State morphism MV-algebras ${ }^{\text {T }}$

Anatolij Dvurečenskij ${ }^{\text {a,* }}$, Tomasz Kowalski ${ }^{\text {b }}$, Franco Montagna ${ }^{\text {c }}$
${ }^{\text {a }}$ Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, SK-814 73 Bratislava, Slovakia
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
${ }^{\text {c }}$ Università Degli Studi di Siena, Dipartimento di Scienze Matematiche e Informatiche "Roberto Magari", Pian dei Mantellini 44, I-53100 Siena, Italy

ARTICLEINFO

Article history:

Received 3 February 2011
Revised 10 May 2011
Accepted 11 July 2011
Available online 28 July 2011

Keywords:

MV-algebra
State MV-algebra
State morphism MV-algebra
Varieties
Subdirectly irreducible algebra
Cover variety

Abstract

We present a complete characterization of subdirectly irreducible MV-algebras with internal states (SMV-algebras). This allows us to classify subdirectly irreducible state morphism MValgebras (SMMV-algebras) and describe single generators of the variety of SMMV-algebras, and show that we have a continuum of varieties of SMMV-algebras.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

States on MV-algebras have been introduced by Mundici in [18]. A state on an MV-algebra \mathbf{A} is a map s from A into $[0,1]$ such that:
(a) $s(1)=1$, and
(b) if $x \odot y=0$, then $s(x \oplus y)=s(x)+s(y)$.

Special states are the so called [0,1]-valuations on \mathbf{A}, that is, the homomorphisms from \mathbf{A} into the standard MV-algebra $[0,1]_{M V}$ on $[0,1]$.

States are related to [0, 1]-valuations by two important results. First of all, $[0,1]$-valuations are precisely the extremal states, that is, those states that cannot be expressed as non-trivial convex combinations of other states. Moreover, by the KreinMilman Theorem, every state belongs to the convex closure of the set of all [0,1$]$-valuations with respect to the topology of weak convergence. Finally, every state coincides locally with a convex combination of [0, 1]-valuations (see [19,16]). More precisely, given a state s on an MV-algebra \mathbf{A} and given elements a_{1}, \ldots, a_{n} of A, there are $n+1$ extremal states s_{1}, \ldots, s_{n+1} and $n+1$ elements $\lambda_{1}, \ldots, \lambda_{n+1}$ of $[0,1]$ such that $\sum_{h=1}^{n+1} \lambda_{h}=1$ and for $j=1, \ldots, n, \sum_{i=1}^{n+1} \lambda_{i} s_{i}\left(a_{j}\right)=s\left(a_{j}\right)$.

Another important relation between states and [0, 1]-valuations is the following: let X_{A} be the set of [0, 1]-valuations on \mathbf{A}. Then X_{A} becomes a compact Hausdorff subspace of $[0,1]^{A}$ equipped with the Tychonoff topology. To every element a of A we can associate its Gelfand transform \widehat{a} from X_{A} into [0,1], defined for all $v \in X_{A}$, by $\widehat{a}(v)=v(a)$. Now Panti [20] and Kroupa [14] independently showed that to any state s on \mathbf{A} it is possible to associate a (uniquely determined) Borel regular probability measure μ on X_{A} such that for all $a \in A$ one has $s(a)=\int \widehat{a} d \mu$. Hence, every state has an integral representation.

[^0]Yet another important result motivating the use of states, related to de Finetti's interpretation of probability in terms of bets, is Mundici's characterization of coherence [19]. That is, given an MV-algebra \mathbf{A}, given $a_{1}, \ldots, a_{n} \in A$ and $\alpha_{1}, \ldots, \alpha_{n} \in$ $[0,1]$, the following are equivalent:
(1) There is a state s on \mathbf{A} such that, for $i=1, \ldots, n, s\left(a_{i}\right)=\alpha_{i}$.
(2) For every choice of real numbers $\lambda_{1}, \ldots, \lambda_{n}$ there is a [0, 1]-valuation v such that $\sum_{i=1}^{n} \lambda_{i}\left(\alpha_{i}-v\left(a_{i}\right)\right) \geq 0$.

These results show that the notion of state on an MV-algebra is a very important notion and the first one shows an important connection between states and [0, 1]-valuations. However, MV-algebras with a state are not universal algebras, and hence they do not provide for an algebraizable logic in the sense of [1] for reasoning on probability over many-valued events.

