
ular 

Charles R. Johnson* and Peter IUylen+* 
Department of Mathematics 
College of William and Mary 
Williamdwg, Virginia 23185 

Submitted by Richard A. Brualdi 

ABSTRACT 

We extend Yamamoto’s theorem, an asymptotic result that relates the ith largest 
absolute eigenvalue to the ith singular value for complex matrices, to various 
generalized singular values associated with a class of functions weaker than norms. 

1. INTRODUCTION 

Let C” and M, denote, respectively, the vector spaces of n-component 
column vectors and n by n matrices over the complex numbers. For A E 
we arrange the eigenvalues A,, . . . , A, in order of nonincreasing absolute 
value. We number the singular values of A (nonnegative square roots of the 
eigenvalues of A*A) ul, . . . , q,, similarly. 

It is well known when 110 11 is a matrix norm, and remains true when II l 11 is 
only a (generalized matrix) norm on M, [1, p. 3221, that 

p(A) = IAll = klhn~l~Aklll’k. 
-_, 
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This is sometimes called the qect-rtrl ra&w $&ux&. When ]I- I] is the sp~~)ral 
norm, ]I*]] = 0r( =), the spectral formula becomes 

1X,( = lim ol(Ak)'/". 
k-co 

[7] this fact was attractively extended by noting that similar formulae hold 
r the absolute values of the rema;ining eigenvalues in terms of the remaining 

singular values, i.e., 

Ihi1 = lim oj( Ak)“k, i = l,...,n. 
k-,w 

A variety of generalizations of singular values are currently being studied 
by focusing upon known properties of the usual singular values and upon 
norms other than the spectral norm on ,, and Euclidean norm on Cn 
(which are naturally tied to the usual singular values via known properties). 
See [S], for example. Our purpose here is to note that Yamamoto’s observa- 
tion may be extended to these generalized singular values. This, of course, 
makes such quantities seem more natural as generalizations of singular values. 
Yamamoto’s original proof [7] used compounds to show that the spectral 
radius formula could be algebraically extended to further eigenvalues and 
singular values. We give two proofs. One relies upon Yamamoto’s observation 
and exploits the comparability among functions on a vector space even more 
general than a norm, but the other deals with the remaining eigenvalues 
directly (in a parallel way) and may be viewed as an alternative to 
Yamamoto’s original proof. 

2. N GENERALIZATIONS 

denote either the vector space Cn or 
satisfying the following three axioms: 

(Ib) ]]x]] = 0 n and only if x = 0. 
(2) l]arx]l = Icy] llx]] for all co lex numbers (Y and vectors X. 
(3j 11% + y]] 6 ]lx]]+ ]]yl] for vectors x and y. 

Common examples of norms on 
= (]xJ2 + ’ l l + (2,1y, 

Ixd * l * ’ I%O* 

u&dean norm ]I- ]12, defined by 
arm Il$,, defined by ]]x]loo = 



GENERALIZED SINGULAR VALUES 149 

Any norm ]I- ]I on n naturally induces a norm ]I]- ]I] on 
following maximization: 

lIlAIll = mm{ IIAxll: x E C”, Ilxll = 1). 

The norm induced on M, by the Euclidean norm I]* 11% is the s;>ectrul m, 
which we denote by ]]I- ]]lz [and which, of course, is the same as or( -)I. 

F’or any norm I]- I] on Cn and any nonsingular S E M, we may define a 
norm ]I& on Cn by l]x]ls = ]lSx]l. With this construction, the norm ]]I= 111s (on 
M,) induced by I]- ]ls is related to the norm I II l 111 induced by 11 l 11 by the 
identity 

lll4lls = IllsAs- ‘Ill forall AEM,. 

A prenorm is a function f( 0) : X + R satisfying norm axioms (1) (a and b) 
and (2), but with (3) replaced by 

(3’) f is continuous on X. 

All norms are prenorms, but not all prenorms are norms. The folIowing 
comparability, well known for norms on finite dimensional spaces, may be 
found in [l, p. 2721. 

PROPOSITION 2.1. Let f(-) and g(-) be any pr- on a finite 
dimensional vector space X (e.g. Cn or M,). l%en there exist positive 
constants c,,, and cM such that all X, 

There is an equivalence relation on by Proposition 
f and g from X into the nonnegative reals, we will say J 

and g are equivalent if there exist positive constants cm and C~ such that the 
conclusion of Proposition 2.1 holds. Our main results are valid to at least the 
level of generality of functions on that are equivalent to a norm on 
segregate this special class of functions in the following definition. 

