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Denote by Cn,d the nilpotency degree of a relatively free algebra
generated by d elements and satisfying the identity xn = 0. Under
assumption that the characteristic p of the base field is greater
than n/2, it is shown that Cn,d < nlog2(3d+2)+1 and Cn,d < 4 · 2

n
2 d.

In particular, it is established that the nilpotency degree Cn,d has
a polynomial growth in case the number of generators d is fixed
and p > n

2 . For p �= 2 the nilpotency degree C4,d is described with
deviation 3 for all d. As an application, a finite generating set for
the algebra RGL(n) of GL(n)-invariants of d matrices is established
in terms of Cn,d . Several conjectures are formulated.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

We assume that F is an infinite field of arbitrary characteristic p = charF � 0. All vector spaces,
algebras and modules are over F and all algebras are associative with unity unless otherwise
stated.

We denote by M = M(x1, . . . , xd) the semigroup (without unity) freely generated by letters
x1, . . . , xd and denote by MF =MF(x1, . . . , xd) the vector space with the basis M. Let

Nn,d = Nn,d(x1, . . . , xd) = MF

id{xn | x ∈ MF}
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be the relatively free algebra with the identity xn = 0. The connection between this algebra and ana-
logues of the Burnside problems for associative algebras suggested by Kurosh and Levitzky is discussed
in recent survey [27] by Zelmanov.

We write

Cn,d = min{c > 0 | a1 · · ·ac = 0 for all a1, . . . ,ac ∈ Nn,d}

for the nilpotency degree of Nn,d . Since C1,d = 1 and Cn,1 = n, we assume that n,d � 2 unless other-
wise stated. Obviously, Cn,d depends only on n, d, and p.

We consider the following three cases:

(a) p = 0;
(b) 0 < p � n;
(c) p > n.

By the well-known Nagata–Higman Theorem (see [22] and [12]), which at first was proved by Dubnov
and Ivanov [9] in 1943, Cn,d < 2n in cases (a) and (c). As it was pointed out in [6], Cn,d � d in case (b);
in particular, Cn,d → ∞ as d → ∞. Thus, the case (b) is drastically different from cases (a) and (c).
In 1974 Razmyslov [24] proved that Cn,d � n2 in case (a). As about lower bounds on Cn,d , in 1975
Kuzmin [14] established that Cn,d � 1

2 n(n+1) in cases (a) and (c) and conjectured that Cn,d is actually
equal to 1

2 n(n + 1) in these cases. A proof of the mentioned lower bound was reproduced in books [8]
and [3] (see p. 341). Kuzmin’s Conjecture is still unproven apart from some partial cases. Namely, the
conjecture holds for n = 2 and n = 3 (for example, see [15]). In case (a) the conjecture was proved for
n = 4 by Vaughan-Lee [26] and for n = 5, d = 2 by Shestakov and Zhukavets [25].

Using approach by Belov [2], Klein [13] obtained that for an arbitrary characteristic the inequalities
Cn,d < 1

6 n6dn and Cn,d < 1
(m−1)!n

n3
dm hold, where m = [n/2]. Here [a] (where a ∈ R) stands for the

largest integer b < a. Recently, Belov and Kharitonov [4] established that Cn,d � 218 · n12 log3(n)+28d
(see Remark 4.8 for more details). Moreover, they proved that a similar estimation also holds for the
Shirshov Height of a finitely generated PI-algebra. We can summarize the above mentioned bounds
on the nilpotency degree as follows:

• if p = 0, then 1
2 n(n + 1) � Cn,d � n2;

• if 0 < p � n, then d � Cn,d < 1
6 n6dn and Cn,d � 218 · n12 log3(n)+28d;

• if p > n, then 1
2 n(n + 1) � Cn,d < 2n .

For d > 0 and arbitrary characteristic of the field the nilpotency degree Cn,d is known for n = 2 (for
example, see [6]) and n = 3 (see [15] and [16]):

C2,d =
{

3, if p = 0 or p > 2,

d + 1, if p = 2
and C3,d =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6, if p = 0 or p > 3,

6, if p = 2 and d = 2,

d + 3, if p = 2 and d > 2,

3d + 1, if p = 3.

In this paper we obtained the following upper bounds on Cn,d:

• Cn,d < nlog2(3d+2)+1 in case p > n
2 (see Corollary 3.1). Therefore, we establish a polynomial upper

bound on Cn,d under assumption that the number of generators d is fixed.
• Cn,d < 4 · 2

n
2 d for n

2 < p � n (see Corollary 4.1). Modulo Conjecture 4.6, we prove that Cn,d <

n2 ln(n)d for n
2 < p � n (see Corollary 4.7).

• C4,d is described with deviation 3 for all d under assumption that p �= 2 (see Theorem 5.1).
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Note that even in the partial case of p > n and d = 2 a polynomial bound on Cn,d has not been
known. If n is fixed and d is large enough, then the bound from Corollary 4.1 is better than that
from Corollary 3.1. In Remark 4.8 we show that for p > n

2 , 4 � n � 2000, and all d the bound from
Corollary 4.1 is at least 1020 times better than the bounds by Belov and Kharitonov [4].

