ¢ < 4 - 2"/2d. Moreover, if n > 30, then Cy g < 2 - 2"/2d.

We split the proof of Corollary 4.1 into several lemmas. Let m = [n/2]. For 2 <i<m denote y; =
(i—12" and 8, =2"2 +2"3(n—4) + J(n + 1)

Lemma 4.2. For 3 < i < m the inequality y; < y3 holds.
Proof. The required inequality is equivalent to the following one:
i—1<2.2"%. 9)
Let i =4. Then n > 8 and it is not difficult to see that the inequality 3 <2 -2"/12 holds.
Let i > 5. Then inequality (9) follows from i — 1< 2-2%"/13 Since i — 1 <}, the last inequality

follows from n < 4 - 22715 which holds for all n >2. O

Lemma 4.3. For n > 2 the inequality 8, < 4 - 2"/2 — 1 holds. Moreover, 8, < 2 - 2"/2 — 1 in case n > 30.
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Proof. Let n > 30. Then it is not difficult to see that 2-2"2 —1—§, =(2V%2 —n.2"3) 4 (4.2"/3 —
}l(n +1)2—1) > 0. If 2 <n < 30, then performing calculations we can see that the claim of the lemma
holds. O

Now we can prove Corollary 4.1:
Proof of Corollary 4.1. If n =2 or n = 3, respectively, then C, 4 < max{3,d} or C 4 < 3d + 1, respec-
tively (see Section 1), and the required is proven.

Assume that n > 4. By Remark 2.6, Cp g < And + 1. Since p > [n/i] for 2 <i < m, the Nagata-
Higman Theorem implies Cp;/ijq < 2t _ 1., Thus,

An < Z Vi + Bn,

2<i<m

where 8, = %(—m(m — 1)+ (m+n—1)(n—m)). Separately considering the cases of n even and odd,
we obtain that 8, < (n + 1)2/4. Since m > 2, Lemma 4.2 implies that

> vi<ya+ysm-2).

2<i<m

It follows from the above mentioned upper bound on 8, and the inequality m < § that A, < éy.
Lemma 4.3 completes the proof. O

To prove Corollary 4.5 (see below) we need the following slight improvement of the upper bound
from Nagata-Higman Theorem.

Lemma4.4.Ifp > n, then Cpg <7-2"73 foralln > 3.

Proof. If n =3, then the claim of the lemma follows from C3; 4 =6 (see Section 1).
It is well known that

gy 1=0 (10)

in Np 4 for all a,x, y (see [10]). Thus, Cp 4 < 2Ch_14 + 1. Applying this formula recursively, we obtain
that Cp g < 2n-3 C3aq+ Z?:_é 2! for n > 4. Since p > 4, the equality (3,4 = 6 concludes the proof. O

Corollary 4.5. Let 4 <n <9 and % < p<n.Then Cyq <and+ 1, where ag =8, as = 12, ag = 24, a7 = 30,
ag = 50, ag = 64.

Proof. We have C; 4=3 in case p > 2 and C34 =06 in case p > 3 (see Section 1). By Lemma 4.4,

C44 < 13 in case p > 4. Applying the upper bound on C, 4 from Theorem 2.5 recursively and using
the above given estimations on Cy 4 for k =2, 3, 4, we obtain the required. O

The following conjecture is a generalization of Razmyslov’s upper bound to the case of p > n and
it holds for n =2, 3:
Conjecture 4.6. For alln,d > 2 and p > n we have C, 4 < n2.

Corollary 4.7. Assume that Conjecture 4.6 holds. Then C, 4 < n® In(n)d for S<p<n
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Proof. For n =2, 3 the claim holds by Section 1.
Assume that n > 4. By Remark 2.6, C; 4 < Apd + 1. Since p > [n/i], Conjecture 4.6 implies

2
. n ,
Ap < E (i— ])i_z + By
2<i<m

where 8] = %(m +n —1)(n —m). Separately considering the cases of n even and odd, we obtain that
Bn < 3n2/8. Denote by &, the mth harmonic number 1 + % + % + -+ % We have

3
Ap <n?(Em—1) + gnz—1.

Since & <Inm+y + ﬁ where y < 1 is Euler’s constant (for example, see pages 73 and 79 of [11]),

5
An <n2(lnm+§) -1 <n21n(n)—1

and we obtain the required inequality. O

Remark 4.8. Using another approach, in recent paper [4] Belov and Kharitonov obtained the following
upper bounds on C, 4 for all p:

(1) Cpg < 40B6DH5 . (n12)logs@m+1g (Corollary 1.16 from [4]);
(2) Cpg <256 -n8l082W+22g (see Theorem 1.17 from [4]);

where the second estimation is better for small n. These bounds are linear with respect to d and
subexponential with respect to n.