In [11] the authors find an algebraizable logic for this purpose, whose equivalent algebraic semantics is the variety of SMV-algebras. An SMV-algebra (see the next section for a precise definition) is an MV-algebra A equipped with an operator τ whose properties resemble the properties of a state, but, unlike a state, is an internal unary operation (called also an internal state) on \mathbf{A} and not a map from A into [0,1]. The analogue for SMV-algebras of an extremal state (or equivalently of a $[0,1]$-valuation) is the concept of state morphism. By this terminology we mean an idempotent endomorphism from A into A. MV-algebras equipped with a state morphism form a variety, namely, the variety of SMMV-algebras, which is a subvariety of the variety of SMV-algebras. The following are some motivations for the study of SMMV-algebras:
(1) Let (\mathbf{A}, τ) be an SMV-algebra, and assume that $\tau(\mathbf{A})$, the image of \mathbf{A} under τ, is simple. Then $\tau(\mathbf{A})$ is isomorphic to a subalgebra of $[0,1]_{M V}$, and τ may be regarded as a state on \mathbf{A}. Moreover, by Di Nola's theorem [6], \mathbf{A} is isomorphic to a subalgebra of $[0,1]^{*^{I}}$ for some ultrapower $[0,1]^{*}$ of $[0,1]_{M V}$ and for some index set I. Finally, using a result by Kroupa [15] stating that any state on a subalgebra \mathbf{A} of an MV-algebra \mathbf{B} can be extended to a state on \mathbf{B}, we obtain that τ can be extended to a state τ^{*} on $[0,1]^{*^{I}}$. Note that, after identifying a real number $\alpha \in[0,1]$ with the function on I which is constantly equal to α, τ^{*} is also an internal state, and it makes $[0,1]^{*^{I}}$ into an SMV-algebra. Moreover, by the Krein-Milman theorem, for every real number $\varepsilon>0$ there is a convex combination $\sum_{i=1}^{n} \lambda_{i} v_{i}$ of $[0,1]$-valuations v_{1}, \ldots, v_{n} such that for every $a \in A,\left|\tau(a)-\sum_{i=1}^{n} \lambda_{i} v_{i}(a)\right|<\varepsilon$. After identifying $v_{i}(a)$ with the function from I into $[0,1]^{*}$ which is constantly equal to $v_{i}(a)$, these valuations can be regarded as idempotent endomorphisms on $[0,1]^{*^{I}}$, and hence each of them makes $[0,1]^{*^{I}}$ into an SMMV-algebra. Summing up, if (\mathbf{A}, τ) is an SMV-algebra and $\tau(\mathbf{A})$ is simple, then τ can be approximated by convex combinations of state morphisms on (an extension of) \mathbf{A}.
(2) All subdirectly irreducible SMMV-algebras were described in [7,9], but the description of all subdirectly irreducible SMV-algebras remains open, [11].
(3) As shown in [8], if (A, τ) is an SMV-algebra and $\tau(\mathbf{A})$ belongs to a finitely generated variety of MV-algebras, then (\mathbf{A}, τ) is an SMMV-algebra. In particular, MV-algebras from a finitely generated variety only admit internal states which are state morphisms.
(4) A linearly ordered SMV-algebra is an SMMV-algebra, [8]. Moreover, we will see that representable SMV-algebras form a variety which is a subvariety of the variety of SMMV-algebras.

The goal of the present paper is to continue in the algebraic investigations on SMMV-algebras which begun in [8] and in [7,9].

The paper is organized as follows. After preliminaries in Section 2, we give in Section 3 a complete characterization of subdirectly irreducible SMV-algebras. This solves an open problem posed in [11]. In Section 4 we present a classification of subdirectly irreducible SMMV-algebras introducing four types of subdirectly irreducible SMMV-algebras. In Section 5, we describe some prominent varieties of SMMV-algebras and their generators. In particular, we answer in the positive to an open question from [7] that the diagonalization of the real interval [0,1] generates the variety of SMMV-algebras. Section 6 shows that every subdirectly irreducible SMMV-algebra is subdiagonal. Finally, Section 7 describes an axiomatization of some varieties of SMMV-algebras, including a full characterization of representable SMMV-algebras. We show that in contrast to MV-algebras, there is a continuum of varieties of SMMV-algebras. In addition, some open problems are formulated.

2. Preliminaries

For all concepts of Universal Algebra we refer to [2]. For concepts of many-valued logic, we refer to [12], for MV-algebras in particular, we will also refer to [5], and for reasoning about uncertainty, we refer to [13].

Definition 2.1. An MV-algebra is an algebra $\mathbf{A}=(A, \oplus, \neg, 0)$, where $(A, \oplus, 0)$ is a commutative monoid, \neg is an involutive unary operation on $A, 1=\neg 0$ is an absorbing element, that is, $x \oplus 1=1$, and letting $x \rightarrow y=(\neg x) \oplus y$, the identity $(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x$ holds.

In any MV-algebra A, we further define $x \odot y=\neg(\neg x \oplus \neg y)$, $x \ominus y=\neg(\neg x \oplus y), x \vee y=(x \rightarrow y) \rightarrow y$, $x \wedge y=x \odot(x \rightarrow y)$, and $x \leftrightarrow y=(x \rightarrow y) \odot(y \rightarrow x)$. With respect to \vee and \wedge, \mathbf{A} becomes a distributive lattice with top element 1 and bottom element 0 .

We also define $n x$ for $x \in \mathbf{A}$ and natural number n by induction as follows: $0 x=0 ;(n+1) x=n x \oplus x$.
MV-algebras constitute the equivalent algebraic semantics of $Ł u k a s i e w i c z ~ l o g i c ~ Ł, ~ c f . ~[12] ~ f o r ~ a n ~ a x i o m a t i z a t i o n . ~$

The standard MV-algebra is the MV-algebra $[0,1]_{M V}=([0,1], \oplus, \neg, 0)$, where $r \oplus s=\min \{r+s, 1\} \neg r=1-r$. For the derived operations one has:

$$
\begin{aligned}
& r \ominus s=\max \{r-s, 0\}, \quad r \odot s=\max \{r+s-1,0\}, \quad r \rightarrow s=\min \{1-r+s, 1\}, \\
& r \vee s=\max \{r, s\}, \quad r \wedge s=\min \{r, s\}
\end{aligned}
$$

The variety of all MV-algebras is generated as a quasi variety by $[0,1]_{M V}$. It follows that in order to check the validity of an equation or a quasi equation in all MV-algebras, it is sufficient to check it in $[0,1]_{M V}$. We will tacitly use this fact in the sequel.