As an application, we consider the algebra RGL(n) of GL(n)-invariants of several matrices and de-
scribe a finite generating set for RGL(n) in terms of Cn,d (see Theorem 6.2). We conjecture that RGL(n)

is actually generated by its elements of degree less or equal to Cn,d (see Conjecture 6.3).
The paper is organized as follows. In Section 2 we establish a key recursive formula for an upper

bound on Cn,d that holds in case p = 0 or p > n
2 (see Theorem 2.5):

Cn,d � d
n∑

i=2

(i − 1)C[n/i],d + 1. (1)

The main idea of proof of Theorem 2.5 is the following one. We introduce some partial order >

on M and the �-equivalence on MF in such a way that f � h if and only if the image of f − h
in Nn,d belongs to F-span of elements that are bigger than f − h with respect to >. Since Nn,d is
homogeneous with respect to degrees, there exists a w ∈ M satisfying w �� 0 and Cn,d = deg w + 1.
Thus we can deal with the �-equivalence instead of the equality in Nn,d . Some relations of Nn,d
modulo �-equivalence resembles relations of Nk,d for k < n (see formula (2)). This fact allows us to
obtain the upper bound on Cn,d in terms of Ck,d , where k < n. To illustrate the proof of Theorem 2.5,
in Example 2.7 we consider the partial case of n = 5 and p �= 2. Note that a similar approach to the
problem of description of Cn,d can be originated from every partial order on M.

In Section 3 we apply recursive formula (1) several times to obtain the polynomial bound from
Corollary 3.1. On the other hand, in Section 4 we use formula (1) together with the Nagata–Higman
Theorem to establish Corollary 4.1. Formula (1) is applied to the partial case of n � 9 in Corol-
lary 4.5.

In Section 5 we develop the approach from Section 2 for n = 4 to prove Theorem 5.1. We define a
new partial order � on M, which is weaker than >, and obtain a new ≈-equivalence on MF , which
is stronger than �-equivalence. Considering relations of N4,d modulo ≈-equivalence, we obtain the
required bounds on C4,d .

Section 6 is dedicated to the algebras of invariants of several matrices.
We end up this section with the following optimistic conjecture, which follows from Kuzmin’s

Conjecture. We write Cn,d,p for Cn,d .

Conjecture 1.1. For all p > n we have Cn,d,0 = Cn,d,p .

This conjecture holds for n = 2,3 (see above). Note that Conjecture 4.6 follows from Conjecture 1.1
by the above mentioned result by Razmyslov.

2. Recursive upper bound

We start with some notations. Let N = {1,2, . . .}, N0 = N 	 {0}, and F
∗ = F\{0}. Denote M1 =

M 	 {1}, i.e., we endow M with the unity. Given a letter x, denote by M¬x the set of words
a1 · · ·ar ∈M such that neither letter a1 nor letter ar is equal to x and r > 0.

For a ∈ M1 and a letter x we denote by degx(a) the degree of a in the letter x and by mdeg(a) =
(degx1

(a), . . . ,degxr
(a)) the multidegree of a. For short, we write 1r for (1, . . . ,1) (r times) and say

that a is multilinear in case mdeg(a) = 1r .
Given α = (α1, . . . ,αr) ∈ N

r
0, we set #α = r, |α| = α1 + · · · + αr , and αord = (ασ(1), . . . ,ασ(r)) for a

permutation σ ∈ Sr such that ασ(1) � · · · � ασ(r) . If r = 0, then we say that α is an empty vector and
write α = ∅. Note that for α = ∅ we also have αord = ∅.

Given θ ∈N
r
0 with |θ | = n and a1, . . . ,ar ∈M, denote by Tθ (a1, . . . ,ar) the coefficient of α

θ1
1 · · ·αθr

r
in (α1a1 + · · · + αrar)

n , where αi ∈ F. Since the field F is infinite, standard Vandermonde arguments
give that Tθ (a1, . . . ,ar) = 0 holds in Nn,d .
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Definition 2.1 (of pwrx(a)). Let x be a letter and a = a1xα1 · · ·ar xαr ar+1 ∈ M, where r � 0,
a1,ar+1 ∈ M1, a2, . . . ,ar ∈ M, α1, . . . ,αr > 0, and degx(ai) = 0 for all i. Then we denote by
pwrx(a) = (α1, . . . ,αr) the x-power of a. In particular, if degx(a) = 0, then pwrx(a) = ∅.

Let α ∈ N
r , β ∈ N

s (r, s � 0) satisfy α = αord and β = βord. Then we write α > β if one of the
following conditions holds:

• r < s;
• r = s and α1 = β1, . . . ,αl = βl , αl+1 > βl+1 for some 0 � l < r.

As an example, (2,2,2) < (3,2,1) < (4,1,1) < (3,3) < (4,2) < (5,1) < (6) < ∅.

Definition 2.2. Let x be a letter and a,b ∈ M. Introduce the partial order > and the ≷-equivalence
on M as follows:

• a > b if and only if pwrx(a)ord > pwrx(b)ord for some letter x and pwry(a)ord � pwry(b)ord for
every letter y;

• a ≷ b if and only if pwry(a)ord = pwry(b)ord for every letter y; in particular, mdeg a = mdeg b.

Remark 2.3. There is no an infinite chain a1 < a2 < · · · such that ai ∈ M and deg(ai) = deg(a j) for
all i, j.

Definition 2.4 (of the �-equivalence).

1. Let f = ∑
i αiai ∈MF , where αi ∈ F

∗ , ai ∈M, and ai ≷ ai′ for all i, i′ . Then f � 0 if f = 0 in Nn,d
or f = ∑

j β jb j in Nn,d for some β j ∈ F
∗ , b j ∈M satisfying b j > ai for all i, j.

2. If f = ∑
k fk ∈MF and fk � 0 satisfies conditions from part 1 for all k, then f � 0.

Given h ∈MF , we write f � h if f − h � 0.

It is not difficult to see that � is actually an equivalence on the vector space MF , i.e., � have
properties of transitivity and linearity over F. Note that part 2 of Definition 2.4 is necessary for � to
be an equivalence.

Theorem 2.5. Let p = 0 or p > n
2 . Then

Cn,d � d
n∑

i=2

(i − 1)C[n/i],d + 1.