INITION 2.2. IA?! e a norm on the finite dimensional vector 
. A function f(a): is called norm-equivalent if there exist fixed 

positive constants cm and cM such that c,,,]]xi] <f(x) < c,]]x]] 

normequivalent 
osition 2.1, the se 
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independent of which norm II=II is chosen. Also, all prenorms are norm-equiv- 
ctions. The function f(x) s 2~~x~~+sinllx~l is normequivalent but is 

GULAR VALUES AN 

EFINITION 3.1. Let 8 II be a norm on Cn, Ill- 111 the norm on M, 
induced by II= 11, and A e n* Let i E {l,..., n). 

ith ~~MIUZX number of A is denoted by ai(A, II= 11) and defined by 
11) = inf(sup( IlAxll: Ilxll= 1, x E L} :dimL = n - i + 1). 
ith max-min number of A is denoted by “i( A, II l 11) and defined by 

oi( 11) = sup(inf( IlAx/: Ilxl( = 1, x E L} :dimL = i). 
The ith approximation number d A is ih~td by Si( A 3 II l 11) and defined 

bY 8*(A, II l II) = inf( IllA - X(11: X E ,,rankX<i}. 

Such numbers have been studied by several authors. See, for example, [4], 
121, [31, and [51. n the following proposition we state the known facts about 
these numbers that we need. 

TION 3.2. Let A E . Let II-11 be a norm on 
induced norm on Let the 0, a, a& 6 

Suppressing the argiinents of 0, a, and 6 numbers, we then 

(a) 6, = a1 = Wl = lIlAIll* 
(b) FWiE (2,...,n), 6i>,a$>/Oi. 

ruwm used to define the numbers is tb Euclidean ru)~m, then 
) = Wi = aI = 6i. 

A < i, 0 = Wi = ai = Si. 
,n} andanyj3E 9 B,(flA) = IPlai(A), a 
max-min numbers. 

is nonsingular, then 6, = a, = w, = lllA”~~l-‘. 
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THEOREM 3.3. Let A E with eigerhvalues numbered in order of 
nonincreasing absolute value. ;Rt II- 11 be a norm on Cn. For each i E 
(I...., . n } we have 

(4 l&l = fimk4mq(Ak, Il~ll)‘T 

(b) l&l = fimk.+mq(Ak, II#T at2-d 

(c) IX,1 = lim k 4 a) &(A! II l Ily* 

Proof. Assume that Xi + 0, since otherwise for m 3 n we have rank Am 
< i, from which the result is a consequence of (d) of Proposition 3.2. Assume 
that i >, 2, since i = 1 is just the spectral radius formula. 

Assume that A is upper triangular with diagonal A,, . . . , A,, simz by 

Schur’s triangularization theorem there exists a unitary matrix U such that 
U*AU has this form, and if we define the norm Il=llv on Cn by llrllu = IlUxll, 
then by consideration of Definition 3.1, 

Oi( Ak, II= (I)1’k = q((U=qk, II+yk, 

q( Ak, II- llyk = &J*AU)ks lI+yk, 

&( Ak, II* lIyk = Si( ( U*AU)k, IIs ((u)l’k 

for each k = 1,2,... . Thus the limiting behavior of the sequences on the left 
is the same as that of those on the right. 

Assume that IX,1 = 1, since 

q((A/)X,IJk9 Il-ll)l’k = &A! Il-llyk> 
i 

‘i( (A/lXil)k~ llall)“k = -&J( Ak, Il$? 
i 

denote the i by i s matrix of A in the first i rows an 
II= II* the norm on i obtained by Gppen g n - i zeros onto a v 
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and evaluating 11 l 11 on the resulting member of *, and Ill= Ill* the norm on 
induced by II= !I*- Then 

ai(Ak, II-II) 2 inf{ IIAk# x E spa&,...,q), llxll= l} 

= inf ( IIBk~lI* : y E C’, IlZjll* = 1) 

Since the spectral radius of I?- ’ is 1, 

,lim, @3-1)kjii*1’k= 1. 
-_, 

Now, let Ck be the matrix obtained from Ak by setting the last n - i + 1 
rows equal to zero, and let D = A - C,. Since A is upper triangular, 

Am-Cm=Dm. 

en, since rank Ck C i, 

Since the spectral radius of D is 1, 

lim III DRllll'k = 1. 
k+m 

conclusion of the theorem now follows from inequality (b) of Proposition 

*, an 
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The ith norm-equivalent min-mzx number of A is denoted by “i(A, f, g) 
and defined by 

ai(A, f,g)=id fbw 

g(x) 
:xEL, x#O :dimL=n-i+L . 

The ith norm-equivalent max-min number of A is denoted by #i( A, f, 
and 

f(A4 

44 

The no?m-equivaknt number of A is denoted by 
Si(A,h) anddefined by ~i(A,~)=inf(h(A-X):XEM,, 

3.5. Let A EM, with eigenvalues 

For each iE (l,...,n) we 
huve 

(a) lXil= lim k -D 00 ai( Ak, f, g)‘/k, 
(b) lhi~=liIII k + do (yi( Ak9 f9 gYk, and 
(C) (A,(= lim k -, oc) Si( Ak, h)l’k. 