Definition 2.2. A filter of an MV-algebra \mathbf{A} is a subset F of A such that $1 \in F$ and if a and $a \rightarrow b$ are in F, then $b \in F$.
Dually, an ideal of \mathbf{A} is a subset J of A such that $0 \in J$ and if a and $b \ominus a$ are in J, then $b \in J$. A filter F (an ideal J respectively) of \mathbf{A} is called proper if $0 \notin F(1 \notin J$ respectively $)$ and maximal if it is proper and it is not properly contained in any proper filter (ideal respectively). The radical, $\operatorname{Rad}(\mathbf{A})$, of \mathbf{A}, is the intersection of all its maximal ideals, and the co-radical, $\operatorname{Rad}_{1}(\mathbf{A})$, of \mathbf{A} is the intersection of all its maximal filters. An MV-algebra \mathbf{A} is called semisimple if $\operatorname{Rad}(\mathbf{A})=\{0\}$, and is called local if it has exactly one maximal filter.

It is well-known (and easy to prove) that an MV-algebra \mathbf{A} is semisimple iff $\operatorname{Rad}_{1}(\mathbf{A})=\{1\}$, and it is local iff it has exactly one maximal filter.
Both the lattice of ideals and the lattice of filters of an MV-algebra \mathbf{A} are isomorphic to its congruence lattice via the isomorphisms $\theta \mapsto\{a \in A:(a, 0) \in \theta\}$ and $\theta \mapsto\{a \in A:(a, 1) \in \theta\}$, respectively. The inverses of these isomorphisms are:
$J \mapsto\left\{(a, b) \in A^{2}: \neg(a \leftrightarrow b) \in J\right\}$ and $F \mapsto\left\{(a, b) \in A^{2}: a \leftrightarrow b \in F\right\}$, respectively.
It follows that an MV-algebra is semisimple iff it has a subdirect embedding into a product of simple MV-algebras.
Definition 2.3. A Wajsberg hoop is a subreduct (subalgebra of a reduct) of an MV-algebra in the language $\{1, \odot, \rightarrow\}$.
Definition 2.4. A lattice ordered abelian group is an algebra $\mathbf{G}=(G,+,-, 0, \vee, \wedge)$ such that $(G,+,-, 0)$ is an abelian group, (G, \vee, \wedge) is a lattice, and for all $x, y, z \in G$, one has $x+(y \vee z)=(x+y) \vee(x+z)$.

A strong unit of a lattice ordered abelian group \mathbf{G} is an element $u \in G$ such that for all $g \in G$ there is $n \in \mathbf{N}$ such that $g \leq \underbrace{u+\cdots+u}_{n \text { times }}$.

If \mathbf{G} is a lattice-ordered abelian group and u is a strong unit of \mathbf{G}, then $\Gamma(\mathbf{G}, u)$ denotes the algebra \mathbf{A} whose universe is $\{x \in G: 0 \leq x \leq u\}$, equipped with the constant 0 and with the operations \oplus and \neg defined by $x \oplus y=(x+y) \wedge u$ and $\neg x=u-\bar{x}$. It is well-known [17] that $\Gamma(\mathbf{G}, u)$ is an MV-algebra, and every MV-algebra can be represented as $\Gamma(\mathbf{G}, u)$ for some lattice ordered abelian group \mathbf{G} with strong unit u.

In the sequel, $\mathbf{Z} \times{ }_{\text {lex }} \mathbf{Z}$ denotes the direct product of two copies of the group \mathbf{Z} of integers, ordered lexicographically, i.e., $(a, b) \leq(c, d)$ if either $a<c$ or $a=c$ and $b \leq d$. For every positive natural number n, \mathbf{S}_{n} and \mathbf{C}_{n} denote $\Gamma(\mathbf{Z}, n)$ and $\Gamma\left(\mathbf{Z} \times{ }_{\text {lex }} \mathbf{Z},(n, 0)\right)$ respectively. The algebra \mathbf{C}_{1}, that is $\Gamma(\mathbf{Z} \times$ lex $\mathbf{Z},(1,0))$, is also referred to as Chang's algebra (cf. [3]).

Definition 2.5. A state on an MV-algebra \mathbf{A} (cf. [18]) is a map s from A into [0,1] satisfying:
(1) $s(1)=1$.
(2) $s(x \oplus y)=s(x)+s(y)$ for all $x, y \in A$ such that $x \odot y=0$.