Let us compare bounds (1) and (2) with the bound from Corollary 4.1 in case p > %: Cna <
4.2"24 If n>> 0 is large enough, then bounds (1) and (2) are essentially better than the bound from
Corollary 4.1. On the other hand, for 4 <n < 2000 the bound from Corollary 4.1 is at least 1020 times

better than bounds (1) and (2). This claim follows from straightforward computations.

5. The caseof n =4
Theorem 5.1. For d > 2 we have

C44=10,if p=0;

3d <Cqq,ifp=2;
3d+1<Cg<3d+4ifp=3;
10< Cag < 13,if p > 3.

In what follows we assume that n =4 and p # 2 unless otherwise stated. To prove Theorem 5.1
(see the end of the section), we introduce a new ~-equivalence on My as follows. Given & € N" and
BN (r,s>0), we write

a>p ifr<s.

Using > instead of >, we introduce the partial order > on M similarly to Definition 2.2. Then, using
the partial order = on M instead of >, we introduce the ~-equivalence on My similarly to the
=<-equivalence (see Definition 2.4). The resulting definition of ~ is the following one:
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Definition 5.2 (of the ~-equivalence on Mr).

1 Let f =) ;aia; € M, where ; € F*, a; € M, and #pwr,(a;) = #pwr,(ay) for every letter y and
all i,i’. Then f~0if f=0in N4 or f= Zj Bjbj in Ny 4 for Bj e F*, b; € M satisfying
o #pwr,(a;) > #pwr,(b;) for some letter x,
o #pwr,(a;) > #pwr, (bj) for every letter y,
for all i, j;
2.If f=3" f e Mr and fi ~ 0 satisfies conditions from part 1 for all k, then f ~0.

Given h € My, we write f ~h if f —h~0.

Remark 5.3. Note that the partial order > on M is stronger than >. Namely, for a,b € M we have

e if a>b, then a > b;
e ifa>b, thena>b ora~b.

Therefore, <-equivalence on My is weaker than ~-equivalence. Namely, for f,h € My the equality
f ~h implies f =< h, but the converse statement does not hold.

Let a,b,c,ay,...,a4 be elements of M. By definition,

T4(a) = a4,

T31(a, b) = a®b + a?ba + aba? + ba3,

T»11(a, b, ¢) = a®bc + a®cb + ba%c + ca?b + bca® + cba® + abca + acba + abac + acab + baca + cabc,
T (a, b) = a?b? + b2a? + abab + baba + ab%a + ba?b,

Tya(ai, ..., 02) =) ges, Qo) -+ Ao (4)

(see Section 2). Then

T4(a) =0, T31(a,b) =0, Tr11(a,b,c) =0, T(a,b) =0, Ti4(ar,...,a4) =0

are relations for N4 4, which generate the ideal of relations for N4 4. Multiplying T31(a, b) by a several
times we obtain that equalities

a*ba + a*ba* + aba® =0, (11)
a*ba® + a’ba® =0, (12)
aba® =0 (13)

hold in Ny 4.

Remark 5.4. Let f € Mp. Denote by inv(f) the element of Mp that we obtain by reading f from
right to left. As an example, for f = x%xz — x3 we have inv(f) = —x3 +x2xf.
Obviously, if f =0 in Nj g4, then inv(f) =0 in N, 4. Similar result also holds for ~-equivalence.

Lemma 5.5. Let x be a letter and a, b, c € M ™. Then the next relations are valid in N4 4:
Xaxbx? = —x3ax’bx, xax>bx? = x3ax?bx. (14)

Moreover, the following equivalences hold:
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2 2

Xax” ~ —x“ax, (15)
xaxbx ~ 0, xax'bx ~ 0, xaxbx' ~ 0 (16)

fori=2,3,
xaxbxcx ~ Q. (17)

Proof. We have

x3aT31 (x,b) = Xax®h + x2ax’bx + X3axbx* + x>abx®> = 0
in N4 4. By equality (13), x3axbx? = —x3ax?bx in N4 4. Similarly we can see that
T31(x, ax3b) = x3ax3b + x2ax’bx + xax>bx® + ax®*bx® = x*ax>bx + xax’bx*> = 0
in Ngg4. By (12), x¥*ax*bx = —x3ax?bx in N4 4 and equalities (14) are proven.
Since T31(x,a) =0 in N4 4, equivalence (15) is proven.
Let i = 2. By (15), xaxbx? ~ —xax*bx ~ x?axbx. On the other hand, (15) implies xaxbx? ~ —x?axbx.

