On the nilpotency degree of the algebra with identity $x^{n}=0$

Artem A. Lopatin
Omsk Branch of Federal State Budgetary Establishment, Sobolev Institute of Mathematics, SB RAS, Pevtsova street, 13, 644099, Omsk, Russia

ARTICLE INFO

Article history:

Received 26 June 2011
Available online 6 September 2012
Communicated by Efim Zelmanov

MSC:

16R10
16R30
16N40

Keywords:

Nil-algebras
Nilpotency degree
Matrix invariants
Generating set

Abstract

Denote by $C_{n, d}$ the nilpotency degree of a relatively free algebra generated by d elements and satisfying the identity $x^{n}=0$. Under assumption that the characteristic p of the base field is greater than $n / 2$, it is shown that $C_{n, d}<n^{\log _{2}(3 d+2)+1}$ and $C_{n, d}<4 \cdot 2^{\frac{n}{2}} d$. In particular, it is established that the nilpotency degree $C_{n, d}$ has a polynomial growth in case the number of generators d is fixed and $p>\frac{n}{2}$. For $p \neq 2$ the nilpotency degree $C_{4, d}$ is described with deviation 3 for all d. As an application, a finite generating set for the algebra $R^{G L(n)}$ of $G L(n)$-invariants of d matrices is established in terms of $C_{n, d}$. Several conjectures are formulated.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

We assume that \mathbb{F} is an infinite field of arbitrary characteristic $p=\operatorname{char} \mathbb{F} \geqslant 0$. All vector spaces, algebras and modules are over \mathbb{F} and all algebras are associative with unity unless otherwise stated.

We denote by $\mathcal{M}=\mathcal{M}\left(x_{1}, \ldots, x_{d}\right)$ the semigroup (without unity) freely generated by letters x_{1}, \ldots, x_{d} and denote by $\mathcal{M}_{\mathbb{F}}=\mathcal{M}_{\mathbb{F}}\left(x_{1}, \ldots, x_{d}\right)$ the vector space with the basis \mathcal{M}. Let

$$
N_{n, d}=N_{n, d}\left(x_{1}, \ldots, x_{d}\right)=\frac{\mathcal{M}_{\mathbb{F}}}{\operatorname{id\{ }\left\{x^{n} \mid x \in \mathcal{M}_{\mathbb{F}}\right\}}
$$

E-mail address: artem_lopatin@yahoo.com.
URL: http://www.iitam.omsk.net.ru/~lopatin.
be the relatively free algebra with the identity $x^{n}=0$. The connection between this algebra and analogues of the Burnside problems for associative algebras suggested by Kurosh and Levitzky is discussed in recent survey [27] by Zelmanov.

We write

$$
C_{n, d}=\min \left\{c>0 \mid a_{1} \cdots a_{c}=0 \text { for all } a_{1}, \ldots, a_{c} \in N_{n, d}\right\}
$$

for the nilpotency degree of $N_{n, d}$. Since $C_{1, d}=1$ and $C_{n, 1}=n$, we assume that $n, d \geqslant 2$ unless otherwise stated. Obviously, $C_{n, d}$ depends only on n, d, and p.

We consider the following three cases:
(a) $p=0$;
(b) $0<p \leqslant n$;
(c) $p>n$.

By the well-known Nagata-Higman Theorem (see [22] and [12]), which at first was proved by Dubnov and Ivanov [9] in 1943, $C_{n, d}<2^{n}$ in cases (a) and (c). As it was pointed out in [6], $C_{n, d} \geqslant d$ in case (b); in particular, $C_{n, d} \rightarrow \infty$ as $d \rightarrow \infty$. Thus, the case (b) is drastically different from cases (a) and (c). In 1974 Razmyslov [24] proved that $C_{n, d} \leqslant n^{2}$ in case (a). As about lower bounds on $C_{n, d}$, in 1975 Kuzmin [14] established that $C_{n, d} \geqslant \frac{1}{2} n(n+1)$ in cases (a) and (c) and conjectured that $C_{n, d}$ is actually equal to $\frac{1}{2} n(n+1)$ in these cases. A proof of the mentioned lower bound was reproduced in books [8] and [3] (see p. 341). Kuzmin's Conjecture is still unproven apart from some partial cases. Namely, the conjecture holds for $n=2$ and $n=3$ (for example, see [15]). In case (a) the conjecture was proved for $n=4$ by Vaughan-Lee [26] and for $n=5, d=2$ by Shestakov and Zhukavets [25].

Using approach by Belov [2], Klein [13] obtained that for an arbitrary characteristic the inequalities $C_{n, d}<\frac{1}{6} n^{6} d^{n}$ and $C_{n, d}<\frac{1}{(m-1)!} n^{n^{3}} d^{m}$ hold, where $m=[n / 2]$. Here [a] (where $a \in \mathbb{R}$) stands for the largest integer $b<a$. Recently, Belov and Kharitonov [4] established that $C_{n, d} \leqslant 2^{18} \cdot n^{12 \log _{3}(n)+28} d$ (see Remark 4.8 for more details). Moreover, they proved that a similar estimation also holds for the Shirshov Height of a finitely generated PI-algebra. We can summarize the above mentioned bounds on the nilpotency degree as follows:

- if $p=0$, then $\frac{1}{2} n(n+1) \leqslant C_{n, d} \leqslant n^{2}$;
- if $0<p \leqslant n$, then $d \leqslant C_{n, d}<\frac{1}{6} n^{6} d^{n}$ and $C_{n, d} \leqslant 2^{18} \cdot n^{12 \log _{3}(n)+28} d$;
- if $p>n$, then $\frac{1}{2} n(n+1) \leqslant C_{n, d}<2^{n}$.

For $d>0$ and arbitrary characteristic of the field the nilpotency degree $C_{n, d}$ is known for $n=2$ (for example, see [6]) and $n=3$ (see [15] and [16]):

$$
C_{2, d}=\left\{\begin{array}{ll}
3, & \text { if } p=0 \text { or } p>2, \\
d+1, & \text { if } p=2
\end{array} \quad \text { and } \quad C_{3, d}= \begin{cases}6, & \text { if } p=0 \text { or } p>3 \\
6, & \text { if } p=2 \text { and } d=2 \\
d+3, & \text { if } p=2 \text { and } d>2 \\
3 d+1, & \text { if } p=3\end{cases}\right.
$$

In this paper we obtained the following upper bounds on $C_{n, d}$:

- $C_{n, d}<n^{\log _{2}(3 d+2)+1}$ in case $p>\frac{n}{2}$ (see Corollary 3.1). Therefore, we establish a polynomial upper bound on $C_{n, d}$ under assumption that the number of generators d is fixed.
- $C_{n, d}<4 \cdot 2^{\frac{n}{2}} d$ for $\frac{n}{2}<p \leqslant n$ (see Corollary 4.1). Modulo Conjecture 4.6, we prove that $C_{n, d}<$ $n^{2} \ln (n) d$ for $\frac{n}{2}<p \leqslant n$ (see Corollary 4.7).
- $C_{4, d}$ is described with deviation 3 for all d under assumption that $p \neq 2$ (see Theorem 5.1).

Note that even in the partial case of $p>n$ and $d=2$ a polynomial bound on $C_{n, d}$ has not been known. If n is fixed and d is large enough, then the bound from Corollary 4.1 is better than that from Corollary 3.1. In Remark 4.8 we show that for $p>\frac{n}{2}, 4 \leqslant n \leqslant 2000$, and all d the bound from Corollary 4.1 is at least 10^{20} times better than the bounds by Belov and Kharitonov [4].

As an application, we consider the algebra $R^{G L(n)}$ of $G L(n)$-invariants of several matrices and describe a finite generating set for $R^{G L(n)}$ in terms of $C_{n, d}$ (see Theorem 6.2). We conjecture that $R^{G L(n)}$ is actually generated by its elements of degree less or equal to $C_{n, d}$ (see Conjecture 6.3).

The paper is organized as follows. In Section 2 we establish a key recursive formula for an upper bound on $C_{n, d}$ that holds in case $p=0$ or $p>\frac{n}{2}$ (see Theorem 2.5):

$$
\begin{equation*}
C_{n, d} \leqslant d \sum_{i=2}^{n}(i-1) C_{[n / i], d}+1 . \tag{1}
\end{equation*}
$$

The main idea of proof of Theorem 2.5 is the following one. We introduce some partial order > on \mathcal{M} and the \asymp-equivalence on $\mathcal{M}_{\mathbb{F}}$ in such a way that $f \asymp h$ if and only if the image of $f-h$ in $N_{n, d}$ belongs to \mathbb{F}-span of elements that are bigger than $f-h$ with respect to $>$. Since $N_{n, d}$ is homogeneous with respect to degrees, there exists a $w \in \mathcal{M}$ satisfying $w \not \approx 0$ and $C_{n, d}=\operatorname{deg} w+1$. Thus we can deal with the \asymp-equivalence instead of the equality in $N_{n, d}$. Some relations of $N_{n, d}$ modulo \asymp-equivalence resembles relations of $N_{k, d}$ for $k<n$ (see formula (2)). This fact allows us to obtain the upper bound on $C_{n, d}$ in terms of $C_{k, d}$, where $k<n$. To illustrate the proof of Theorem 2.5, in Example 2.7 we consider the partial case of $n=5$ and $p \neq 2$. Note that a similar approach to the problem of description of $C_{n, d}$ can be originated from every partial order on \mathcal{M}.