Definition 2.6. An MV-algebra with an internal state (SMV-algebra in the sequel) is an algebra (A, τ) such that:
(a) \mathbf{A} is an MV-algebra.
(b) τ is a unary operation on \mathbf{A} satisfying the following equations:
$\left(\mathrm{b}_{1}\right) \tau(1)=1$.
$\left(\mathrm{b}_{2}\right) \tau(x \oplus y)=\tau(x) \oplus \tau(y \ominus(x \odot y))$.
($\left.\mathrm{b}_{3}\right) \tau(\neg x)=\neg \tau(x)$.
$\left(\mathrm{b}_{4}\right) \tau(\tau(x) \oplus \tau(y))=\tau(x) \oplus \tau(y)$.
An operator τ is said to be also an internal state. An operator τ is faithful if $\tau(a)=1$ implies $a=1$.
A state morphism MV-algebra (SMMV-algebra for short) is an SMV-algebra further satisfying:
(c) $\tau(x \oplus y)=\tau(x) \oplus \tau(y)$.

The following facts are easily provable:

Lemma 2.7 (see [11,8]). (1) In an SMV-algebra (\boldsymbol{A}, τ), the following conditions hold:
(1a) $\tau(0)=0$.
(1b) If $x \odot y=0$, then $\tau(x) \odot \tau(y)=0$ and $\tau(x \oplus y)=\tau(x) \oplus \tau(y)$.
(1c) $\tau(\tau(x))=\tau(x)$.
(1d) Let $\tau(A):=\{\tau(a): a \in A\}$. Then $\tau(\boldsymbol{A})=(\tau(A), \oplus, \neg, 0)$ is an MV-subalgebra of \boldsymbol{A}, and τ is the identity on it.
(1e) If $x \leq y$, then $\tau(x) \leq \tau(y)$.
(1f) $\tau(x) \odot \tau(y) \leq \tau(x \odot y)$.
(1g) $\tau(x \rightarrow y)=\tau(x) \rightarrow \tau(x \wedge y)$.
(1h) If (\boldsymbol{A}, τ) is subdirectly irreducible, then $\tau(A)$ is linearly ordered.
(2) The following conditions on SMMV-algebras hold:
(2a) In an SMMV-algebra $(\boldsymbol{A}, \tau), \tau(\boldsymbol{A})$ is a retract of \boldsymbol{A}, that is, τ is a homomorphism from \boldsymbol{A} onto $\tau(\boldsymbol{A})$, the identity map is an embedding from $\tau(\boldsymbol{A})$ into \boldsymbol{A}, and the composition $\tau \circ \operatorname{Id}_{\tau(A)}$, that is, the restriction of τ to $\tau(\boldsymbol{A})$ is the identity on $\tau(\boldsymbol{A})$.
(2b) An algebra (\boldsymbol{A}, τ) is an SMMV-algebra iff \boldsymbol{A} is an $M V$-algebra and τ is an idempotent endomorphism on \boldsymbol{A}.
(2c) An SMV-algebra (\boldsymbol{A}, τ) is an SMMV-algebra iff it satisfies $\tau(x \vee y)=\tau(x) \vee \tau(y)$ iff it satisfies $\tau(x \wedge y)=\tau(x) \wedge \tau(y)$.
(2d) Any linearly ordered SMV-algebra is an SMMV-algebra.

3. Subdirectly irreducible SMV-algebras

In this section we characterize and classify subdirectly irreducible SMV-algebras which answers to an open problem posed in [11]. Our result also characterizes subdirectly irreducible SMMV-algebras.

Definition 3.1. Let (\boldsymbol{A}, τ) be any SMV-algebra. Any filter F of \boldsymbol{A} such that $\tau(F) \subseteq F$ is said to be a τ-filter.
Clearly, $F_{\tau}(A)$ is a τ-filter of \boldsymbol{A}, and hence $\boldsymbol{F}_{\tau}(\boldsymbol{A})=\left(F_{\tau}(A), \rightarrow, 0,1\right)$ is a Wajsberg subhoop of \boldsymbol{A}. Say that two Wajsberg subhoops, B and C, of an MV-algebra \boldsymbol{A} have the disjunction property if for all $x \in B$ and $y \in C$, if $x \vee y=1$, then either $x=1$ or $y=1$.

We recall that τ-filters are in a bijection with SMV-congruences, and hence an SMV-algebra is subdirectly irreducible iff it has a minimum τ-filter.

Lemma 3.2. Suppose that (\boldsymbol{A}, τ) is a subdirectly irreducible SMV-algebra. Then:
(1) If $F_{\tau}(A)=\{1\}$, then $\tau(\boldsymbol{A})$ is subdirectly irreducible.
(2) $\boldsymbol{F}_{\tau}(\boldsymbol{A})$ is (either trivial or) a subdirectly irreducible hoop.
(3) $\boldsymbol{F}_{\tau}(\boldsymbol{A})$ and $\tau(\boldsymbol{A})$ have the disjunction property.