Proof. There exists a w ∈M with deg(w) = Cn,d −1 and w �= 0 in Nn,d . Moreover, by Remark 2.3 and
N-homogeneity of Nn,d we can assume that w �� 0. Given a letter x, we write d(xi) for the number of
ith in the x-power of w , i.e.,

pwrx(w)ord = (α1, . . . ,αr, i, . . . , i︸ ︷︷ ︸
d(xi)

, β1, . . . , βs),

where αr < i < β1. Obviously, d(xi) = 0 for i � n.
Let 2 � i � n and x be a letter. Then n = ki + r for k = [n/i] � 1 and 0 � r < i. Consider elements

a1, . . . ,ak ∈ M¬x and θ = ((i − 1)k + r,1k). Note that for aσ = xi−1aσ(1) · · · xi−1aσ(k)xi−1, σ ∈ Sk , the
following statements hold:
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• aσ ≷ aτ for all σ ,τ ∈ Sk .
• Let i1, . . . , is > 0 satisfy i1 + · · · + is = (i − 1)(k + 1) and e0, . . . , es ∈ M1 be such products of

a1, . . . ,ak that for every 1 � j � k, a j is a factor of one and only element from the set {e0, . . . , es}.
Moreover, we assume that e1, . . . , es−1 ∈ M. Define e = e0xi1 e1xi2 · · · xis es �= aσ for all σ ∈ Sk .
Then e > aσ for all σ ∈ Sk .

To prove the second claim, we notice that there are two cases. Namely, in the first case s = k +1, e0 =
ek+1 = 1, and e1 = aτ (1), . . . , ek = aτ (k) for some τ ∈ Sk; and in the second case #pwrx(e) < #pwrx(aσ )

for all σ ∈ Sk . In both cases we have pwrx(e)ord > pwrx(aσ )ord and pwry(e)ord � pwry(aσ )ord for any
letter y �= x and any σ ∈ Sk . The claim is proven.

Since Tθ (x,a1, . . . ,ak)xi−r−1 = 0 in Nn,d , we have
∑

σ∈Sk
aσ � 0. Moreover,

∑
σ∈Sk

vaσ w � 0 (2)

for all v, w ∈ M1 such that if v �= 1 (w �= 1, respectively), then its last (first, respectively) letter is
not x.

Let D = 2k − 1. Since p = 0 or p > n
2 � k, the Nagata–Higman Theorem implies that Ck,D � 2k − 1.

For short, we write C for Ck,D . Thus y1 · · · yC = 0 in Nk,D(y1, . . . , yD), where y1, . . . , yD are new
letters. Since y1 · · · yC is multilinear, an equality

y1 · · · yC =
∑

u

αuu0T1k (u1, . . . , uk)uk+1 (3)

holds in MF(y1, . . . , yC ), where the sum ranges over (k + 2)-tuples u = (u0, . . . , uk+1) such that
u0, uk+1 ∈ M1(y1, . . . , yC ), u1, . . . , uk ∈ M(y1, . . . , yC ), and the number of non-zero coefficients
αu ∈ F is finite.

Given b1, . . . ,bC ∈ M¬x and 0 � l � k + 1, denote by vl ∈ M1 the result of substitution y j →
xi−1b j (1 � j � C ) in ul . We apply these substitutions to equality (3) and multiply the result by xi−1.
Thus,

xi−1b1 · · · xi−1bC xi−1 =
∑

u

αu v0T1k (v1, . . . , vk)vk+1xi−1

in MF = MF(x1, . . . , xd). For every u there exist a1, . . . ,ak ∈ M¬x satisfying vl = xi−1al for all 1 �
l � k. If uk+1 �= 1, then we also have vk+1 = xi−1ak+1 for some ak+1 ∈ M¬x . Since T1k (v1, . . . , vk) =∑

σ∈Sk
vσ(1) · · · vσ(k) , we have

T1k (v1, . . . , vk)vk+1xi−1 =
∑
σ∈Sk

aσ f ,

where f stands for 1 in case uk+1 = 1 and for ak+1xi−1 in case uk+1 �= 1. Combining the previous two
equalities with equivalence (2), we obtain

xi−1b1 · · · xi−1bC xi−1 � 0. (4)

Hence, the equivalence b0xi−1b1 · · · xi−1bC+1 � 0 holds for all b1, . . . ,bC ∈ M¬x and b0,bC+1 ∈ M1
such that if b0 �= 1 (bC+1 �= 1, respectively), then its last (first, respectively) letter is not x. Since
w �� 0, we obtain
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d
(
xi−1)� C[n/i],d,

and therefore degx(w) �
∑

1<i�n(i − 1)C[n/i],d for every letter x. The proof is completed. �
Remark 2.6. Since C1,d = 1, we can reformulate the statement of Theorem 2.5 as follows. Let p = 0 or
p > n

2 and m = [n/2]. Then Cn,d � And + 1, where

An =
m∑

i=2

(i − 1)C[n/i],d + 1

2
(n + m − 1)(n − m).

Example 2.7. To illustrate the proof of Theorem 2.5, we repeat this proof in the partial case of n = 5
and p �= 2. We write a,b, c for some elements from M¬x .

Let i = 2. Then k = [n/i] = 2 and r = 1. Since T311(x,a,b) = 0 in N5,d , we have the following partial
case of (2):

xaxbx + xbxax � 0. (5)

Note that C2,D = 3 for all D � 2. We rewrite the proof of this fact, using formula (5) instead of the
equality uv + vu = 0 in N2,D :

xax · bxc · x � −xb(xcxax) � (xbxax)cx � −xaxbxcx.

Here we use dots and parentheses to show how we apply (5). Thus we obtain the partial case of
formula (4): xaxbxcx � 0. Therefore, d(x) � 3.