In Section 3 we apply recursive formula (1) several times to obtain the polynomial bound from Corollary 3.1. On the other hand, in Section 4 we use formula (1) together with the Nagata-Higman Theorem to establish Corollary 4.1. Formula (1) is applied to the partial case of $n \leqslant 9$ in Corollary 4.5.

In Section 5 we develop the approach from Section 2 for $n=4$ to prove Theorem 5.1. We define a new partial order \succ on \mathcal{M}, which is weaker than $>$, and obtain a new \approx-equivalence on $\mathcal{M}_{\mathbb{F}}$, which is stronger than \asymp-equivalence. Considering relations of $N_{4, d}$ modulo \approx-equivalence, we obtain the required bounds on $C_{4, d}$.

Section 6 is dedicated to the algebras of invariants of several matrices.
We end up this section with the following optimistic conjecture, which follows from Kuzmin's Conjecture. We write $C_{n, d, p}$ for $C_{n, d}$.

Conjecture 1.1. For all $p>n$ we have $C_{n, d, 0}=C_{n, d, p}$.
This conjecture holds for $n=2,3$ (see above). Note that Conjecture 4.6 follows from Conjecture 1.1 by the above mentioned result by Razmyslov.

2. Recursive upper bound

We start with some notations. Let $\mathbb{N}=\{1,2, \ldots\}, \mathbb{N}_{0}=\mathbb{N} \sqcup\{0\}$, and $\mathbb{F}^{*}=\mathbb{F} \backslash\{0\}$. Denote $\mathcal{M}_{1}=$ $\mathcal{M} \sqcup\{1\}$, i.e., we endow \mathcal{M} with the unity. Given a letter x, denote by \mathcal{M}^{-x} the set of words $a_{1} \cdots a_{r} \in \mathcal{M}$ such that neither letter a_{1} nor letter a_{r} is equal to x and $r>0$.

For $a \in \mathcal{M}_{1}$ and a letter x we denote by $\operatorname{deg}_{x}(a)$ the degree of a in the letter x and by $\operatorname{mdeg}(a)=$ $\left(\operatorname{deg}_{x_{1}}(a), \ldots, \operatorname{deg}_{X_{r}}(a)\right)$ the multidegree of a. For short, we write 1^{r} for $(1, \ldots, 1)(r$ times) and say that a is multilinear in case $\operatorname{mdeg}(a)=1^{r}$.

Given $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in \mathbb{N}_{0}^{r}$, we set $\# \underline{\alpha}=r,|\underline{\alpha}|=\alpha_{1}+\cdots+\alpha_{r}$, and $\underline{\alpha}^{\text {ord }}=\left(\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(r)}\right)$ for a permutation $\sigma \in S_{r}$ such that $\alpha_{\sigma(1)} \geqslant \cdots \geqslant \alpha_{\sigma(r)}$. If $r=0$, then we say that $\underline{\alpha}$ is an empty vector and write $\underline{\alpha}=\emptyset$. Note that for $\underline{\alpha}=\emptyset$ we also have $\underline{\alpha}^{\text {ord }}=\emptyset$.

Given $\underline{\theta} \in \mathbb{N}_{0}^{r}$ with $|\underline{\theta}|=n$ and $a_{1}, \ldots, a_{r} \in \mathcal{M}$, denote by $T_{\underline{\theta}}\left(a_{1}, \ldots, a_{r}\right)$ the coefficient of $\alpha_{1}^{\theta_{1}} \ldots \alpha_{r}^{\theta_{r}}$ in $\left(\alpha_{1} a_{1}+\cdots+\alpha_{r} a_{r}\right)^{n}$, where $\alpha_{i} \in \mathbb{F}$. Since the field \mathbb{F} is infinite, standard Vandermonde arguments give that $T_{\underline{\theta}}\left(a_{1}, \ldots, a_{r}\right)=0$ holds in $N_{n, d}$.

Definition 2.1 (of $\operatorname{pwr}_{x}(a)$). Let x be a letter and $a=a_{1} x^{\alpha_{1}} \ldots a_{r} x^{\alpha_{r}} a_{r+1} \in \mathcal{M}$, where $r \geqslant 0$, $a_{1}, a_{r+1} \in \mathcal{M}_{1}, a_{2}, \ldots, a_{r} \in \mathcal{M}, \alpha_{1}, \ldots, \alpha_{r}>0$, and $\operatorname{deg}_{x}\left(a_{i}\right)=0$ for all i. Then we denote by $\operatorname{pwr}_{x}(a)=\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ the x-power of a. In particular, if $\operatorname{deg}_{x}(a)=0$, then $\operatorname{pwr}_{x}(a)=\emptyset$.

Let $\underline{\alpha} \in \mathbb{N}^{r}, \underline{\beta} \in \mathbb{N}^{s}(r, s \geqslant 0)$ satisfy $\underline{\alpha}=\underline{\alpha}^{\text {ord }}$ and $\underline{\beta}=\underline{\beta}^{\text {ord }}$. Then we write $\underline{\alpha}>\underline{\beta}$ if one of the following conditions holds:

- $r<s$;
- $r=s$ and $\alpha_{1}=\beta_{1}, \ldots, \alpha_{l}=\beta_{l}, \alpha_{l+1}>\beta_{l+1}$ for some $0 \leqslant l<r$.

As an example, $(2,2,2)<(3,2,1)<(4,1,1)<(3,3)<(4,2)<(5,1)<(6)<\emptyset$.
Definition 2.2. Let x be a letter and $a, b \in \mathcal{M}$. Introduce the partial order $>$ and the \gtrless-equivalence on \mathcal{M} as follows:

- $a>b$ if and only if $\operatorname{pwr}_{x}(a)^{\text {ord }}>\operatorname{pwr}_{x}(b)^{\text {ord }}$ for some letter x and $\operatorname{pwr}_{y}(a)^{\text {ord }} \geqslant \operatorname{pwr}_{y}(b)^{\text {ord }}$ for every letter y;
- $a \gtrless b$ if and only if $\operatorname{pwr}_{y}(a)^{\text {ord }}=\operatorname{pwr}_{y}(b)^{\text {ord }}$ for every letter y; in particular, mdeg $a=$ mdeg b.

Remark 2.3. There is no an infinite chain $a_{1}<a_{2}<\cdots$ such that $a_{i} \in \mathcal{M}$ and $\operatorname{deg}\left(a_{i}\right)=\operatorname{deg}\left(a_{j}\right)$ for all i, j.

Definition 2.4 (of the \asymp-equivalence).

1. Let $f=\sum_{i} \alpha_{i} a_{i} \in \mathcal{M}_{\mathbb{F}}$, where $\alpha_{i} \in \mathbb{F}^{*}, a_{i} \in \mathcal{M}$, and $a_{i} \gtrless a_{i^{\prime}}$ for all i, i^{\prime}. Then $f \asymp 0$ if $f=0$ in $N_{n, d}$ or $f=\sum_{j} \beta_{j} b_{j}$ in $N_{n, d}$ for some $\beta_{j} \in \mathbb{F}^{*}, b_{j} \in \mathcal{M}$ satisfying $b_{j}>a_{i}$ for all i, j.
2. If $f=\sum_{k} f_{k} \in \mathcal{M}_{\mathbb{F}}$ and $f_{k} \asymp 0$ satisfies conditions from part 1 for all k, then $f \asymp 0$.

Given $h \in \mathcal{M}_{\mathbb{F}}$, we write $f \asymp h$ if $f-h \asymp 0$.
It is not difficult to see that \asymp is actually an equivalence on the vector space $\mathcal{M}_{\mathbb{F}}$, i.e., \asymp have properties of transitivity and linearity over \mathbb{F}. Note that part 2 of Definition 2.4 is necessary for \asymp to be an equivalence.

Theorem 2.5. Let $p=0$ or $p>\frac{n}{2}$. Then

$$
C_{n, d} \leqslant d \sum_{i=2}^{n}(i-1) C_{[n / i], d}+1 .
$$

Proof. There exists a $w \in \mathcal{M}$ with $\operatorname{deg}(w)=C_{n, d}-1$ and $w \neq 0$ in $N_{n, d}$. Moreover, by Remark 2.3 and \mathbb{N}-homogeneity of $N_{n, d}$ we can assume that $w \nprec 0$. Given a letter x, we write $d\left(x^{i}\right)$ for the number of i th in the x-power of w, i.e.,

$$
\operatorname{pwr}_{x}(w)^{\text {ord }}=(\alpha_{1}, \ldots, \alpha_{r}, \underbrace{i, \ldots, i}_{d\left(x^{i}\right)}, \beta_{1}, \ldots, \beta_{s}),
$$

where $\alpha_{r}<i<\beta_{1}$. Obviously, $d\left(x^{i}\right)=0$ for $i \geqslant n$.
Let $2 \leqslant i \leqslant n$ and x be a letter. Then $n=k i+r$ for $k=[n / i] \geqslant 1$ and $0 \leqslant r<i$. Consider elements $a_{1}, \ldots, a_{k} \in \mathcal{M}^{\neg x}$ and $\underline{\theta}=\left((i-1) k+r, 1^{k}\right)$. Note that for $a_{\sigma}=x^{i-1} a_{\sigma(1)} \cdots x^{i-1} a_{\sigma(k)} x^{i-1}, \sigma \in S_{k}$, the following statements hold:

- $a_{\sigma} \gtrless a_{\tau}$ for all $\sigma, \tau \in S_{k}$.
- Let $i_{1}, \ldots, i_{s}>0$ satisfy $i_{1}+\cdots+i_{s}=(i-1)(k+1)$ and $e_{0}, \ldots, e_{s} \in \mathcal{M}_{1}$ be such products of a_{1}, \ldots, a_{k} that for every $1 \leqslant j \leqslant k, a_{j}$ is a factor of one and only element from the set $\left\{e_{0}, \ldots, e_{s}\right\}$. Moreover, we assume that $e_{1}, \ldots, e_{s-1} \in \mathcal{M}$. Define $e=e_{0} x^{i_{1}} e_{1} x^{i_{2}} \cdots x^{i_{s}} e_{s} \neq a_{\sigma}$ for all $\sigma \in S_{k}$. Then $e>a_{\sigma}$ for all $\sigma \in S_{k}$.