Proof. Let F denote the minimum τ-filter of (\mathbf{A}, τ).
(1) Suppose $F_{\tau}(A)=\{1\}$. If $\tau(A) \cap F \neq\{1\}$, then $\tau(A) \cap F$ is the minimum non-trivial filter of $\tau(\mathbf{A})$ and $\tau(\mathbf{A})$ is subdirectly irreducible. If $\tau(A) \cap F=\{1\}$, then for all $x \in F, \tau(x)=1$ (because $\tau(x) \in \tau(A) \cap F)$ and $F \subseteq F_{\tau}(A)=\{1\}$ is the trivial filter, a contradiction.
(2) Suppose that $\mathbf{F}_{\tau}(\mathbf{A})$ is non-trivial. Then $F_{\tau}(A)$ is a non-trivial τ-filter. If (\mathbf{A}, τ) is subdirectly irreducible, it has a minimum non-trivial τ-filter, F say. So, $F \subseteq F_{\tau}(A)$, and hence F is the minimum non-trivial filter of $\mathbf{F}_{\tau}(\mathbf{A})$. Hence, $\mathbf{F}_{\tau}(\mathbf{A})$ is subdirectly irreducible.
(3) Suppose, by way of contradiction, that for some $x \in F_{\tau}(A)$ and $y=\tau(y) \in \tau(A)$ one has $x<1, y<1$ and $x \vee y=1$. Then since the MV-filters generated by x and by y, respectively, are τ-filters (easy to verify), they both contain F. Hence, the intersection of these filters contains F. Now let $c<1$ be in F. Then there is a natural number n such that $x^{n} \leq c$ and $y^{n} \leq c$. It follows that $1=(x \vee y)^{n}=x^{n} \vee y^{n} \leq c$, a contradiction.

Corollary 3.3. If (\boldsymbol{A}, τ) is subdirectly irreducible, then $\tau(\boldsymbol{A})$ and $\boldsymbol{F}_{\tau}(\boldsymbol{A})$ are linearly ordered.
Proof. That $\tau(\mathbf{A})$ is linearly ordered follows from [11]. As regards to $\mathbf{F}_{\tau}(\mathbf{A})$, by Lemma 3.2, $\mathbf{F}_{\tau}(\mathbf{A})$ is a (possibly trivial) subdirectly irreducible Wajsberg hoop, and hence it is linearly ordered.

Theorem 3.4. Suppose that (\boldsymbol{A}, τ) is an SMV-algebra satisfying conditions (1)-(3) in Lemma 3.2. Then (\boldsymbol{A}, τ) is subdirectly irreducible, and hence, the above conditions constitute a characterization of subdirectly irreducible SMV-algebras.

Proof. Claim. Let F be the MV-filter of \boldsymbol{A} generated by a filter F_{0} of $\tau(\boldsymbol{A})$. Then F is a τ-filter. Indeed, if $x \in F$, then there are $\tau(a) \in F_{0}$ and a natural number n such that $\tau(a)^{n} \leq x$. It follows that $\tau(x) \geq \tau\left(\tau(a)^{n}\right)=\tau(a)^{n}$, and $\tau(x) \in F$.

Now suppose first that $F_{\tau}(A)=\{1\}$ and that $\tau(\mathbf{A})$ is subdirectly irreducible. Let F_{0} be the minimum non-trivial filter of $\tau(\mathbf{A})$ and let F be the MV-filter of \mathbf{A} generated by F_{0}. By Claim 1, F is a τ-filter. We claim that F is the minimum non-trivial τ-filter of (\mathbf{A}, τ). Let G be a non-trivial τ-filter of (\mathbf{A}, τ), and let $G_{0}=\tau(G)=G \cap \tau(\mathbf{A})$. Then G_{0} is a filter of $\tau(\mathbf{A})$, and it is non-trivial. Indeed, since $F_{\tau}(A)=\{1\}$ we have that if $c \in G$ and $c<1$, then $\tau(c) \in G_{0}$ and $\tau(c)<1$. Since F_{0} is minimal, $F_{0} \subseteq G_{0}$. Finally, since F is the MV-filter generated by F_{0} and $F_{0} \subseteq G_{0} \subseteq G$, we have that F is the minimum non-trivial τ-filter of (\mathbf{A}, τ), as desired.

Now suppose that $\mathbf{F}_{\tau}(\mathbf{A})$ is non-trivial. By condition (2), $\mathbf{F}_{\tau}(\mathbf{A})$ is subdirectly irreducible. Thus, let F be the minimum filter of $\mathbf{F}_{\tau}(\mathbf{A})$. Then F is a non-trivial τ-filter, and it is left to prove that F is the minimum non-trivial τ-filter of (\mathbf{A}, τ). Let G be any non-trivial τ-filter of (\mathbf{A}, τ). If $G \subseteq F_{\tau}(A)$, then it contains the minimal filter, F, of $\mathbf{F}_{\tau}(\mathbf{A})$, and $F \subseteq G$. Otherwise, G contains some $x \notin F_{\tau}(A)$, and hence it contains $\tau(x)<1$. Now by the disjunction property, for all $y<1$ in $F_{\tau}(A), \tau(x) \vee y<1$ and $\tau(x) \vee y \in F_{\tau}(A) \cap G$. Thus, G contains the filter generated by $\tau(x) \vee y$, which is a non-trivial filter of $\mathbf{F}_{\tau}(\mathbf{A})$, and hence it contains F, the minimum non-trivial filter of $\mathbf{F}_{\tau}(\mathbf{A})$. This settles the claim.