Let i = 3. Then k = [n/i] = 1 and r = 2. Since T41(x,a) = 0 in N5,d , we have x2ax2 � 0. Considering
i = 4,5, we can see that x3ax3 � 0 and x4ax4 � 0. Thus, d(x j)� C1,D = 1 for j = 2,3,4.

The obtained restrictions on d(x j) for 1 � j � 4 imply that deg w � 12d. Hence, C5,d � 12d + 1.

3. Polynomial bound

This section is dedicated to the proof of the next result.

Corollary 3.1. If p > n
2 , then Cn,d < nlog2(3d+2)+1 .

Theorem 2.5 together with the inequality C j−1,d � C j,d for all j � 2 implies that

Cn,d � d
k∑

j=1

γ jC[n/2 j ],d + 1

for γ j = (2 j − 1) + 2 j + · · · + (2 j+1 − 2) = 3(2 j − 1)2 j−1 and k > 0 satisfying 1 � n
2k < 2. Thus,

Cn,d <
3d

2

k∑
j=1

4 jC[n/2 j ],d, (6)

where n
2 < 2k � n.
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Let us fix some notations. If a is an arrow in an oriented graph, then we denote the head of a by
a′ and the tail of a by a′′ , i.e.,

a′
a

a′′ .

We say that a′′ is a predecessor of a′ and a′ is a successor of a′′ .
For every l � 1 we construct an oriented tree Tl as follows.

• The underlying graph of Tl is a tree.
• Vertices of Tl are marked with 0, . . . , l.
• Let a vertex v be marked with i. Then v has exactly i successors, marked with 0,1, . . . , i − 1. If

i < l, then v has exactly one predecessor. If i = l, then v does not have a predecessor and it is
called the root of Tl .

• If a is an arrow of Tl and a′,a′′ are marked with i, j, respectively, then a is marked with 4 j−iδ,
where δ = 3d/2.

Example 3.2.

T1: 1

4δ

0

T3: 3

4δ

2

4δ

1

4δ

0

1

4δ

0 0

0

42δ 43δ

42δ

Here we write a number that is prescribed to a vertex (an arrow, respectively) in this vertex (near
this arrow, respectively).

If b is an oriented path in Tl , then we write deg b for the number of arrows in b and |b| for the
product of numbers assigned to arrows of b. Denote by Pl the set of maximal (by degree) paths in Tl .
Note that there is 1-to-1 correspondence between Pl and the set of leaves of Tl , i.e., vertices marked
with 0. We claim that

Cn,d <
∑
b∈Pk

|b|.

To prove this statement we use induction on n � 2. If n = 2, then k = 1 and C2,d < 4δ by (6), and
therefore the statement holds. For n > 2 formulas (6) and [[n/2 j1 ]/2 j2 ] = [n/2 j1+ j2 ] for all j1, j2 > 0
together with the induction hypothesis imply that

Cn,d <

k∑
j=1

∑
b∈Pk− j

4 jδ |b|.

The statement is proven.
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Since the sum of exponents of 4 along every maximal path is k, we obtain that

Cn,d <
∑
b∈Pk

4k
(

3d

2

)deg b

. (7)

Given 1 � r � k, denote by Pk,r the set of b ∈ Pk with deg b = r. We claim that

#Pk,r =
(

k − 1

r − 1

)
, (8)

where #Pk,r stands for the cardinality of Pk,r . To prove the claim we notice that Pk,r is the set of r-
tuples ( j1, . . . , jr) satisfying j1, . . . , jr � 1 and j1 +· · ·+ jr = k. Hence #Pk,r is equal to the cardinality
of the set of all (r − 1)-tuples (q1, . . . ,qr−1) such that 1 � q1 < · · · < qr−1 � k − 1 since we can set
j1 = q1, j2 = q2 − q1, . . . , jr = k − qr−1. The claim is proven.

Applying (8) to inequality (7), we obtain

Cn,d < 4k
k∑

r=1

(
3d

2

)r(k − 1

r − 1

)
= 4k 3d

2

k−1∑
r=0

(
3d

2

)r(k − 1

r

)
= 4k 3d

2

(
1 + 3d

2

)k−1

.

Thus,

Cn,d < 4k
(

1 + 3d

2

)k

.

Since 2k � n, we have

Cn,d < n2
(

1 + 3d

2

)log2(n)

= nlog2(1+ 3d
2 )+2 = nlog2(3d+2)+1.

Corollary 3.1 is proven.

4. Corollaries

Corollary 4.1. Let p > n
2 . Then Cn,d < 4 · 2n/2d. Moreover, if n � 30, then Cn,d < 2 · 2n/2d.

We split the proof of Corollary 4.1 into several lemmas. Let m = [n/2]. For 2 � i � m denote γi =
(i − 1)2n/i and δn = 2n/2 + 2n/3(n − 4) + 1

4 (n + 1)2.

Lemma 4.2. For 3 � i � m the inequality γi � γ3 holds.

Proof. The required inequality is equivalent to the following one:

i − 1 � 2 · 2n i−3
3i . (9)

Let i = 4. Then n � 8 and it is not difficult to see that the inequality 3 � 2 · 2n/12 holds.
Let i � 5. Then inequality (9) follows from i − 1 � 2 · 22n/15. Since i − 1 � n

2 , the last inequality
follows from n � 4 · 22n/15, which holds for all n � 2. �
Lemma 4.3. For n � 2 the inequality δn � 4 · 2n/2 − 1 holds. Moreover, δn � 2 · 2n/2 − 1 in case n � 30.
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Proof. Let n � 30. Then it is not difficult to see that 2 · 2n/2 − 1 − δn = (2n/2 − n · 2n/3) + (4 · 2n/3 −
1
4 (n+1)2 −1)� 0. If 2 � n < 30, then performing calculations we can see that the claim of the lemma
holds. �

Now we can prove Corollary 4.1:

Proof of Corollary 4.1. If n = 2 or n = 3, respectively, then Cn,d � max{3,d} or Cn,d � 3d + 1, respec-
tively (see Section 1), and the required is proven.