To prove the second claim, we notice that there are two cases. Namely, in the first case $s=k+1, e_{0}=$ $e_{k+1}=1$, and $e_{1}=a_{\tau(1)}, \ldots, e_{k}=a_{\tau(k)}$ for some $\tau \in S_{k}$; and in the second case $\# \operatorname{pwr}_{x}(e)<\# \operatorname{pwr}_{\chi}\left(a_{\sigma}\right)$ for all $\sigma \in S_{k}$. In both cases we have $\operatorname{pwr}_{x}(e)^{\text {ord }}>\operatorname{pwr}_{x}\left(a_{\sigma}\right)^{\text {ord }}$ and $\operatorname{pwr}_{y}(e)^{\text {ord }} \geqslant \operatorname{pwr}_{y}\left(a_{\sigma}\right)^{\text {ord }}$ for any letter $y \neq x$ and any $\sigma \in S_{k}$. The claim is proven.

Since $T_{\underline{\theta}}\left(x, a_{1}, \ldots, a_{k}\right) x^{i-r-1}=0$ in $N_{n, d}$, we have $\sum_{\sigma \in S_{k}} a_{\sigma} \asymp 0$. Moreover,

$$
\begin{equation*}
\sum_{\sigma \in S_{k}} v a_{\sigma} w \asymp 0 \tag{2}
\end{equation*}
$$

for all $v, w \in \mathcal{M}_{1}$ such that if $v \neq 1(w \neq 1$, respectively), then its last (first, respectively) letter is not x.

Let $D=2^{k}-1$. Since $p=0$ or $p>\frac{n}{2} \geqslant k$, the Nagata-Higman Theorem implies that $C_{k, D} \leqslant 2^{k}-1$. For short, we write C for $C_{k, D}$. Thus $y_{1} \cdots y_{C}=0$ in $N_{k, D}\left(y_{1}, \ldots, y_{D}\right)$, where y_{1}, \ldots, y_{D} are new letters. Since $y_{1} \cdots y_{C}$ is multilinear, an equality

$$
\begin{equation*}
y_{1} \cdots y_{C}=\sum_{\underline{u}} \alpha_{\underline{u}} u_{0} T_{1^{k}}\left(u_{1}, \ldots, u_{k}\right) u_{k+1} \tag{3}
\end{equation*}
$$

holds in $\mathcal{M}_{\mathbb{F}}\left(y_{1}, \ldots, y_{C}\right)$, where the sum ranges over $(k+2)$-tuples $\underline{u}=\left(u_{0}, \ldots, u_{k+1}\right)$ such that $u_{0}, u_{k+1} \in \mathcal{M}_{1}\left(y_{1}, \ldots, y_{C}\right), u_{1}, \ldots, u_{k} \in \mathcal{M}\left(y_{1}, \ldots, y_{C}\right)$, and the number of non-zero coefficients $\alpha_{\underline{u}} \in \mathbb{F}$ is finite.

Given $b_{1}, \ldots, b_{C} \in \mathcal{M}^{-x}$ and $0 \leqslant l \leqslant k+1$, denote by $v_{l} \in \mathcal{M}_{1}$ the result of substitution $y_{j} \rightarrow$ $x^{i-1} b_{j}(1 \leqslant j \leqslant C)$ in u_{l}. We apply these substitutions to equality (3) and multiply the result by x^{i-1}. Thus,

$$
x^{i-1} b_{1} \cdots x^{i-1} b_{C} x^{i-1}=\sum_{\underline{u}} \alpha_{\underline{u}} v_{0} T_{1^{k}}\left(v_{1}, \ldots, v_{k}\right) v_{k+1} x^{i-1}
$$

in $\mathcal{M}_{\mathbb{F}}=\mathcal{M}_{\mathbb{F}}\left(x_{1}, \ldots, x_{d}\right)$. For every \underline{u} there exist $a_{1}, \ldots, a_{k} \in \mathcal{M}^{-x}$ satisfying $v_{l}=x^{i-1} a_{l}$ for all $1 \leqslant$ $l \leqslant k$. If $u_{k+1} \neq 1$, then we also have $v_{k+1}=x^{i-1} a_{k+1}$ for some $a_{k+1} \in \mathcal{M}^{\neg x}$. Since $T_{1^{k}}\left(v_{1}, \ldots, v_{k}\right)=$ $\sum_{\sigma \in S_{k}} v_{\sigma(1)} \cdots v_{\sigma(k)}$, we have

$$
T_{1^{k}}\left(v_{1}, \ldots, v_{k}\right) v_{k+1} x^{i-1}=\sum_{\sigma \in S_{k}} a_{\sigma} f
$$

where f stands for 1 in case $u_{k+1}=1$ and for $a_{k+1} x^{i-1}$ in case $u_{k+1} \neq 1$. Combining the previous two equalities with equivalence (2), we obtain

$$
\begin{equation*}
x^{i-1} b_{1} \cdots x^{i-1} b_{C} x^{i-1} \asymp 0 \tag{4}
\end{equation*}
$$

Hence, the equivalence $b_{0} x^{i-1} b_{1} \cdots x^{i-1} b_{C+1} \asymp 0$ holds for all $b_{1}, \ldots, b_{C} \in \mathcal{M}^{\neg x}$ and $b_{0}, b_{C+1} \in \mathcal{M}_{1}$ such that if $b_{0} \neq 1\left(b_{C+1} \neq 1\right.$, respectively), then its last (first, respectively) letter is not x. Since $w \nprec 0$, we obtain

$$
d\left(x^{i-1}\right) \leqslant C_{[n / i], d}
$$

and therefore $\operatorname{deg}_{x}(w) \leqslant \sum_{1<i \leqslant n}(i-1) C_{[n / i], d}$ for every letter x. The proof is completed.
Remark 2.6. Since $C_{1, d}=1$, we can reformulate the statement of Theorem 2.5 as follows. Let $p=0$ or $p>\frac{n}{2}$ and $m=[n / 2]$. Then $C_{n, d} \leqslant A_{n} d+1$, where

$$
A_{n}=\sum_{i=2}^{m}(i-1) C_{[n / i], d}+\frac{1}{2}(n+m-1)(n-m)
$$

Example 2.7. To illustrate the proof of Theorem 2.5, we repeat this proof in the partial case of $n=5$ and $p \neq 2$. We write a, b, c for some elements from \mathcal{M}^{-x}.

Let $i=2$. Then $k=[n / i]=2$ and $r=1$. Since $T_{311}(x, a, b)=0$ in $N_{5, d}$, we have the following partial case of (2):

$$
\begin{equation*}
x a x b x+x b x a x \asymp 0 \tag{5}
\end{equation*}
$$

Note that $C_{2, D}=3$ for all $D \geqslant 2$. We rewrite the proof of this fact, using formula (5) instead of the equality $u v+v u=0$ in $N_{2, D}$:

$$
x a x \cdot b x c \cdot x \asymp-x b(x c x a x) \asymp(x b x a x) c x \asymp-x a x b x c x .
$$

Here we use dots and parentheses to show how we apply (5). Thus we obtain the partial case of formula (4): $x a x b x c x \asymp 0$. Therefore, $d(x) \leqslant 3$.

Let $i=3$. Then $k=[n / i]=1$ and $r=2$. Since $T_{41}(x, a)=0$ in $N_{5, d}$, we have $x^{2} a x^{2} \asymp 0$. Considering $i=4,5$, we can see that $x^{3} a x^{3} \asymp 0$ and $x^{4} a x^{4} \asymp 0$. Thus, $d\left(x^{j}\right) \leqslant C_{1, D}=1$ for $j=2,3,4$.

The obtained restrictions on $d\left(x^{j}\right)$ for $1 \leqslant j \leqslant 4$ imply that deg $w \leqslant 12 d$. Hence, $C_{5, d} \leqslant 12 d+1$.

3. Polynomial bound

This section is dedicated to the proof of the next result.
Corollary 3.1. If $p>\frac{n}{2}$, then $C_{n, d}<n^{\log _{2}(3 d+2)+1}$.
Theorem 2.5 together with the inequality $C_{j-1, d} \leqslant C_{j, d}$ for all $j \geqslant 2$ implies that

$$
C_{n, d} \leqslant d \sum_{j=1}^{k} \gamma_{j} C_{\left[n / 2^{j}\right], d}+1
$$

for $\gamma_{j}=\left(2^{j}-1\right)+2^{j}+\cdots+\left(2^{j+1}-2\right)=3\left(2^{j}-1\right) 2^{j-1}$ and $k>0$ satisfying $1 \leqslant \frac{n}{2^{k}}<2$. Thus,

$$
\begin{equation*}
C_{n, d}<\frac{3 d}{2} \sum_{j=1}^{k} 4^{j} C_{\left[n / 2^{j}\right], d} \tag{6}
\end{equation*}
$$

where $\frac{n}{2}<2^{k} \leqslant n$.