Theorem 3.5. (1), (2) and (3) are independent conditions, and hence none of them is redundant in Theorem 3.4.
Proof. (1) Let \mathbf{C}_{1} be Chang's MV-algebra, let τ_{1} be the identity on \mathbf{C}_{1} and τ_{2} be the function defined by $\tau_{2}(x)=0$ if x is an infinitesimal and $\tau_{2}(x)=1$ otherwise. Clearly, both $\left(\mathbf{C}_{1}, \tau_{1}\right)$ and $\left(\mathbf{C}_{1}, \tau_{2}\right)$ are SMV-algebras, and so is their direct product $(\mathbf{B}, \tau)=\left(\mathbf{C}_{1}, \tau_{1}\right) \times\left(\mathbf{C}_{1}, \tau_{2}\right)$. Let (\mathbf{D}, τ) be the subalgebra of (\mathbf{B}, τ) generating by all pairs (x, y) such that x is infinitesimal iff y is infinitesimal. Clearly, (\mathbf{D}, τ) is not subdirectly irreducible. However, $\tau(\mathbf{D})$ consists of all pairs $(x, 0)$ such that x is infinitesimal and all pairs $(y, 1)$ such that y is not infinitesimal, and hence it is subdirectly irreducible (the minimum filter is the set of all $(y, 1)$ such that y is not infinitesimal. Moreover, $F_{\tau}(D)$ consists of all elements of the form $(1, y)$ such that y is not infinitesimal, and hence it is subdirectly irreducible, by the same argument. Clearly (3) does not hold (e.g., if x is not infinitesimal and $x<1$, then $(1, x) \in F_{\tau}(D),(x, 1) \in \tau(D)$, and $(1, x) \vee(x, 1)=(1,1)$, but $(x, 1)<(1,1)$ and $(1, x)<(1,1)$).
(2) Let \mathbf{A} be an ultrapower of $[0,1]_{M V}$, and let \mathbf{B} be the subalgebra of \mathbf{A} generated by all the infinitesimals. Let τ be defined by $\tau(x)=0$ if x is an infinitesimal and $\tau(x)=1$ otherwise. Then $\tau(\mathbf{B})$ is subdirectly irreducible, being the MV-algebra with two elements, and the disjunction property holds because \mathbf{B} is linearly ordered, but $\mathbf{F}_{\tau}(\mathbf{B})$ consists of all infinitesimals and hence it is not subdirectly irreducible. (If F is any non-trivial τ-filter and $1-\epsilon \in F$, with ϵ a positive infinitesimal, then the filter generated by $1-\epsilon^{2}$ is a non-trivial τ-filter strictly contained in F).
(3) Let \mathbf{B} be as in (2) and let τ be the identity on \mathbf{B}. Then $\mathbf{F}_{\tau}(\mathbf{B})$ is subdirectly irreducible, being a trivial algebra, and the disjunction property holds because B is linearly ordered, but $\tau(\mathbf{B})=\mathbf{B}$ is not subdirectly irreducible.

Lemma 3.6. If (\boldsymbol{A}, τ) is a subdirectly irreducible SMMV-algebra, then for all $a \in A$, either $a \leq \tau(a)$ or $\tau(a) \leq a$.
Proof. Since (\mathbf{A}, τ) is subdirectly irreducible, $\mathbf{F}_{\tau}(\mathbf{A})$ is subdirectly irreducible and hence it is linearly ordered. Hence, 1 is join irreducible in $\mathbf{F}_{\tau}(\mathbf{A})$. Now $(a \rightarrow \tau(a)) \vee(\tau(a) \rightarrow a)=1$, and hence either $a \rightarrow \tau(a)=1$ and $a \leq \tau(a)$, or $\tau(a) \rightarrow a=1$ and $\tau(a) \leq a$.

Subdirectly irreducible SMMV-algebras also enjoy another interesting property, namely:
Theorem 3.7. Let (\boldsymbol{A}, τ) be a subdirectly irreducible SSMV-algebra and let $a \in A$. Then there are uniquely determined $b \in \tau(A)$ and $c \in F_{\tau}(A)$ such that exactly one of the following two conditions holds:
(a) $a=b \odot c$, and c is the greatest element with this property, when $a \leq \tau(a)$, or
(b) $a=c \rightarrow b$ and $b<c<1$ when $\tau(a)<a$.

Proof. First of all, note that $\tau(a \rightarrow \tau(a))=\tau(\tau(a) \rightarrow a)=\tau(a) \rightarrow \tau(a)=1$, and hence, for every $a \in A, a \rightarrow \tau(a)$ and $\tau(a) \rightarrow a$ belong to $F_{\tau}(A)$.

Let $b=\tau(a)$ and let $c=b \rightarrow a$ if $a \leq b$, and $c=a \rightarrow b$ otherwise.
Suppose $a \leq b$. Then $a=a \wedge b=b \odot(b \rightarrow a)=b \odot c$. Finally, c is the greatest element such that $b \odot c=a$, by the definition of residuum, and $\tau(c)=1$.

Now suppose $b<a$. Then $c \rightarrow b=(a \rightarrow b) \rightarrow b=a \vee b=a$. Moreover, $c<1$, as $b<a$. Finally, $b<c$. Indeed, $b \leq a \rightarrow b=c$, and it cannot be $c=b$, as $\tau(c)=1$ and $\tau(b)=b<a$.