Assume that n � 4. By Remark 2.6, Cn,d � And + 1. Since p > [n/i] for 2 � i � m, the Nagata–
Higman Theorem implies C[n/i],d � 2n/i − 1. Thus,

An �
∑

2�i�m

γi + βn,

where βn = 1
2 (−m(m − 1) + (m + n − 1)(n − m)). Separately considering the cases of n even and odd,

we obtain that βn � (n + 1)2/4. Since m � 2, Lemma 4.2 implies that

∑
2�i�m

γi � γ2 + γ3(m − 2).

It follows from the above mentioned upper bound on βn and the inequality m � n
2 that An � δn .

Lemma 4.3 completes the proof. �
To prove Corollary 4.5 (see below) we need the following slight improvement of the upper bound

from Nagata–Higman Theorem.

Lemma 4.4. If p > n, then Cn,d < 7 · 2n−3 for all n � 3.

Proof. If n = 3, then the claim of the lemma follows from C3,d = 6 (see Section 1).
It is well known that

nxn−1ayn−1 = 0 (10)

in Nn,d for all a, x, y (see [10]). Thus, Cn,d � 2Cn−1,d + 1. Applying this formula recursively, we obtain
that Cn,d � 2n−3C3,d + ∑n−4

i=0 2i for n � 4. Since p > 4, the equality C3,d = 6 concludes the proof. �
Corollary 4.5. Let 4 � n � 9 and n

2 < p � n. Then Cn,d � and + 1, where a4 = 8, a5 = 12, a6 = 24, a7 = 30,
a8 = 50, a9 = 64.

Proof. We have C2,d = 3 in case p > 2 and C3,d = 6 in case p > 3 (see Section 1). By Lemma 4.4,
C4,d � 13 in case p > 4. Applying the upper bound on Cn,d from Theorem 2.5 recursively and using
the above given estimations on Ck,d for k = 2,3,4, we obtain the required. �

The following conjecture is a generalization of Razmyslov’s upper bound to the case of p > n and
it holds for n = 2,3:

Conjecture 4.6. For all n,d � 2 and p > n we have Cn,d � n2 .

Corollary 4.7. Assume that Conjecture 4.6 holds. Then Cn,d < n2 ln(n)d for n
2 < p � n.
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Proof. For n = 2,3 the claim holds by Section 1.
Assume that n � 4. By Remark 2.6, Cn,d � And + 1. Since p > [n/i], Conjecture 4.6 implies

An �
∑

2�i�m

(i − 1)
n2

i2
+ β ′

n,

where β ′
n = 1

2 (m + n − 1)(n − m). Separately considering the cases of n even and odd, we obtain that
β ′

n � 3n2/8. Denote by ξm the mth harmonic number 1 + 1
2 + 1

3 + · · · + 1
m . We have

An < n2(ξm − 1) + 3

8
n2 − 1.

Since ξm < ln m + γ + 1
2m , where γ < 1 is Euler’s constant (for example, see pages 73 and 79 of [11]),

An < n2
(

lnm + 5

8

)
− 1 < n2 ln(n) − 1

and we obtain the required inequality. �
Remark 4.8. Using another approach, in recent paper [4] Belov and Kharitonov obtained the following
upper bounds on Cn,d for all p:

(1) Cn,d � 4log3(64)+5 · (n12)log3(4n)+1d (Corollary 1.16 from [4]);
(2) Cn,d � 256 · n8 log2(n)+22d (see Theorem 1.17 from [4]);

where the second estimation is better for small n. These bounds are linear with respect to d and
subexponential with respect to n.

Let us compare bounds (1) and (2) with the bound from Corollary 4.1 in case p > n
2 : Cn,d <

4 · 2n/2d. If n  0 is large enough, then bounds (1) and (2) are essentially better than the bound from
Corollary 4.1. On the other hand, for 4 � n � 2000 the bound from Corollary 4.1 is at least 1020 times
better than bounds (1) and (2). This claim follows from straightforward computations.

5. The case of n = 4

Theorem 5.1. For d � 2 we have

• C4,d = 10, if p = 0;
• 3d < C4,d, if p = 2;
• 3d + 1 � C4,d � 3d + 4, if p = 3;
• 10 � C4,d � 13, if p > 3.

In what follows we assume that n = 4 and p �= 2 unless otherwise stated. To prove Theorem 5.1
(see the end of the section), we introduce a new ≈-equivalence on MF as follows. Given α ∈ N

r and
β ∈ N

s (r, s � 0), we write

α � β if r < s.

Using � instead of >, we introduce the partial order � on M similarly to Definition 2.2. Then, using
the partial order � on M instead of >, we introduce the ≈-equivalence on MF similarly to the
�-equivalence (see Definition 2.4). The resulting definition of ≈ is the following one:
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Definition 5.2 (of the ≈-equivalence on MF).

1. Let f = ∑
i αiai ∈MF , where αi ∈ F

∗ , ai ∈M, and #pwry(ai) = #pwry(ai′ ) for every letter y and
all i, i′ . Then f ≈ 0 if f = 0 in Nn,d or f = ∑

j β jb j in Nn,d for β j ∈ F
∗ , b j ∈M satisfying

• #pwrx(ai) > #pwrx(b j) for some letter x,
• #pwry(ai)� #pwry(b j) for every letter y,
for all i, j;

2. If f = ∑
k fk ∈MF and fk ≈ 0 satisfies conditions from part 1 for all k, then f ≈ 0.

Given h ∈MF , we write f ≈ h if f − h ≈ 0.