Let us fix some notations. If a is an arrow in an oriented graph, then we denote the head of a by a^{\prime} and the tail of a by $a^{\prime \prime}$, i.e.,

We say that $a^{\prime \prime}$ is a predecessor of a^{\prime} and a^{\prime} is a successor of $a^{\prime \prime}$.
For every $l \geqslant 1$ we construct an oriented tree T_{l} as follows.

- The underlying graph of T_{l} is a tree.
- Vertices of T_{l} are marked with $0, \ldots, l$.
- Let a vertex v be marked with i. Then v has exactly i successors, marked with $0,1, \ldots, i-1$. If $i<l$, then v has exactly one predecessor. If $i=l$, then v does not have a predecessor and it is called the root of T_{l}.
- If a is an arrow of T_{l} and $a^{\prime}, a^{\prime \prime}$ are marked with i, j, respectively, then a is marked with $4^{j-i} \delta$, where $\delta=3 d / 2$.

Example 3.2.

Here we write a number that is prescribed to a vertex (an arrow, respectively) in this vertex (near this arrow, respectively).

If b is an oriented path in T_{l}, then we write deg b for the number of arrows in b and $|b|$ for the product of numbers assigned to arrows of b. Denote by P_{l} the set of maximal (by degree) paths in T_{l}. Note that there is 1-to-1 correspondence between P_{l} and the set of leaves of T_{l}, i.e., vertices marked with 0 . We claim that

$$
C_{n, d}<\sum_{b \in P_{k}}|b| .
$$

To prove this statement we use induction on $n \geqslant 2$. If $n=2$, then $k=1$ and $C_{2, d}<4 \delta$ by (6), and therefore the statement holds. For $n>2$ formulas (6) and $\left[\left[n / 2^{j_{1}}\right] / 2^{j_{2}}\right]=\left[n / 2^{j_{1}+j_{2}}\right]$ for all $j_{1}, j_{2}>0$ together with the induction hypothesis imply that

$$
C_{n, d}<\sum_{j=1}^{k} \sum_{b \in P_{k-j}} 4^{j} \delta|b| .
$$

The statement is proven.

Since the sum of exponents of 4 along every maximal path is k, we obtain that

$$
\begin{equation*}
C_{n, d}<\sum_{b \in P_{k}} 4^{k}\left(\frac{3 d}{2}\right)^{\operatorname{deg} b} \tag{7}
\end{equation*}
$$

Given $1 \leqslant r \leqslant k$, denote by $P_{k, r}$ the set of $b \in P_{k}$ with $\operatorname{deg} b=r$. We claim that

$$
\begin{equation*}
\# P_{k, r}=\binom{k-1}{r-1} \tag{8}
\end{equation*}
$$

where $\# P_{k, r}$ stands for the cardinality of $P_{k, r}$. To prove the claim we notice that $P_{k, r}$ is the set of r tuples (j_{1}, \ldots, j_{r}) satisfying $j_{1}, \ldots, j_{r} \geqslant 1$ and $j_{1}+\cdots+j_{r}=k$. Hence $\# P_{k, r}$ is equal to the cardinality of the set of all $(r-1)$-tuples $\left(q_{1}, \ldots, q_{r-1}\right)$ such that $1 \leqslant q_{1}<\cdots<q_{r-1} \leqslant k-1$ since we can set $j_{1}=q_{1}, j_{2}=q_{2}-q_{1}, \ldots, j_{r}=k-q_{r-1}$. The claim is proven.

Applying (8) to inequality (7), we obtain

$$
C_{n, d}<4^{k} \sum_{r=1}^{k}\left(\frac{3 d}{2}\right)^{r}\binom{k-1}{r-1}=4^{k} \frac{3 d}{2} \sum_{r=0}^{k-1}\left(\frac{3 d}{2}\right)^{r}\binom{k-1}{r}=4^{k} \frac{3 d}{2}\left(1+\frac{3 d}{2}\right)^{k-1} .
$$

Thus,

$$
C_{n, d}<4^{k}\left(1+\frac{3 d}{2}\right)^{k}
$$

Since $2^{k} \leqslant n$, we have

$$
C_{n, d}<n^{2}\left(1+\frac{3 d}{2}\right)^{\log _{2}(n)}=n^{\log _{2}\left(1+\frac{3 d}{2}\right)+2}=n^{\log _{2}(3 d+2)+1}
$$

Corollary 3.1 is proven.

4. Corollaries

Corollary 4.1. Let $p>\frac{n}{2}$. Then $C_{n, d}<4 \cdot 2^{n / 2}$. Moreover, if $n \geqslant 30$, then $C_{n, d}<2 \cdot 2^{n / 2} d$.
We split the proof of Corollary 4.1 into several lemmas. Let $m=[n / 2]$. For $2 \leqslant i \leqslant m$ denote $\gamma_{i}=$ $(i-1) 2^{n / i}$ and $\delta_{n}=2^{n / 2}+2^{n / 3}(n-4)+\frac{1}{4}(n+1)^{2}$.

Lemma 4.2. For $3 \leqslant i \leqslant m$ the inequality $\gamma_{i} \leqslant \gamma_{3}$ holds.
Proof. The required inequality is equivalent to the following one:

$$
\begin{equation*}
i-1 \leqslant 2 \cdot 2^{2 \frac{i-3}{3 i}} \tag{9}
\end{equation*}
$$

Let $i=4$. Then $n \geqslant 8$ and it is not difficult to see that the inequality $3 \leqslant 2 \cdot 2^{n / 12}$ holds.
Let $i \geqslant 5$. Then inequality (9) follows from $i-1 \leqslant 2 \cdot 2^{2 n / 15}$. Since $i-1 \leqslant \frac{n}{2}$, the last inequality follows from $n \leqslant 4 \cdot 2^{2 n / 15}$, which holds for all $n \geqslant 2$.

Lemma 4.3. For $n \geqslant 2$ the inequality $\delta_{n} \leqslant 4 \cdot 2^{n / 2}-1$ holds. Moreover, $\delta_{n} \leqslant 2 \cdot 2^{n / 2}-1$ in case $n \geqslant 30$.

Proof. Let $n \geqslant 30$. Then it is not difficult to see that $2 \cdot 2^{n / 2}-1-\delta_{n}=\left(2^{n / 2}-n \cdot 2^{n / 3}\right)+\left(4 \cdot 2^{n / 3}-\right.$ $\left.\frac{1}{4}(n+1)^{2}-1\right) \geqslant 0$. If $2 \leqslant n<30$, then performing calculations we can see that the claim of the lemma holds.

Now we can prove Corollary 4.1:
Proof of Corollary 4.1. If $n=2$ or $n=3$, respectively, then $C_{n, d} \leqslant \max \{3, d\}$ or $C_{n, d} \leqslant 3 d+1$, respectively (see Section 1), and the required is proven.

Assume that $n \geqslant 4$. By Remark $2.6, C_{n, d} \leqslant A_{n} d+1$. Since $p>[n / i]$ for $2 \leqslant i \leqslant m$, the NagataHigman Theorem implies $C_{[n / i], d} \leqslant 2^{n / i}-1$. Thus,

$$
A_{n} \leqslant \sum_{2 \leqslant i \leqslant m} \gamma_{i}+\beta_{n}
$$

where $\beta_{n}=\frac{1}{2}(-m(m-1)+(m+n-1)(n-m))$. Separately considering the cases of n even and odd, we obtain that $\beta_{n} \leqslant(n+1)^{2} / 4$. Since $m \geqslant 2$, Lemma 4.2 implies that

$$
\sum_{2 \leqslant i \leqslant m} \gamma_{i} \leqslant \gamma_{2}+\gamma_{3}(m-2) .
$$

It follows from the above mentioned upper bound on β_{n} and the inequality $m \leqslant \frac{n}{2}$ that $A_{n} \leqslant \delta_{n}$. Lemma 4.3 completes the proof.

To prove Corollary 4.5 (see below) we need the following slight improvement of the upper bound from Nagata-Higman Theorem.

Lemma 4.4. If $p>n$, then $C_{n, d}<7 \cdot 2^{n-3}$ for all $n \geqslant 3$.
Proof. If $n=3$, then the claim of the lemma follows from $C_{3, d}=6$ (see Section 1).
It is well known that

$$
\begin{equation*}
n x^{n-1} a y^{n-1}=0 \tag{10}
\end{equation*}
$$

in $N_{n, d}$ for all a, x, y (see [10]). Thus, $C_{n, d} \leqslant 2 C_{n-1, d}+1$. Applying this formula recursively, we obtain that $C_{n, d} \leqslant 2^{n-3} C_{3, d}+\sum_{i=0}^{n-4} 2^{i}$ for $n \geqslant 4$. Since $p>4$, the equality $C_{3, d}=6$ concludes the proof.

Corollary 4.5. Let $4 \leqslant n \leqslant 9$ and $\frac{n}{2}<p \leqslant n$. Then $C_{n, d} \leqslant a_{n} d+1$, where $a_{4}=8, a_{5}=12, a_{6}=24, a_{7}=30$, $a_{8}=50, a_{9}=64$.