Now we discuss uniqueness. (i) Let $a \leq \tau(a)$. If $a=b^{\prime} \odot c^{\prime}$, with $b^{\prime} \in \tau(A)$ and $c^{\prime} \in F_{\tau}(A)$, then $\tau(a)=\tau\left(b^{\prime}\right) \odot \tau\left(c^{\prime}\right)=$ $b^{\prime} \odot 1=b^{\prime}=\tau\left(b^{\prime}\right)$. Thus $b^{\prime}=\tau(a)$ is uniquely determined; we denote it by b. Moreover, $a \leq b, b \odot c^{\prime}=a$ and c^{\prime} is the greatest element with this property. Hence, $c^{\prime}=a \rightarrow b$.
(ii) Let $\tau(a)<a$. Then $a<1$. If $a=c^{\prime} \rightarrow b^{\prime}$ with $b^{\prime}<c^{\prime} \in F_{\tau}(A) \backslash\{1\}$ and $b^{\prime} \in \tau(A)$, then by Lemma $2.7(1 \mathrm{~g})$, $\tau(a)=\tau\left(c^{\prime}\right) \rightarrow \tau\left(c^{\prime} \wedge b^{\prime}\right)=\tau\left(c^{\prime}\right) \rightarrow \tau\left(b^{\prime}\right)=1 \rightarrow b^{\prime}=b^{\prime}$, and b^{\prime} is uniquely determined; we denote it by b. Then $b<a$. Finally, in any MV-algebra, if $z \leq x, z \leq y$ and $x \rightarrow z=y \rightarrow z$, then $x=y$ (this property is expressed as a quasi equation and holds in $[0,1]_{M V}$, and hence it holds in any MV-algebra). Now $b<c^{\prime}<1, b \leq(a \rightarrow b) \rightarrow b$, and $c^{\prime} \rightarrow b=(a \rightarrow b) \rightarrow b$. It follows that $c^{\prime}=a \rightarrow b$, and uniqueness of c^{\prime} is proved.

Let (\mathbf{A}, τ) be a subdirectly irreducible SMMV-algebra. For all $b \in \tau(A)$, the define $M(b)=\{x \in A: \tau(x)=b\}$. Then A is a disjoint union of the sets $M(b)$ for $b \in \tau(A)$.

We assert that every $M(b)$ is linearly ordered. Indeed, let $x, y \in M(b)$. Due to Lemma 3.6, there are three cases: (i) $x \leq b$, $y>b$ or $x>b, y \leq b$, (ii) $x \leq b, y \leq b$, and (iii) $x>b$ and $y>b$. In the case (i), x and y are comparable. In the case (ii), by Lemma 2.7(1b), $\tau(x \oplus \neg b)=\tau(x) \oplus \tau(\neg b)=1$ and $\tau(y \oplus \neg b)=\tau(y) \oplus \tau(\neg b)=1$ which by Corollary 3.3 entails $x \oplus \neg b$ and $y \oplus \neg b$ are comparable. Because $x \odot \neg b=0=y \odot \neg b$, we have x and y are also comparable. In the case (iii), $\neg x<\neg b$ and $\neg y<\neg b$, and in the same way as in (ii) we can prove $\neg x$ and $\neg y$ are comparable, consequently, x and y are comparable.

Thus, although A need not be linearly ordered, it is close to be such. More precisely, let $M=\left\{ \pm c: c \in F_{\tau}(A), c<1\right\} \cup\{1\}$. We define a poset \mathbf{M} on M letting $-c<-d$ iff $d<c$, and $c<1<-d$ for all $c, d \in F_{\tau}(A) \backslash\{1\}$. Now given $x \in M(b)$, by Lemma 3.6, it follows $x \leq b$ or $b<\tau(x)$. By Theorem 3.7, in the first case we can associate x with $(b, b \rightarrow x)$ and in the second case with $(b,-(x \rightarrow b))$ to obtain an order isomorphism from A into $\tau(A) \times M$. That is, \mathbf{A} as a poset is isomorphic to a quotient of a subposet of the product of two chains. This suggests that either \mathbf{A} is a chain or a subalgebra of a product of two chains. This conjecture will be proved in Section 6. More precisely:

Definition 3.8. An SMMV-algebra (\mathbf{A}, τ) is said to be diagonal if there are MV-chains \mathbf{B} and \mathbf{C} such that $\mathbf{B} \subseteq \mathbf{C}, \mathbf{A}=\mathbf{B} \times \mathbf{C}$ and τ is defined, for all $b \in B$ and $c \in C$, by $\tau(b, c)=(b, b)$.

An SMMV-algebra is said to be subdiagonal if it is a subalgebra of a diagonal SMMV-algebra.
In Section 6 we will prove:
Theorem 3.9. Every subdirectly irreducible SMMV-algebra is subdiagonal.

4. A classification of subdirectly irreducible SMMV-algebras

We present a classification of SMMV-algebras introducing four types of subdirectly irreducible SMMV-algebras, type \mathcal{I}, identity, type \mathcal{L}, local, type \mathcal{D}, diagonalization, and type \mathcal{K}, killing infinitesimals.