Remark 5.3. Note that the partial order > on M is stronger than �. Namely, for a,b ∈M we have

• if a � b, then a > b;
• if a > b, then a � b or a ≈ b.

Therefore, �-equivalence on MF is weaker than ≈-equivalence. Namely, for f ,h ∈ MF the equality
f ≈ h implies f � h, but the converse statement does not hold.

Let a,b, c,a1, . . . ,a4 be elements of M. By definition,

• T4(a) = a4,
• T31(a,b) = a3b + a2ba + aba2 + ba3,
• T211(a,b, c) = a2bc + a2cb + ba2c + ca2b + bca2 + cba2 + abca + acba + abac + acab + baca + cabc,
• T22(a,b) = a2b2 + b2a2 + abab + baba + ab2a + ba2b,
• T14 (a1, . . . ,a4) = ∑

σ∈S4
aσ(1) · · ·aσ(4)

(see Section 2). Then

T4(a) = 0, T31(a,b) = 0, T211(a,b, c) = 0, T22(a,b) = 0, T14(a1, . . . ,a4) = 0

are relations for N4,d , which generate the ideal of relations for N4,d . Multiplying T31(a,b) by a several
times we obtain that equalities

a3ba + a2ba2 + aba3 = 0, (11)

a3ba2 + a2ba3 = 0, (12)

a3ba3 = 0 (13)

hold in N4,d .

Remark 5.4. Let f ∈ MF . Denote by inv( f ) the element of MF that we obtain by reading f from
right to left. As an example, for f = x2

1x2 − x3 we have inv( f ) = −x3 + x2x2
1.

Obviously, if f = 0 in Nn,d , then inv( f ) = 0 in Nn,d . Similar result also holds for ≈-equivalence.

Lemma 5.5. Let x be a letter and a,b, c ∈M¬x. Then the next relations are valid in N4,d:

x3axbx2 = −x3ax2bx, xax3bx2 = x3ax2bx. (14)

Moreover, the following equivalences hold:
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xax2 ≈ −x2ax, (15)

xiaxbx ≈ 0, xaxibx ≈ 0, xaxbxi ≈ 0 (16)

for i = 2,3,

xaxbxcx ≈ 0. (17)

Proof. We have

x3aT31(x,b) = x3ax3b + x3ax2bx + x3axbx2 + x3abx3 = 0

in N4,d . By equality (13), x3axbx2 = −x3ax2bx in N4,d . Similarly we can see that

T31
(
x,ax3b

) = x3ax3b + x2ax3bx + xax3bx2 + ax3bx3 = x2ax3bx + xax3bx2 = 0

in N4,d . By (12), x2ax3bx = −x3ax2bx in N4,d and equalities (14) are proven.
Since T31(x,a) = 0 in N4,d , equivalence (15) is proven.
Let i = 2. By (15), xaxbx2 ≈ −xax2bx ≈ x2axbx. On the other hand, (15) implies xaxbx2 ≈ −x2axbx.

Equivalences (16) for i = 2 are proven.
Let i = 3. Since T211(x,a, x3b) = 0 and x3T211(x,a,b) = 0 in N4,d , we have

xax3bx + x3bxax ≈ 0 and x3axbx + x3bxax ≈ 0,

respectively. Thus, x3axbx ≈ xax3bx. Using Remark 5.4, we obtain

x3axbx ≈ xax3bx ≈ xaxbx3. (18)

The equality x2aT31(x,a) = 0 implies

x2axbx2 + x2ax2bx ≈ 0.

Applying relation (11), we obtain

x3axbx + xaxbx3 + x3axbx + xax3bx ≈ 0.

Equivalences (18) complete the proof of (16).
Since T211(x,a,bxc)x = 0 and T211(x,a,b)xcx = 0 in N4,d , we obtain

xaxbxcx + xbxcxax ≈ 0 and xaxbxcx + xbxaxcx ≈ 0,

respectively. The equality xbT211(x,a, c)x = 0 in N4,d implies

xbxcxax + xbxaxcx ≈ 0,

and therefore xaxbxcx ≈ 0. �
If α ∈ N

r , β ∈ N
s , then we write α ⊂ β and say that α is a subvector of β if there are 1 � i1 <

· · · < ir such that α1 = βi1 , . . . ,αr = βir .
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Lemma 5.6. If f ∈ MF , then f = 0 in N4,d or f = ∑
i αiai in N4,d for some αi ∈ F

∗ , ai ∈ M such that for
every letter x pwrx(ai) belongs to the following list:

• ∅, (1), (1,1), (1,1,1),
• (2), (2,1),
• (3), (3,1), (1,3), (3,2), (3,2,1).

Moreover, we can assume that for all pairwise different letters x, y, z and all i the following conditions do not
hold:

(a) pwrx(ai) = (3,2,1) and (3) ⊂ pwry(ai);
(b) (3) is a subvector of pwrx(ai), pwry(ai), and pwrz(ai);
(c) (3,2) is a subvector of pwrx(ai) and pwry(ai).

Proof. Let x be a letter and f = ∑
j∈ J β jb j for β j ∈ F

∗ and b j ∈ M. We claim that the state-
ment of the lemma holds for f for the given letter x. To prove the claim we use induction on
k = max{#pwrx(b j) | j ∈ J }.

If k = 0,1, then the claim holds.
If b j = b1 j x2b2 j x2b3 j for some b1 j,b2 j,b3 j ∈ M¬x , then a j = −b1 j x3b2 j xb3 j − b1 j xb2 j x3b3 j in

N4,d by relation (11). Note that #pwrx(b j) = #pwrx(b1 j x3b2 j xb3 j) = #pwrx(b1 j xb2 j x3b3 j). Moreover,
if (2, . . . ,2) ⊂ pwrx(b j), then we apply (11) several times. Therefore, without loss of generality can
assume that (2,2) is not a subvector of pwrx(b j) for all j.