Proof. We have $C_{2, d}=3$ in case $p>2$ and $C_{3, d}=6$ in case $p>3$ (see Section 1). By Lemma 4.4, $C_{4, d} \leqslant 13$ in case $p>4$. Applying the upper bound on $C_{n, d}$ from Theorem 2.5 recursively and using the above given estimations on $C_{k, d}$ for $k=2,3,4$, we obtain the required.

The following conjecture is a generalization of Razmyslov's upper bound to the case of $p>n$ and it holds for $n=2,3$:

Conjecture 4.6. For all $n, d \geqslant 2$ and $p>n$ we have $C_{n, d} \leqslant n^{2}$.
Corollary 4.7. Assume that Conjecture 4.6 holds. Then $C_{n, d}<n^{2} \ln (n) d$ for $\frac{n}{2}<p \leqslant n$.

Proof. For $n=2,3$ the claim holds by Section 1 .
Assume that $n \geqslant 4$. By Remark 2.6, $C_{n, d} \leqslant A_{n} d+1$. Since $p>[n / i]$, Conjecture 4.6 implies

$$
A_{n} \leqslant \sum_{2 \leqslant i \leqslant m}(i-1) \frac{n^{2}}{i^{2}}+\beta_{n}^{\prime}
$$

where $\beta_{n}^{\prime}=\frac{1}{2}(m+n-1)(n-m)$. Separately considering the cases of n even and odd, we obtain that $\beta_{n}^{\prime} \leqslant 3 n^{2} / 8$. Denote by ξ_{m} the m th harmonic number $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{m}$. We have

$$
A_{n}<n^{2}\left(\xi_{m}-1\right)+\frac{3}{8} n^{2}-1
$$

Since $\xi_{m}<\ln m+\gamma+\frac{1}{2 m}$, where $\gamma<1$ is Euler's constant (for example, see pages 73 and 79 of [11]),

$$
A_{n}<n^{2}\left(\ln m+\frac{5}{8}\right)-1<n^{2} \ln (n)-1
$$

and we obtain the required inequality.
Remark 4.8. Using another approach, in recent paper [4] Belov and Kharitonov obtained the following upper bounds on $C_{n, d}$ for all p :
(1) $C_{n, d} \leqslant 4^{\log _{3}(64)+5} \cdot\left(n^{12}\right)^{\log _{3}(4 n)+1} d$ (Corollary 1.16 from [4]);
(2) $C_{n, d} \leqslant 256 \cdot n^{8 \log _{2}(n)+22} d$ (see Theorem 1.17 from [4]);
where the second estimation is better for small n. These bounds are linear with respect to d and subexponential with respect to n.

Let us compare bounds (1) and (2) with the bound from Corollary 4.1 in case $p>\frac{n}{2}: C_{n, d}<$ $4 \cdot 2^{n / 2} d$. If $n \gg 0$ is large enough, then bounds (1) and (2) are essentially better than the bound from Corollary 4.1. On the other hand, for $4 \leqslant n \leqslant 2000$ the bound from Corollary 4.1 is at least 10^{20} times better than bounds (1) and (2). This claim follows from straightforward computations.

5. The case of $\boldsymbol{n}=4$

Theorem 5.1. For $d \geqslant 2$ we have

- $C_{4, d}=10$, if $p=0$;
- $3 d<C_{4, d}$, if $p=2$;
- $3 d+1 \leqslant C_{4, d} \leqslant 3 d+4$, if $p=3$;
- $10 \leqslant C_{4, d} \leqslant 13$, if $p>3$.

In what follows we assume that $n=4$ and $p \neq 2$ unless otherwise stated. To prove Theorem 5.1 (see the end of the section), we introduce a new \approx-equivalence on $\mathcal{M}_{\mathbb{F}}$ as follows. Given $\underline{\alpha} \in \mathbb{N}^{r}$ and $\underline{\beta} \in \mathbb{N}^{s}(r, s \geqslant 0)$, we write

$$
\underline{\alpha}>\underline{\beta} \quad \text { if } r<s .
$$

Using \succ instead of $>$, we introduce the partial order \succ on \mathcal{M} similarly to Definition 2.2. Then, using the partial order \succ on \mathcal{M} instead of $>$, we introduce the \approx-equivalence on $\mathcal{M}_{\mathbb{F}}$ similarly to the \asymp-equivalence (see Definition 2.4). The resulting definition of \approx is the following one:

Definition 5.2 (of the \approx-equivalence on $\mathcal{M}_{\mathbb{F}}$).

1. Let $f=\sum_{i} \alpha_{i} a_{i} \in \mathcal{M}_{\mathbb{F}}$, where $\alpha_{i} \in \mathbb{F}^{*}, a_{i} \in \mathcal{M}$, and $\# \operatorname{pwr}_{y}\left(a_{i}\right)=\# \operatorname{pwr}_{y}\left(a_{i^{\prime}}\right)$ for every letter y and all i, i^{\prime}. Then $f \approx 0$ if $f=0$ in $N_{n, d}$ or $f=\sum_{j} \beta_{j} b_{j}$ in $N_{n, d}$ for $\beta_{j} \in \mathbb{F}^{*}, b_{j} \in \mathcal{M}$ satisfying

- \#pwr $x_{x}\left(a_{i}\right)>\# \operatorname{pwr}_{x}\left(b_{j}\right)$ for some letter x,
- $\# p w r_{y}\left(a_{i}\right) \geqslant \# \operatorname{pwr}_{y}\left(b_{j}\right)$ for every letter y,
for all i, j;

2. If $f=\sum_{k} f_{k} \in \mathcal{M}_{\mathbb{F}}$ and $f_{k} \approx 0$ satisfies conditions from part 1 for all k, then $f \approx 0$.

Given $h \in \mathcal{M}_{\mathbb{F}}$, we write $f \approx h$ if $f-h \approx 0$.
Remark 5.3. Note that the partial order $>$ on \mathcal{M} is stronger than \succ. Namely, for $a, b \in \mathcal{M}$ we have

- if $a \succ b$, then $a>b$;
- if $a>b$, then $a \succ b$ or $a \approx b$.

Therefore, \asymp-equivalence on $\mathcal{M}_{\mathbb{F}}$ is weaker than \approx-equivalence. Namely, for $f, h \in \mathcal{M}_{\mathbb{F}}$ the equality $f \approx h$ implies $f \asymp h$, but the converse statement does not hold.

Let $a, b, c, a_{1}, \ldots, a_{4}$ be elements of \mathcal{M}. By definition,

- $T_{4}(a)=a^{4}$,
- $T_{31}(a, b)=a^{3} b+a^{2} b a+a b a^{2}+b a^{3}$,
- $T_{211}(a, b, c)=a^{2} b c+a^{2} c b+b a^{2} c+c a^{2} b+b c a^{2}+c b a^{2}+a b c a+a c b a+a b a c+a c a b+b a c a+c a b c$,
- $T_{22}(a, b)=a^{2} b^{2}+b^{2} a^{2}+a b a b+b a b a+a b^{2} a+b a^{2} b$,
- $T_{1^{4}}\left(a_{1}, \ldots, a_{4}\right)=\sum_{\sigma \in S_{4}} a_{\sigma(1)} \cdots a_{\sigma(4)}$
(see Section 2). Then

$$
T_{4}(a)=0, \quad T_{31}(a, b)=0, \quad T_{211}(a, b, c)=0, \quad T_{22}(a, b)=0, \quad T_{1^{4}}\left(a_{1}, \ldots, a_{4}\right)=0
$$

are relations for $N_{4, d}$, which generate the ideal of relations for $N_{4, d}$. Multiplying $T_{31}(a, b)$ by a several times we obtain that equalities

$$
\begin{gather*}
a^{3} b a+a^{2} b a^{2}+a b a^{3}=0, \tag{11}\\
a^{3} b a^{2}+a^{2} b a^{3}=0, \tag{12}\\
a^{3} b a^{3}=0 \tag{13}
\end{gather*}
$$

hold in $N_{4, d}$.
Remark 5.4. Let $f \in \mathcal{M}_{\mathbb{F}}$. Denote by $\operatorname{inv}(f)$ the element of $\mathcal{M}_{\mathbb{F}}$ that we obtain by reading f from right to left. As an example, for $f=x_{1}^{2} x_{2}-x_{3}$ we have $\operatorname{inv}(f)=-x_{3}+x_{2} x_{1}^{2}$.