Equivalences (16) for i = 2 are proven.
Let i = 3. Since T211(X,a, x*b) =0 and x3T»11(x,a,b) =0 in N4 4, we have

xax>bx + x*bxax~0 and x3axbx + x>bxax ~ 0,

respectively. Thus, x3axbx ~ xax>bx. Using Remark 5.4, we obtain
x3axbx ~ xax>bx ~ xaxbx>. (18)
The equality x2aT3(x, a) = 0 implies
x?axbx? 4+ x*ax*bx ~ 0.
Applying relation (11), we obtain
x3axbx + xaxbx> + x>axbx + xax>bx ~ 0.

Equivalences (18) complete the proof of (16).
Since T211(x,a, bxc)x =0 and Ta11(x,a, b)xcx =0 in N4 4, we obtain

xaxbxcx 4+ xbxcxax ~0 and xaxbxcx + xbxaxcx ~ 0,
respectively. The equality xbT211(x,a,c)x =0 in N4 4 implies
xbxcxax + xbxaxcx ~ 0,
and therefore xaxbxcx~ 0. O

If « eN', B €N’ then we write @ C 8 and say that « is a subvector of g if there are 1 < iy <
.-+ <1y such that o1 = B;,, ...,y = B,
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Lemma 5.6. If f € My, then f =0in Nag or f =) ; aja; in Ny 4 for some a; € F*, a; € M such that for
every letter x pwr,(a;) belongs to the following list:

e 4, (1), (1,1, (1,1,1),
e (2,20,
e (3),(3,1),(1,3),3,2),3,2,1.

Moreover, we can assume that for all pairwise different letters x, y, z and all i the following conditions do not
hold:

(@) pwry(ai) = (3,2, 1) and (3) C pwry,(ai);
(b) (3) is a subvector of pwr,(a;), pwr,,(a;), and pwr,(a;);
(¢) (3,2) is a subvector of pwry(a;) and pwr, (a;).

Proof. Let x be a letter and f = Zje] Bjbj for Bj e F* and bj € M. We claim that the state-
ment of the lemma holds for f for the given letter x. To prove the claim we use induction on
k = max{#pwr,(bj) | j € J}.

If k=0,1, then the claim holds.

If b]' = b1jX2b2jX2b3j for some b1j,b2j,b3j S M_'X. then aj = —b1jX3b2ij3j — b1ij2jX3b3j in
N4 g4 by relation (11). Note that #pwr,(b;) = #pwrx(bljx3b2ij3j) = #pwrx(b1ij2jx3b3j). Moreover,
if (2,...,2) C pwry(bj), then we apply (11) several times. Therefore, without loss of generality can

assume that (2,2) is not a subvector of pwr,(b;) for all j.
If one of the vectors

m, r>3; 3,3); ¢,1,1),(1,s1),1,1,s), se{2,3}; 1,1,1,1)

is a subvector of pwr,(bj), then bj ~ 0 by the equality x*=0in Ngg4 and formulas (13), (16), (17),
respectively. Thus, f~0 or f ~ Zje]o Bjbj for such Jo C J that for every j e Jo the vector pwry(b;)
up to permutation of its entries belongs to the following list:

4, (1),1,1),(1,1,1),2),2,1),3),3,1),(3,2),(3,2,1).

Let j e Jo. If pwry(bj) = (0 (1),0(2),0(3)) for some o € S3, then applying relations (12) and (14)
we obtain that bj = %c; in Ngg for a monomial cj € M satisfying pwr,(cj) = (3,2, 1). If pwr,(bj)
is (1,2) or (2,3), then we apply formulas (15) or (12), respectively, to obtain that bj ~ —c; for a
monomial ¢j € M with pwr,(cj) € {(2,1), (3,2)}. So we get that f ~h for such h € My that the
claim holds for h. The induction hypothesis and Definition 5.2 complete the proof of the claim.

Let y be a letter different from x. Relations from the proof of the claim do not affect y-powers.
Therefore, applying the claim to f for all letters subsequently, we complete the proof of the first part
of the lemma.