If one of the vectors

(r), r > 3; (3,3); (s,1,1), (1, s,1), (1,1, s), s ∈ {2,3}; (1,1,1,1)

is a subvector of pwrx(b j), then b j ≈ 0 by the equality x4 = 0 in N4,d and formulas (13), (16), (17),
respectively. Thus, f ≈ 0 or f ≈ ∑

j∈ J0
β jb j for such J0 ⊂ J that for every j ∈ J0 the vector pwrx(b j)

up to permutation of its entries belongs to the following list:

∅, (1), (1,1), (1,1,1), (2), (2,1), (3), (3,1), (3,2), (3,2,1).

Let j ∈ J0. If pwrx(b j) = (σ (1),σ (2),σ (3)) for some σ ∈ S3, then applying relations (12) and (14)
we obtain that b j = ±c j in N4,d for a monomial c j ∈ M satisfying pwrx(c j) = (3,2,1). If pwrx(b j)

is (1,2) or (2,3), then we apply formulas (15) or (12), respectively, to obtain that b j ≈ −c j for a
monomial c j ∈ M with pwrx(c j) ∈ {(2,1), (3,2)}. So we get that f ≈ h for such h ∈ MF that the
claim holds for h. The induction hypothesis and Definition 5.2 complete the proof of the claim.

Let y be a letter different from x. Relations from the proof of the claim do not affect y-powers.
Therefore, applying the claim to f for all letters subsequently, we complete the proof of the first part
of the lemma.

Consider an a ∈ M. If a satisfies condition (a), then relations (12) and (14) together with rela-
tion (10) imply that a = 0 in N4,d . If a satisfies condition (b) or (c), then relations (10) and (12) imply
that a = 0 in N4,d . Thus, the second part of the lemma is proven. �

The following lemma resembles Lemma 3.3 from [19].

Lemma 5.7. Let p = 2 and 1 � k � d. For every homogeneous f ∈MF of multidegree (θ1, . . . , θd) with θk � 3
and θ1 +· · ·+ θk−1 + θk+1 +· · ·+ θd > 0 we define πk( f ) ∈MF as the result of the substitution xk → 1 in a,
where 1 stands for the unity of M1 .

Then f = 0 in N4,d implies πk( f ) = 0 in N4,d.
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Proof. Let a,b, c, u ∈ M. By definition, πk(ab) = πk(a)πk(b). Then by straightforward calculations we
can show that πk(T31(a,b)) = 0, πk(T211(a,b, c)) = 0, πk(T22(a,b)) = 0, and πk(T14 (a,b, c, u)) = 0
in N4,d . The proof is completed. �

We now can prove Theorem 5.1:

Proof of Theorem 5.1. If p = 0, then the required was proven by Vaughan-Lee in [26]. If p > 3, then
the claim follows from Kuzmin’s low bound (see Section 1) and Lemma 4.4.

Let p = 2 and a = x3
1 · · · x3

d . Assume that a = 0 in N4,d . Applying π1, . . . ,πd−1 from Lemma 5.7 to a

we obtain that x3
d = 0 in N4,d; a contradiction. Thus, C4,d > deg a = 3d.

Assume that p = 3. Consider an a ∈M such that a �= 0 in N4,d . Applying Lemma 5.6 to a, without
loss of generality we can assume that a satisfies all conditions from Lemma 5.6. Denote ti = degxi

(a)

and r = #{i | (3) is subvector of pwrxi
(a)}. Then

(a) ti � 6;
(b) if ti � 4, then (3) ⊂ pwrxi

(a)

for all 1 � i � d.
If r = 0, then deg(a) � 3d by part (b). If r = 1, then deg(a) � 6 + 3(d − 1) = 3d + 3 by parts (a)

and (b).
Let r = 2. Then without loss of generality we can assume that (3) is a subvector of pwrx1

(a)

and pwrx2
(a). Since condition (a) of Lemma 5.6 does not hold for a, (3,2,1) is not a subvector of

pwrxi
(a) for i = 1,2. Hence, t1, t2 < 6. If t1 = t2 = 5, then condition (c) of Lemma 5.6 holds for a;

a contradiction. Therefore, t1 + t2 � 9. By part (b), ti � 3 for 3 � i � d. Finally, we obtain that deg(a) �
3d + 3.

If r � 3, then a satisfies condition (b) of Lemma 5.6; a contradiction.
So, we have shown that deg(a) � 3d + 3, and therefore C4,d � 3d + 4. On the other hand, C4,d �

C3,d = 3d + 1 by [16]. The proof is completed. �
Remark 5.8. Assume that n = 4 and p = 3. Let us compare the upper bound C4,d � 3d + 3 from
Theorem 5.1 with the known upper bounds on C4,d:

• Corollary 4.5 implies that C4,d < 8d + 1;
• bounds by Belov and Kharitonov [4] imply that C4,d � B4d, where B4 > 1020 (see Remark 4.8 for

details);
• bounds by Klein [13] imply that C4,d < 211

3 d4 and C4,d < 2128d2 (see Section 1 for details).

6. GL(n)-invariants of matrices

The general linear group GL(n) acts on d-tuples V = (Fn×n)⊕d of n × n matrices over F by the
diagonal conjugation, i.e.,

g · (A1, . . . , Ad) = (
g A1 g−1, . . . , g Ad g−1), (19)

where g ∈ GL(n) and A1, . . . , Ad lie in F
n×n . The coordinate algebra of the affine variety V is the

algebra of polynomials R = F[V ] = F[xij(k) | 1 � i, j � n, 1 � k � d] in n2d variables. Denote by

Xk =
⎛
⎝ x11(k) · · · x1n(k)

...
...

xn1(k) · · · xnn(k)

⎞
⎠

the kth generic matrix. The action of GL(n) on V induces the action on R as follows:
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g · xij(k) = (i, j)th entry of g−1 Xk g

for all g ∈ GL(n). The algebra of GL(n)-invariants of matrices is

RGL(n) = {
f ∈ F[V ] ∣∣ g · f = f for all g ∈ GL(n)

}
.