Obviously, if $f=0$ in $N_{n, d}$, then $\operatorname{inv}(f)=0$ in $N_{n, d}$. Similar result also holds for \approx-equivalence.
Lemma 5.5. Let x be a letter and $a, b, c \in \mathcal{M}^{-x}$. Then the next relations are valid in $N_{4, d}$:

$$
\begin{equation*}
x^{3} a x b x^{2}=-x^{3} a x^{2} b x, \quad x a x^{3} b x^{2}=x^{3} a x^{2} b x \tag{14}
\end{equation*}
$$

Moreover, the following equivalences hold:

$$
\begin{gather*}
x a x^{2} \approx-x^{2} a x, \tag{15}\\
x^{i} a x b x \approx 0, \quad x a x^{i} b x \approx 0, \quad x a x b x^{i} \approx 0 \tag{16}
\end{gather*}
$$

for $i=2,3$,

$$
\begin{equation*}
x a x b x c x \approx 0 \tag{17}
\end{equation*}
$$

Proof. We have

$$
x^{3} a T_{31}(x, b)=x^{3} a x^{3} b+x^{3} a x^{2} b x+x^{3} a x b x^{2}+x^{3} a b x^{3}=0
$$

in $N_{4, d}$. By equality (13), $x^{3} a x b x^{2}=-x^{3} a x^{2} b x$ in $N_{4, d}$. Similarly we can see that

$$
T_{31}\left(x, a x^{3} b\right)=x^{3} a x^{3} b+x^{2} a x^{3} b x+x a x^{3} b x^{2}+a x^{3} b x^{3}=x^{2} a x^{3} b x+x a x^{3} b x^{2}=0
$$

in $N_{4, d}$. By (12), $x^{2} a x^{3} b x=-x^{3} a x^{2} b x$ in $N_{4, d}$ and equalities (14) are proven.
Since $T_{31}(x, a)=0$ in $N_{4, d}$, equivalence (15) is proven.
Let $i=2$. By (15), $x a x b x^{2} \approx-x a x^{2} b x \approx x^{2} a x b x$. On the other hand, (15) implies $x a x b x^{2} \approx-x^{2} a x b x$. Equivalences (16) for $i=2$ are proven.

Let $i=3$. Since $T_{211}\left(x, a, x^{3} b\right)=0$ and $x^{3} T_{211}(x, a, b)=0$ in $N_{4, d}$, we have

$$
x a x^{3} b x+x^{3} b x a x \approx 0 \quad \text { and } \quad x^{3} a x b x+x^{3} b x a x \approx 0
$$

respectively. Thus, $x^{3} a x b x \approx x a x^{3} b x$. Using Remark 5.4 , we obtain

$$
\begin{equation*}
x^{3} a x b x \approx x a x^{3} b x \approx x a x b x^{3} . \tag{18}
\end{equation*}
$$

The equality $x^{2} a T_{31}(x, a)=0$ implies

$$
x^{2} a x b x^{2}+x^{2} a x^{2} b x \approx 0
$$

Applying relation (11), we obtain

$$
x^{3} a x b x+x a x b x^{3}+x^{3} a x b x+x a x^{3} b x \approx 0
$$

Equivalences (18) complete the proof of (16).
Since $T_{211}(x, a, b x c) x=0$ and $T_{211}(x, a, b) x c x=0$ in $N_{4, d}$, we obtain

$$
x a x b x c x+x b x c x a x \approx 0 \text { and } \quad x a x b x c x+x b x a x c x \approx 0,
$$

respectively. The equality $x b T_{211}(x, a, c) x=0$ in $N_{4, d}$ implies

$$
x b x c x a x+x b x a x c x \approx 0
$$

and therefore $x a x b x c x \approx 0$.
If $\underline{\alpha} \in \mathbb{N}^{r}, \underline{\beta} \in \mathbb{N}^{s}$, then we write $\underline{\alpha} \subset \underline{\beta}$ and say that $\underline{\alpha}$ is a subvector of $\underline{\beta}$ if there are $1 \leqslant i_{1}<$ $\cdots<i_{r}$ such that $\alpha_{1}=\beta_{i_{1}}, \ldots, \alpha_{r}=\beta_{i_{r}}$.

Lemma 5.6. If $f \in \mathcal{M}_{\mathbb{F}}$, then $f=0$ in $N_{4, d}$ or $f=\sum_{i} \alpha_{i} a_{i}$ in $N_{4, d}$ for some $\alpha_{i} \in \mathbb{F}^{*}, a_{i} \in \mathcal{M}$ such that for every letter $x \operatorname{pwr}_{x}\left(a_{i}\right)$ belongs to the following list:

- Ø, (1), (1, 1), ($1,1,1$),
- (2), (2, 1),
- (3), (3, 1), (1, 3), (3, 2), (3, 2, 1).

Moreover, we can assume that for all pairwise different letters x, y, z and all i the following conditions do not hold:
(a) $\operatorname{pwr}_{x}\left(a_{i}\right)=(3,2,1)$ and $(3) \subset \operatorname{pwr}_{y}\left(a_{i}\right)$;
(b) (3) is a subvector of $\operatorname{pwr}_{x}\left(a_{i}\right), \operatorname{pwr}_{y}\left(a_{i}\right)$, and $\operatorname{pwr}_{z}\left(a_{i}\right)$;
(c) $(3,2)$ is a subvector of $\operatorname{pwr}_{x}\left(a_{i}\right)$ and $\mathrm{pwr}_{y}\left(a_{i}\right)$.

Proof. Let x be a letter and $f=\sum_{j \in J} \beta_{j} b_{j}$ for $\beta_{j} \in \mathbb{F}^{*}$ and $b_{j} \in \mathcal{M}$. We claim that the statement of the lemma holds for f for the given letter x. To prove the claim we use induction on $k=\max \left\{\# \operatorname{pwr}_{x}\left(b_{j}\right) \mid j \in J\right\}$.

If $k=0,1$, then the claim holds.
If $b_{j}=b_{1 j} x^{2} b_{2 j} x^{2} b_{3 j}$ for some $b_{1 j}, b_{2 j}, b_{3 j} \in \mathcal{M}^{-x}$, then $a_{j}=-b_{1 j} x^{3} b_{2 j} x b_{3 j}-b_{1 j} x b_{2 j} x^{3} b_{3 j}$ in $N_{4, d}$ by relation (11). Note that $\# \operatorname{pwr}_{x}\left(b_{j}\right)=\# \operatorname{pwr}_{x}\left(b_{1 j} x^{3} b_{2 j} x b_{3 j}\right)=\# \operatorname{pwr}_{x}\left(b_{1 j} x b_{2 j} x^{3} b_{3 j}\right)$. Moreover, if $(2, \ldots, 2) \subset \operatorname{pwr}_{x}\left(b_{j}\right)$, then we apply (11) several times. Therefore, without loss of generality can assume that $(2,2)$ is not a subvector of $\mathrm{pwr}_{x}\left(b_{j}\right)$ for all j.

If one of the vectors

$$
(r), \quad r>3 ; \quad(3,3) ; \quad(s, 1,1),(1, s, 1),(1,1, s), \quad s \in\{2,3\} ; \quad(1,1,1,1)
$$

is a subvector of $\mathrm{pwr}_{\chi}\left(b_{j}\right)$, then $b_{j} \approx 0$ by the equality $x^{4}=0$ in $N_{4, d}$ and formulas (13), (16), (17), respectively. Thus, $f \approx 0$ or $f \approx \sum_{j \in J_{0}} \beta_{j} b_{j}$ for such $J_{0} \subset J$ that for every $j \in J_{0}$ the vector $\operatorname{pwr}_{x}\left(b_{j}\right)$ up to permutation of its entries belongs to the following list:

$$
\emptyset,(1),(1,1),(1,1,1),(2),(2,1),(3),(3,1),(3,2),(3,2,1) .
$$

Let $j \in J_{0}$. If $\operatorname{pwr}_{x}\left(b_{j}\right)=(\sigma(1), \sigma(2), \sigma(3))$ for some $\sigma \in S_{3}$, then applying relations (12) and (14) we obtain that $b_{j}= \pm c_{j}$ in $N_{4, d}$ for a monomial $c_{j} \in \mathcal{M}$ satisfying $\operatorname{pwr}_{x}\left(c_{j}\right)=(3,2,1)$. If $\operatorname{pwr}_{x}\left(b_{j}\right)$ is $(1,2)$ or $(2,3)$, then we apply formulas (15) or (12), respectively, to obtain that $b_{j} \approx-c_{j}$ for a monomial $c_{j} \in \mathcal{M}$ with $\operatorname{pwr}_{x}\left(c_{j}\right) \in\{(2,1),(3,2)\}$. So we get that $f \approx h$ for such $h \in \mathcal{M}_{\mathbb{F}}$ that the claim holds for h. The induction hypothesis and Definition 5.2 complete the proof of the claim.

Let y be a letter different from x. Relations from the proof of the claim do not affect y-powers. Therefore, applying the claim to f for all letters subsequently, we complete the proof of the first part of the lemma.

Consider an $a \in \mathcal{M}$. If a satisfies condition (a), then relations (12) and (14) together with relation (10) imply that $a=0$ in $N_{4, d}$. If a satisfies condition (b) or (c), then relations (10) and (12) imply that $a=0$ in $N_{4, d}$. Thus, the second part of the lemma is proven.

The following lemma resembles Lemma 3.3 from [19].
Lemma 5.7. Let $p=2$ and $1 \leqslant k \leqslant d$. For every homogeneous $f \in \mathcal{M}_{\mathbb{F}}$ of multidegree $\left(\theta_{1}, \ldots, \theta_{d}\right)$ with $\theta_{k} \leqslant 3$ and $\theta_{1}+\cdots+\theta_{k-1}+\theta_{k+1}+\cdots+\theta_{d}>0$ we define $\pi_{k}(f) \in \mathcal{M}_{\mathbb{F}}$ as the result of the substitution $x_{k} \rightarrow 1$ in a, where 1 stands for the unity of \mathcal{M}_{1}.

Then $f=0$ in $N_{4, d}$ implies $\pi_{k}(f)=0$ in $N_{4, d}$.