Proof. The approach is to bound the normequivalent w, (Y, and 8 
numbers with constant multiples of the usual singular values, apply the fact 
that the limit of the kth root of a positive constant as k increases is one, and 
apply Theorem 3.3 or Yamamoto’s theorem. This, of course, gives an alter- 
nate proof of Theorem 3.4 via Yamamoto’s theorem and norm comparability. 

Let cm, c~, d ,,,, and d, be positive constants such that for all x E 
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Let i E (l,...,n} and AE ,, be given. Then 

q(A, f, g) = sup 
fW 
g( ) 

:xE 
x 

:xEL, x#O 

= Fsup{inf( IIAxl12: x E , llxl12 = l} :dimL = i} 
M 

= ~~j( A, II* 112) = ~~i( A),, 
M UM 

For a lower bound, 

:xEL, x#O 
1 1 

:dimL=i 

cM11Ax112 
d,llxl12 :xE , x+0 

, x#O 

= Fsup(inf( IIAxl12: x E , Ilxl12=1}:dimL=i) 
Ill 

= Ftii(Ay 119112) = Toi( 
m m 

us, we have shown that 

$oi(A)< ai(A,f,g)G Foi(A)* 
M m 
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It follows that 

liminf wi( A&, f, g)l/lr 2 [lim(c,Jdu)l’k] [limai(A’ 

The corresponding fact for the (Y numbers is analogously proven. 
. For the 6 numbers, let em and eM be positive constants such that for all 
AinM,, 

Then by applying the spectral 
of the singular values, we have 

norm approximation number characterization 

from which the result for the 5: numbers follows. 

4. OTHER GENERALIZED SINGULAR VALUES 

The primary intent of this paper has been to see to what extent we CO 
replace the Euclidean no 
singular values suggested r norms or, more 
generally, norm-equi 
a conversation with 
other generalized singular values. 

n the work [4], an axi 
aces is given. 

examples of these numbers. 
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INITION 4.1. An s-number ction s which for each 

n, associates with every A E P, norm II*llx on n, and norm II$, 
on P a sequence of nonnegative re 

$(A, IHL lb II,), i = 1,2,..., 

that satisfies the following axioms: 

max{IIAxll,:Ilxll,=l} = s,(A)2 s,(A)>, l 2 s&'!)~O, 
si(A + B)< s,(A)+ Q(B), 
Si(ABC~Ilollw~ II*llz) G ‘AAs II*llw~ Il’llz)si(B~ Il’llx~ II’ll~)sXc~ ll’lly~ 

rankA <i implies Si(A)=O, and 
i < n hpfies $i(ln, 11’ Ilx, II* 11%) = 1. 

From [4] we have the following lemma, which will establish Yamamoto’s 
theorem for these numbers: 

LEMMA 4.2. 27we exists a constant ci dependent only on i such that fw 
everyAE n every s-number scitisjks 

Si(A9 ll*ll*Y ll*lly) a Si(A9 11’11~~ II’ll,) 2 Cisi(Aa Il’llx~ ll*llg)* 

THEOREM 4.3. Let A E 
absolilte vdue. 
we have 

with eigenvalues numbered in order of 
II$ ad ll*II, be ru)rl711s on C”. For each 

lxil = ,limmsi( Ak* Il’llx, 11’ llv)l’k* --D 

s result follows from eorem 3.5 by the method of proof 
we have the s-number boun 
approximation number. 

ues arose in conversations 
on owing 
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formula for the 
the compound: 

where C,(A) is 
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usual singular values that follows from the multiplicavity of 

~ (A) = Illci(A) l& 
i 

IIILW Ill2 ’ 

the ith compound of the matrix A. The matrix C,(A) is 
defined to be the one by one matrix [l]. See Reference [l] for the definition 
of compound matrices. The generalization is obtained by replacing the two 
occurrences of the spectral norm with some other norm, or more generally, 
some other norm-equivalent function: 

XitA) = mw 
gi-lfci-l(A)) l 

Note that since the size of C,(A) depends on i, we must allow the 
norm-equivalent functions to depend on i also. 

THEOREM 4.4. Let AEM,. For each i=O ,..., n let fi’ and gi be 
norm-equivalent fin&~ defined on M,(i,n), W~HC 

c(k,n) = 
n! 

k!(n - k)! ’ 

Define Xi(A) a~abo~e. FormhiE{l,...,n} wehuve 

lhil= lim xi( Ak)l’k* 
k+w 

Proof. This result is proven using the norm equivalence argument of 
Theorem 3.5. Let i E ( 1,. . . , n ) be given. y the definition of normequiv- 
alent functions, there exist positive constants cm, cM, d m, and d M such that 
for all matrices I3 of tie appropriate dimensions, 

and 
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Combining these inequalities, we have 

cmlllci(A) Ill2 AtcitA)) 

d,iijci-,(A) IlIz ’ gi-l(ci-,(A)) 

CMIII c,( A) Ill2 

which is the same as 

’ dmlllci-,O Ill2 ’ 

Eli ~ rCi(A) ~ FOi(A). 
M m 

result now follows by the same argument used in the proof of Theore 
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