Consider an a € M. If a satisfies condition (a), then relations (12) and (14) together with rela-
tion (10) imply that a =0 in N4 4. If a satisfies condition (b) or (c), then relations (10) and (12) imply
that a=0 in N4 4. Thus, the second part of the lemma is proven. O

The following lemma resembles Lemma 3.3 from [19].

Lemma 5.7. Let p =2 and 1 < k < d. For every homogeneous f € My of multidegree (01, ..., 6g) with 6y <3
and 01 + - - - 4+ 6k—1 + Ok1 + - - - + 04 > 0 we define 7wy (f) € My as the result of the substitution x, — 1ina,
where 1 stands for the unity of M.

Then f =0in Ny 4 implies i (f) = 0in N4 g.
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Proof. Let a, b, c, u € M. By definition, 7y (ab) = 7y (a)wk(b). Then by straightforward calculations we
can show that 74(T31(a, b)) =0, 7y (T211(a,b,c)) =0, m(T22(a,b)) =0, and 7y (Ty4(a,b,c,u)) =0
in Ny 4. The proof is completed. O

We now can prove Theorem 5.1:

Proof of Theorem 5.1. If p =0, then the required was proven by Vaughan-Lee in [26]. If p > 3, then
the claim follows from Kuzmin’s low bound (see Section 1) and Lemma 4.4.

Let p=2and a= xf . -xz. Assume that a =0 in N4 4. Applying 71, ..., wg—1 from Lemma 5.7 to a
we obtain that xg =0 in Ny g4; a contradiction. Thus, C4 4 > dega = 3d.

Assume that p = 3. Consider an a € M such that a # 0 in N4 4. Applying Lemma 5.6 to a, without
loss of generality we can assume that a satisfies all conditions from Lemma 5.6. Denote t; = deg,, (a)
and r = #{i | (3) is subvector of pwr,, (a)}. Then

(@) t; <6;
(b) if t; >4, then (3) C pwry, (a)

for all 1 <i<d.

If r =0, then deg(a) < 3d by part (b). If r =1, then deg(a) <6+ 3(d — 1) = 3d + 3 by parts (a)
and (b).

Let r = 2. Then without loss of generality we can assume that (3) is a subvector of pwry, (a)
and pwry, (a). Since condition (a) of Lemma 5.6 does not hold for @, (3,2,1) is not a subvector of
pwry, (a) for i =1,2. Hence, t1,t2 < 6. If t1 =t =5, then condition (c) of Lemma 5.6 holds for a;
a contradiction. Therefore, t1 +t2 < 9. By part (b), t; < 3 for 3 <i < d. Finally, we obtain that deg(a) <
3d + 3.

If r > 3, then a satisfies condition (b) of Lemma 5.6; a contradiction.

So, we have shown that deg(a) < 3d + 3, and therefore C44 < 3d + 4. On the other hand, C4 4 >
C3,4=3d+1 by [16]. The proof is completed. O

Remark 5.8. Assume that n =4 and p = 3. Let us compare the upper bound C44 < 3d + 3 from
Theorem 5.1 with the known upper bounds on Cy 4:

e Corollary 4.5 implies that C4 4 < 8d +1;
e bounds by Belov and Kharitonov [4] imply that C4 ¢ < Bad, where B4 > 1020 (see Remark 4.8 for
details);

e bounds by Klein [13] imply that C4 4 < %d“ and C44 < 212842 (see Section 1 for details).
6. GL(n)-invariants of matrices

The general linear group GL(n) acts on d-tuples V = (F"™™)® of n x n matrices over F by the
diagonal conjugation, i.e.,

g-(A1,...,A) = (gArg™",.... gAsg™ ), (19)

where g € GL(n) and A1,...,Aq lie in F"*", The coordinate algebra of the affine variety V is the
algebra of polynomials R =F[V]=TF[x;j(k) | 1<i,j<n, 1<k<d]in n?d variables. Denote by

x11(k) -+ x1n(k)
Xe=| :
X (k) -+ Xan(k)

the kth generic matrix. The action of GL(n) on V induces the action on R as follows:
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g-xij(k) = (i, j)th entry of g~ ' X, g

for all g € GL(n). The algebra of GL(n)-invariants of matrices is

RGL() _ {feF[V]|g- f=fforall geGLmn)}.

Denote coefficients in the characteristic polynomial of an n x n matrix X by o:(X), i.e.,

det(X +AE) =Y A" or(X). (20)
t=0

In particular, 0p(X) =1, 01(X) = tr(X), and o (X) = det(X).