Proof. Let $a, b, c, u \in \mathcal{M}$. By definition, $\pi_{k}(a b)=\pi_{k}(a) \pi_{k}(b)$. Then by straightforward calculations we can show that $\pi_{k}\left(T_{31}(a, b)\right)=0, \pi_{k}\left(T_{211}(a, b, c)\right)=0, \pi_{k}\left(T_{22}(a, b)\right)=0$, and $\pi_{k}\left(T_{1^{4}}(a, b, c, u)\right)=0$ in $N_{4, d}$. The proof is completed.

We now can prove Theorem 5.1:

Proof of Theorem 5.1. If $p=0$, then the required was proven by Vaughan-Lee in [26]. If $p>3$, then the claim follows from Kuzmin's low bound (see Section 1) and Lemma 4.4.

Let $p=2$ and $a=x_{1}^{3} \cdots x_{d}^{3}$. Assume that $a=0$ in $N_{4, d}$. Applying $\pi_{1}, \ldots, \pi_{d-1}$ from Lemma 5.7 to a we obtain that $x_{d}^{3}=0$ in $N_{4, d}$; a contradiction. Thus, $C_{4, d}>\operatorname{deg} a=3 d$.

Assume that $p=3$. Consider an $a \in \mathcal{M}$ such that $a \neq 0$ in $N_{4, d}$. Applying Lemma 5.6 to a, without loss of generality we can assume that a satisfies all conditions from Lemma 5.6. Denote $t_{i}=\operatorname{deg}_{x_{i}}(a)$ and $r=\#\left\{i \mid\right.$ (3) is subvector of $\left.\operatorname{pwr}_{x_{i}}(a)\right\}$. Then
(a) $t_{i} \leqslant 6$;
(b) if $t_{i} \geqslant 4$, then (3) $\subset \operatorname{pwr}_{x_{i}}(a)$
for all $1 \leqslant i \leqslant d$.
If $r=0$, then $\operatorname{deg}(a) \leqslant 3 d$ by part (b). If $r=1$, then $\operatorname{deg}(a) \leqslant 6+3(d-1)=3 d+3$ by parts (a) and (b).

Let $r=2$. Then without loss of generality we can assume that (3) is a subvector of $\mathrm{pwr}_{x_{1}}(a)$ and $\operatorname{pwr}_{x_{2}}(a)$. Since condition (a) of Lemma 5.6 does not hold for $a,(3,2,1)$ is not a subvector of $\operatorname{pwr}_{x_{i}}(a)$ for $i=1,2$. Hence, $t_{1}, t_{2}<6$. If $t_{1}=t_{2}=5$, then condition (c) of Lemma 5.6 holds for a; a contradiction. Therefore, $t_{1}+t_{2} \leqslant 9$. By part (b), $t_{i} \leqslant 3$ for $3 \leqslant i \leqslant d$. Finally, we obtain that deg $(a) \leqslant$ $3 d+3$.

If $r \geqslant 3$, then a satisfies condition (b) of Lemma 5.6; a contradiction.
So, we have shown that $\operatorname{deg}(a) \leqslant 3 d+3$, and therefore $C_{4, d} \leqslant 3 d+4$. On the other hand, $C_{4, d} \geqslant$ $C_{3, d}=3 d+1$ by [16]. The proof is completed.

Remark 5.8. Assume that $n=4$ and $p=3$. Let us compare the upper bound $C_{4, d} \leqslant 3 d+3$ from Theorem 5.1 with the known upper bounds on $C_{4, d}$:

- Corollary 4.5 implies that $C_{4, d}<8 d+1$;
- bounds by Belov and Kharitonov [4] imply that $C_{4, d} \leqslant B_{4} d$, where $B_{4}>10^{20}$ (see Remark 4.8 for details);
- bounds by Klein [13] imply that $C_{4, d}<\frac{2^{11}}{3} d^{4}$ and $C_{4, d}<2^{128} d^{2}$ (see Section 1 for details).

6. $G L(n)$-invariants of matrices

The general linear group $G L(n)$ acts on d-tuples $V=\left(\mathbb{F}^{n \times n}\right)^{\oplus d}$ of $n \times n$ matrices over \mathbb{F} by the diagonal conjugation, i.e.,

$$
\begin{equation*}
g \cdot\left(A_{1}, \ldots, A_{d}\right)=\left(g A_{1} g^{-1}, \ldots, g A_{d} g^{-1}\right) \tag{19}
\end{equation*}
$$

where $g \in G L(n)$ and A_{1}, \ldots, A_{d} lie in $\mathbb{F}^{n \times n}$. The coordinate algebra of the affine variety V is the algebra of polynomials $R=\mathbb{F}[V]=\mathbb{F}\left[x_{i j}(k) \mid 1 \leqslant i, j \leqslant n, 1 \leqslant k \leqslant d\right]$ in $n^{2} d$ variables. Denote by

$$
X_{k}=\left(\begin{array}{ccc}
x_{11}(k) & \cdots & x_{1 n}(k) \\
\vdots & & \vdots \\
x_{n 1}(k) & \cdots & x_{n n}(k)
\end{array}\right)
$$

the k th generic matrix. The action of $G L(n)$ on V induces the action on R as follows:

$$
g \cdot x_{i j}(k)=(i, j) \text { th entry of } g^{-1} X_{k} g
$$

for all $g \in G L(n)$. The algebra of $G L(n)$-invariants of matrices is

$$
R^{G L(n)}=\{f \in \mathbb{F}[V] \mid g \cdot f=f \text { for all } g \in G L(n)\}
$$

Denote coefficients in the characteristic polynomial of an $n \times n$ matrix X by $\sigma_{t}(X)$, i.e.,

$$
\begin{equation*}
\operatorname{det}(X+\lambda E)=\sum_{t=0}^{n} \lambda^{n-t} \sigma_{t}(X) . \tag{20}
\end{equation*}
$$

In particular, $\sigma_{0}(X)=1, \sigma_{1}(X)=\operatorname{tr}(X)$, and $\sigma_{n}(X)=\operatorname{det}(X)$.
Given $a=x_{i_{1}} \cdots x_{i_{r}} \in \mathcal{M}$, we set $X_{a}=X_{i_{1}} \cdots X_{i_{r}}$. It is known that the algebra $R^{G L(n)} \subset R$ is generated over \mathbb{F} by $\sigma_{t}\left(X_{a}\right)$, where $1 \leqslant t \leqslant n$ and $a \in \mathcal{M}$ (see [7]). Note that in the case of $p=0$ the algebra $R^{G L(n)}$ is generated by $\operatorname{tr}\left(X_{a}\right)$, where $a \in \mathcal{M}$. Relations between the mentioned generators were established in [28].

Remark 6.1. If G belongs to the list $O(n), S p(n), S O(n), S L(n)$, then we can define the algebra of invariants R^{G} in the same way as for $G=G L(n)$. A generating set for the algebra R^{G} is known, where we assume that char $\mathbb{F} \neq 2$ in the case of $O(n)$ and $S O(n)$ (see [29,18]). In case $p=0$ and $G \neq S O(n)$ relations between generators of R^{G} were described in [23]. In case $p \neq 2$ relations for $R^{0(n)}$ were described in [20,21].

By the Hilbert-Nagata Theorem on invariants, $R^{G L(n)}$ is a finitely generated \mathbb{N}_{0}-graded algebra by degrees, where $\operatorname{deg} \sigma_{t}\left(X_{a}\right)=t \operatorname{deg} a$ for $a \in \mathcal{M}$. But the above mentioned generating set is not finite. In [5] the following finite generating set for $R^{G L(n)}$ was established:

- $\sigma_{t}\left(X_{a}\right)$, where $1 \leqslant t \leqslant \frac{n}{2}, a \in \mathcal{M}, \operatorname{deg} a \leqslant C_{n, d}$;
- $\sigma_{t}\left(X_{i}\right)$, where $\frac{n}{2}<t \leqslant n, 1 \leqslant i \leqslant d$.

We obtain a smaller generating set.
Theorem 6.2. The algebra $R^{G L(n)}$ is generated by the following finite set:

- $\sigma_{t}\left(X_{a}\right)$, where $t=1$ or $p \leqslant t \leqslant \frac{n}{2}, a \in \mathcal{M}, \operatorname{deg} a \leqslant C_{[n / t], d}$;
- $\sigma_{t}\left(X_{i}\right)$, where $\frac{n}{2}<t \leqslant n, p \leqslant t, 1 \leqslant i \leqslant d$.

To prove the theorem, we need the following notions. Let $1 \leqslant t \leqslant n$. For short, we write $\sigma_{t}(a)$ for $\sigma_{t}\left(X_{a}\right)$, where $a \in \mathcal{M}$. Amitsur's formula [1] enables us to consider $\sigma_{t}(a)$ with $a \in \mathcal{M}_{\mathbb{F}}$ as an invariant from $R^{G L(n)}$ for all $t \in \mathbb{N}$. Zubkov [28] established that the ideal of relations for $R^{G L(n)}$ is generated by $\sigma_{t}(a)=0$, where $t>n$ and $a \in \mathcal{M}_{\mathbb{F}}$. More details can be found, for example, in [20]. Denote by $I(t)$ the \mathbb{F}-span of elements $\sigma_{t_{1}}\left(a_{1}\right) \cdots \sigma_{t_{r}}\left(a_{r}\right)$, where $r>0,1 \leqslant t_{1}, \ldots, t_{r} \leqslant t$, and $a_{1}, \ldots, a_{r} \in \mathcal{M}$. For short, we write I for $I(n)=R^{G L(n)}$. Denote by I^{+}the subalgebra generated by \mathbb{N}_{0}-homogeneous elements of I of positive degree. Obviously, the algebra I is generated by a set $\left\{f_{k}\right\} \subset I$ if and only if $\left\{\overline{f_{k}}\right\}$ is a basis of $\bar{I}=I /\left(I^{+}\right)^{2}$. Given an $f \in I$, we write $f \equiv 0$ if $\bar{f}=0$ in \bar{I}, i.e., f is equal to a polynomial in elements of strictly lower degree.