Denote coefficients in the characteristic polynomial of an n × n matrix X by σt(X), i.e.,

det(X + λE) =
n∑

t=0

λn−tσt(X). (20)

In particular, σ0(X) = 1, σ1(X) = tr(X), and σn(X) = det(X).
Given a = xi1 · · · xir ∈ M, we set Xa = Xi1 · · · Xir . It is known that the algebra RGL(n) ⊂ R is gen-

erated over F by σt(Xa), where 1 � t � n and a ∈ M (see [7]). Note that in the case of p = 0 the
algebra RGL(n) is generated by tr(Xa), where a ∈ M. Relations between the mentioned generators
were established in [28].

Remark 6.1. If G belongs to the list O (n), Sp(n), SO(n), SL(n), then we can define the algebra of
invariants RG in the same way as for G = GL(n). A generating set for the algebra RG is known, where
we assume that charF �= 2 in the case of O (n) and SO(n) (see [29,18]). In case p = 0 and G �= SO(n)

relations between generators of RG were described in [23]. In case p �= 2 relations for R O (n) were
described in [20,21].

By the Hilbert–Nagata Theorem on invariants, RGL(n) is a finitely generated N0-graded algebra by
degrees, where degσt(Xa) = t deg a for a ∈ M. But the above mentioned generating set is not finite.
In [5] the following finite generating set for RGL(n) was established:

• σt(Xa), where 1 � t � n
2 , a ∈M, deg a � Cn,d;

• σt(Xi), where n
2 < t � n, 1 � i � d.

We obtain a smaller generating set.

Theorem 6.2. The algebra RGL(n) is generated by the following finite set:

• σt(Xa), where t = 1 or p � t � n
2 , a ∈M, deg a � C[n/t],d;

• σt(Xi), where n
2 < t � n, p � t, 1 � i � d.

To prove the theorem, we need the following notions. Let 1 � t � n. For short, we write σt(a) for
σt(Xa), where a ∈M. Amitsur’s formula [1] enables us to consider σt(a) with a ∈MF as an invariant
from RGL(n) for all t ∈ N. Zubkov [28] established that the ideal of relations for RGL(n) is generated
by σt(a) = 0, where t > n and a ∈ MF . More details can be found, for example, in [20]. Denote by
I(t) the F-span of elements σt1 (a1) · · ·σtr (ar), where r > 0, 1 � t1, . . . , tr � t , and a1, . . . ,ar ∈ M.
For short, we write I for I(n) = RGL(n) . Denote by I+ the subalgebra generated by N0-homogeneous
elements of I of positive degree. Obviously, the algebra I is generated by a set { fk} ⊂ I if and only
if { fk} is a basis of I = I/(I+)2. Given an f ∈ I , we write f ≡ 0 if f = 0 in I , i.e., f is equal to a
polynomial in elements of strictly lower degree.

Proof of Theorem 6.2. Let 1 � t � n, m = [n/t], and a,b ∈MF . We claim that

there exists an f ∈ I(t − 1) such that σt
(
abm) ≡ f . (21)
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To prove the claim we notice that the inequality (m + 1)t > n and the description of relations for
RGL(n) imply σ(m+1)t(a + b) = 0. Taking homogeneous component of degree t with respect to a and
degree mt with respect to b, we obtain that σt(abm) ≡ 0 or σt(abm) ≡ ∑

i αiσti (ai), where αi ∈ F
∗ ,

1 � ti < t , and ai is a monomial in a and b for all i. By Amitsur’s formula, σti (ai) ≡ ∑
j βi jσri j (bij) for

some βi j ∈ F
∗ , 1 � ri j � ti , bij ∈M. Thus,

∑
i αiσti (ai) ∈ I(t − 1) and the claim is proven.

Consider a monomial c ∈ M satisfying deg c > Cm,d . Then c = c′x for some letter x and c′ ∈ M.
Since c′ = 0 in Nm,d , we have c′ = ∑

i γiui vm
i wi for some ui, wi ∈M1, vi ∈MF , γi ∈ F. Thus σt(c) =

σt(
∑

i αiui vm
i wi x). Applying Amitsur’s formula, we obtain that σt(c) − ∑

i α
t
i σt(ui vm

i wi x) ∈ I(t − 1).
Statement (21) implies

σt(c) ≡ h for some h ∈ I(t − 1). (22)

Consecutively applying (22) to t = n,n − 1, . . . ,2 we obtain that RGL(n) is generated by σt(a), where
1 � t � n, a ∈ M, deg a � C[n/t],d . Note that if t > n

2 , then m = 1 and Cm,d = 1. If t < p � n, then
the Newton formulas imply that σt(a) is a polynomial in tr(ai), i > 0 (the explicit expression can be
found, for example, in Lemma 10 of [17]). The last two remarks complete the proof. �
Conjecture 6.3. The algebra RGL(n) is generated by elements of degree less or equal to Cn,d.

Remark 6.4. Theorem 6.2 and the inequality Cn,d � n imply that to prove Conjecture 6.3 it is enough
to show that

tC[n/t],d � Cn,d

for all t satisfying p � t � n
2 . Thus it is not difficult to see that Conjecture 6.3 holds for n � 5. More-

over, as it was proven in [5] (and also follows from Theorem 6.2), Conjecture 6.3 holds in case p = 0
or p > n

2 .
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