Given a = x;, ---X;, € M, we set X, = X;, --- X;,. It is known that the algebra RCL™ R is gen-
erated over F by o¢(Xg), where 1 <t <n and a € M (see [7]). Note that in the case of p =0 the
algebra RC'™ is generated by tr(X,), where a € M. Relations between the mentioned generators
were established in [28].

Remark 6.1. If G belongs to the list O(n), Sp(n), SO(n), SL(n), then we can define the algebra of
invariants RC in the same way as for G = GL(n). A generating set for the algebra R¢ is known, where
we assume that charF # 2 in the case of O(n) and SO(n) (see [29,18]). In case p =0 and G # SO(n)
relations between generators of R® were described in [23]. In case p % 2 relations for RO™ were
described in [20,21].

By the Hilbert-Nagata Theorem on invariants, RS is a finitely generated No-graded algebra by
degrees, where dego;(X,) =tdega for a € M. But the above mentioned generating set is not finite.
In [5] the following finite generating set for RCL(™" was established:

e 0¢(Xg), where 1 <t < 5, ae M, dega < Cpg;
e 0¢(X;), where § <t <n, 1<i<d.

We obtain a smaller generating set.

Theorem 6.2. The algebra R°™ is generated by the following finite set:

e 0¢(Xg), wheret =1orp <t < %,a e M, dega < Ciyyed;
o 0¢(X), where J <t <n,p<t, 1<i<d.

To prove the theorem, we need the following notions. Let 1 <t < n. For short, we write o;(a) for
0¢(Xg), where a € M. Amitsur’s formula [1] enables us to consider o (a) with a € My as an invariant
from RCL™ for all t € N. Zubkov [28] established that the ideal of relations for RCL™ is generated
by o:(a) =0, where t > n and a € Mp. More details can be found, for example, in [20]. Denote by
I(t) the F-span of elements oy, (ay)--- oy, (ar), where r >0, 1 <tq,...,t <t and ay,...,a, € M.
For short, we write I for I(n) = R%™ . Denote by It the subalgebra generated by Ng-homogeneous
elements of I of positive degree. Obviously, the algebra I is generated by a set {fx} C I if and only
if {fi} is a basis of I =1/(IT)2. Given an f €I, we write f =0 if f =0 in I, i.e, f is equal to a
polynomial in elements of strictly lower degree.

Proof of Theorem 6.2. Let 1 <t <n, m=[n/t], and a,b € My. We claim that

there exists an f € I(t — 1) such that o} (abm) = f. (21)
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To prove the claim we notice that the inequality (m + 1)t > n and the description of relations for
RELM imply om+1)t(a + b) = 0. Taking homogeneous component of degree ¢t with respect to a and
degree mt with respect to b, we obtain that o;(ab™) =0 or o¢(ab™) = ), ajoy, (a;), where o; € F*,
1<t; <t, and g; is a monomial in a and b for all i. By Amitsur’s formula, oy, (a;) = Zj Bijor; (bjj) for
some Bi; € F*, 1 <rjj <tj, bjj € M. Thus, )", ajoy;(a;) € I(t — 1) and the claim is proven.

Consider a monomial ¢ € M satisfying degc > Cp, 4. Then ¢ = ¢’x for some letter x and ¢’ € M.
Since ¢’ =0 in Ny, 4, we have ¢’ =), y;u;v{"w; for some u;, w; € My, v; € Mp, y; € F. Thus or(c) =
or(D_; aju;vi'wix). Applying Amitsur’s formula, we obtain that o¢(c) — ) ; aitaf(u,-v’ﬁwix) elt—1).
Statement (21) implies

oi(c)=h forsomehel(t—1). (22)

Consecutively applying (22) to t =n,n—1,...,2 we obtain that R®™ is generated by o;(a), where
1<t<n, aeM, dega < Cyyq. Note that if ¢ > % then m=1 and Cpg=1.If t < p <n, then
the Newton formulas imply that o;(a) is a polynomial in tr(a’), i > O (the explicit expression can be
found, for example, in Lemma 10 of [17]). The last two remarks complete the proof. O

Conjecture 6.3. The algebra RS!™ is generated by elements of degree less or equal to Cp 4.

Remark 6.4. Theorem 6.2 and the inequality C, 4 > n imply that to prove Conjecture 6.3 it is enough
to show that

tCrnye1,d < Cnd

for all t satisfying p <t < 5. Thus it is not difficult to see that Conjecture 6.3 holds for n < 5. More-
over, as it was proven in [5] (and also follows from Theorem 6.2), Conjecture 6.3 holds in case p =0
or p> 3.
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