Proof of Theorem 6.2. Let $1 \leqslant t \leqslant n, m=[n / t]$, and $a, b \in \mathcal{M}_{\mathbb{F}}$. We claim that

$$
\begin{equation*}
\text { there exists an } f \in I(t-1) \text { such that } \sigma_{t}\left(a b^{m}\right) \equiv f \text {. } \tag{21}
\end{equation*}
$$

To prove the claim we notice that the inequality $(m+1) t>n$ and the description of relations for $R^{G L(n)}$ imply $\sigma_{(m+1) t}(a+b)=0$. Taking homogeneous component of degree t with respect to a and degree $m t$ with respect to b, we obtain that $\sigma_{t}\left(a b^{m}\right) \equiv 0$ or $\sigma_{t}\left(a b^{m}\right) \equiv \sum_{i} \alpha_{i} \sigma_{t_{i}}\left(a_{i}\right)$, where $\alpha_{i} \in \mathbb{F}^{*}$, $1 \leqslant t_{i}<t$, and a_{i} is a monomial in a and b for all i. By Amitsur's formula, $\sigma_{t_{i}}\left(a_{i}\right) \equiv \sum_{j} \beta_{i j} \sigma_{r_{i j}}\left(b_{i j}\right)$ for some $\beta_{i j} \in \mathbb{F}^{*}, 1 \leqslant r_{i j} \leqslant t_{i}, b_{i j} \in \mathcal{M}$. Thus, $\sum_{i} \alpha_{i} \sigma_{t_{i}}\left(a_{i}\right) \in I(t-1)$ and the claim is proven.

Consider a monomial $c \in \mathcal{M}$ satisfying $\operatorname{deg} c>C_{m, d}$. Then $c=c^{\prime} x$ for some letter x and $c^{\prime} \in \mathcal{M}$. Since $c^{\prime}=0$ in $N_{m, d}$, we have $c^{\prime}=\sum_{i} \gamma_{i} u_{i} v_{i}^{m} w_{i}$ for some $u_{i}, w_{i} \in \mathcal{M}_{1}, v_{i} \in \mathcal{M}_{\mathbb{F}}, \gamma_{i} \in \mathbb{F}$. Thus $\sigma_{t}(c)=$ $\sigma_{t}\left(\sum_{i} \alpha_{i} u_{i} v_{i}^{m} w_{i} x\right)$. Applying Amitsur's formula, we obtain that $\sigma_{t}(c)-\sum_{i} \alpha_{i}^{t} \sigma_{t}\left(u_{i} v_{i}^{m} w_{i} x\right) \in I(t-1)$. Statement (21) implies

$$
\begin{equation*}
\sigma_{t}(c) \equiv h \quad \text { for some } h \in I(t-1) \tag{22}
\end{equation*}
$$

Consecutively applying (22) to $t=n, n-1, \ldots, 2$ we obtain that $R^{G L(n)}$ is generated by $\sigma_{t}(a)$, where $1 \leqslant t \leqslant n, a \in \mathcal{M}, \operatorname{deg} a \leqslant C_{[n / t], d}$. Note that if $t>\frac{n}{2}$, then $m=1$ and $C_{m, d}=1$. If $t<p \leqslant n$, then the Newton formulas imply that $\sigma_{t}(a)$ is a polynomial in $\operatorname{tr}\left(a^{i}\right), i>0$ (the explicit expression can be found, for example, in Lemma 10 of [17]). The last two remarks complete the proof.

Conjecture 6.3. The algebra $R^{G L(n)}$ is generated by elements of degree less or equal to $C_{n, d}$.
Remark 6.4. Theorem 6.2 and the inequality $C_{n, d} \geqslant n$ imply that to prove Conjecture 6.3 it is enough to show that

$$
t C_{[n / t], d} \leqslant C_{n, d}
$$

for all t satisfying $p \leqslant t \leqslant \frac{n}{2}$. Thus it is not difficult to see that Conjecture 6.3 holds for $n \leqslant 5$. Moreover, as it was proven in [5] (and also follows from Theorem 6.2), Conjecture 6.3 holds in case $p=0$ or $p>\frac{n}{2}$.

Acknowledgments

This paper was supported by RFFI 10-01-00383a and FAPESP No. 2011/51047-1. The author is grateful for this support.

References

[1] S.A. Amitsur, On the characteristic polynomial of a sum of matrices, Linear Multilinear Algebra 8 (1980) 177-182.
[2] A.Ya. Belov, Some estimations for nilpotence of nill-algebras over a field of an arbitrary characteristic and height theorem, Comm. Algebra 20 (1992) 2919-2922.
[3] A. Kanel-Belov, L.H. Rowen, Computational Aspects of Polynomial Identities, Res. Notes Math., vol. 9, A K Peters, Wellesley, MA, 2005, 378 pp.
[4] A.J. Belov, M.I. Kharitonov, Subexponential estimations in Shirshov height theorem, Mat. Sb. 203 (4) (2012) 81-102 (in Russian).
[5] M. Domokos, Finite generating system of matrix invariants, Math. Pannon. 13 (2) (2002) 175-181.
[6] M. Domokos, S.G. Kuzmin, A.N. Zubkov, Rings of matrix invariants in positive characteristic, J. Pure Appl. Algebra 176 (2002) 61-80.
[7] S. Donkin, Invariants of several matrices, Invent. Math. 110 (1992) 389-401.
[8] V. Drensky, E. Formanek, Polynomial Identity Rings, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel/Boston, 2004.
[9] J. Dubnov, V. Ivanov, Sur l'abaissement du degré des polynômes en affineurs, C. R. (Dokl.) Acad. Sci. USSR 41 (1943) 96-98.
[10] N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Publ., vol. 37, 1964, Appendix 1.
[11] J. Havil, Gamma: Exploring Euler's Constant, Princeton University Press, Princeton, NJ, 2003.
[12] G. Higman, On a conjecture of Nagata, Math. Proc. Cambridge Philos. Soc. 52 (1956) 1-4.
[13] A.A. Klein, Bounds for indices of nilpotency and nility, Arch. Math. (Basel) 76 (2000) 6-10.
[14] E.N. Kuzmin, On the Nagata-Higman theorem, in: Mathematical Structures - Computational Mathematics - Mathematical Modeling, Proceedings Dedicated to the 60th Birthday of Academician L. Iliev, Sofia, 1975, pp. 101-107 (in Russian).
[15] A.A. Lopatin, The algebra of invariants of 3×3 matrices over a field of arbitrary characteristic, Comm. Algebra 32 (7) (2004) 2863-2883.
[16] A.A. Lopatin, Relatively free algebras with the identity $x^{3}=0$, Comm. Algebra 33 (10) (2005) 3583-3605.
[17] A.A. Lopatin, On block partial linearizations of the pfaffian, Linear Algebra Appl. 426 (1) (2007) 109-129.
[18] A.A. Lopatin, Invariants of quivers under the action of classical groups, J. Algebra 321 (2009) 1079-1106.
[19] A.A. Lopatin, On minimal generating systems for matrix O (3)-invariants, Linear Multilinear Algebra 59 (1) (2011) 87-99.
[20] A.A. Lopatin, Relations between O (n)-invariants of several matrices, Algebr. Represent. Theory (2012), http://dx.doi.org/ 10.1007/s10468-011-9268-4, in press, arXiv:0902.4266.
[21] A.A. Lopatin, Free relations for matrix invariants in modular cases, J. Pure Appl. Algebra 216 (2012) 427-437.
[22] M. Nagata, On the nilpotency of nil algebras, J. Math. Soc. Japan 4 (1953) 296-301.
[23] C. Procesi, The invariant theory of $n \times n$ matrices, Adv. Math. 19 (1976) 306-381.
[24] Yu.P. Razmyslov, Trace identities of full matrix algebras over a field of characteristic 0, Izv. Akad. Nauk SSSR, Ser. Mat. 38 (4) (1974) 723-756 (in Russian); English transl.: Math. USSR, Izv. 8 (4) (1974) 727-760.
[25] I.P. Shestakov, N. Zhukavets, On associative algebras satisfying the identity $x^{5}=0$, Algebra Discrete Math.(1) (2004) 112120.
[26] M.R. Vaughan-Lee, An algorithm for computing graded algebras, J. Symbolic Comput. 16 (1993) 345-354.
[27] E. Zelmanov, Some open problems in the theory of infinite dimensional algebras, J. Korean Math. Soc. 44 (5) (2007) 11851195.
[28] A.N. Zubkov, On a generalization of the Razmyslov-Procesi theorem, Algebra Logic 35 (4) (1996) 241-254.
[29] A.N. Zubkov, Invariants of an adjoint action of classical groups, Algebra Logic 38 (5) (1999) 299-318.