The following theorem was proved in [7,9,10].
Theorem 4.1. Let (\boldsymbol{A}, τ) be a subdirectly irreducible SMMV-algebra. Then (\boldsymbol{A}, τ) belongs to exactly one of the following classes:
(i) \boldsymbol{A} is linearly ordered, τ is the identity on A and the $M V$-reduct of \boldsymbol{A} is a subdirectly irreducible MV-algebra.
(ii) The state morphism operator τ is not faithful, \boldsymbol{A} has no non-trivial Boolean elements and is a local MV-algebra. Moreover, \boldsymbol{A} is linearly ordered if and only if $\operatorname{Rad}_{1}(\boldsymbol{A})$ is linearly ordered, and in such a case, \boldsymbol{A} is a subdirectly irreducible MV-algebra such that the smallest non-trivial τ-filter of (\boldsymbol{A}, τ), and the smallest non-trivial MV-filter for \boldsymbol{A} coincide.
(iii) The state morphism operator τ is not faithful, \boldsymbol{A} has a non-trivial Boolean element. There are a linearly ordered MV-algebra \boldsymbol{B}, a subdirectly irreducible MV-algebra \mathbf{C}, and an injective MV-homomorphism $h: \boldsymbol{B} \rightarrow \boldsymbol{C}$ such that (\boldsymbol{A}, τ) is isomorphic to $\left(\boldsymbol{B} \times \boldsymbol{C}, \tau_{h}\right)$, where $\tau_{h}(x, y)=(x, h(x))$ for any $(x, y) \in B \times C$.

Note that while every SMMV-algebra satisfying (i) or (iii) is subdirectly irreducible, the same is not true of SMMV-algebras satisfying (ii). A full classification of subdirectly irreducible SMMV-algebras is obtained by combining Theorem 4.1, Theorem 3.9, and Theorem 3.4.

Let us consider the following classes of SMMV-algebras:
Definition 4.2. Type \mathcal{I} (identity). The MV-reduct, \mathbf{A}, of (\mathbf{A}, τ) is a subdirectly irreducible MV-algebra and τ is the identity function on A.

Type \mathcal{L} (local). (A, τ) is subdiagonal, the MV-reduct, \mathbf{A}, of (\mathbf{A}, τ) is a local MV-algebra (hence it has no Boolean non-trivial elements), $\mathbf{F}_{\tau}(\mathbf{A})$ is a non-trivial subdirectly irreducible hoop, $\mathbf{F}_{\tau}(\mathbf{A})$ and $\tau(\mathbf{A})$ have the disjunction property.

Type \mathcal{D} (diagonalization). The MV-reduct, \mathbf{A}, of (\mathbf{A}, τ) is of the form $\mathbf{B} \times \mathbf{C}$, where \mathbf{C} is a subdirectly irreducible MV-algebra and \mathbf{B} is a subalgebra of \mathbf{C}. Moreover, τ is defined by $\tau(b, c)=(b, b)$.

Theorem 4.3. An SMMV-algebra is subdirectly irreducible if and only if it is of one of the types \mathcal{I}, \mathcal{L} and \mathcal{D}. Moreover, these types are mutually disjoint.

Proof. We first prove, using Theorem 3.4, that all members of $\mathcal{I} \cup \mathcal{L} \cup \mathcal{D}$ are subdirectly irreducible. For type \mathcal{I}, the claim is easy and for type \mathcal{L} the claim follows from the definition of type \mathcal{L} and from Theorem 3.4. For type \mathcal{D}, if (\mathbf{A}, τ) is diagonal, say, $\mathbf{A}=\mathbf{B} \times \mathbf{C}$ with $\mathbf{B} \subseteq \mathbf{C}, \mathbf{C}$ is subdirectly irreducible and τ is diagonal, we have that $\mathbf{F}_{\tau}(\mathbf{A})$ consists of all pairs ($1, c$) with $c \in C$, and hence it is isomorphic (as a Wajsberg hoop) to \mathbf{C}. Since \mathbf{C} is subdirectly irreducible, so is $\mathbf{F}_{\tau}(\mathbf{A})$. Finally, $\tau(\mathbf{A})$ consists of
all pairs of the form (b, b) with $b \in B$. Now if $(b, b) \vee(1, c)=(1,1)$, then either $(b, b)=(1,1)$ or $(1, c)=(1,1)$. Hence, $\tau(\mathbf{A})$ and $\mathbf{F}_{\tau}(\mathbf{A})$ have the disjunction property, and by Theorem 3.4, (\mathbf{A}, τ) is subdirectly irreducible.

For the converse, we use Theorem 4.1. It is clear that condition (i) in Theorem 4.1 corresponds to type \mathcal{I}. For case (ii) the additional conditions that $\mathbf{F}_{\tau}(\mathbf{A})$ is subdirectly irreducible and $\mathbf{F}_{\tau}(\mathbf{A})$ and $\tau(\mathbf{A})$ have the disjunction property follows from Theorem 3.4 and the additional condition that (\mathbf{A}, τ) is subdiagonal follows from Theorem 3.9.

Now, suppose (iii) is the case. Identifying \mathbf{B} with its isomorphic copy $h(\mathbf{B})$, we can rephrase the definition of τ as $\tau(b, c)=$ (b, b), and hence (\mathbf{A}, τ) is of type \mathcal{D}.

Finally, types \mathcal{I}, \mathcal{L} and \mathcal{D} are mutually disjoint, because if (\mathbf{A}, τ) is of type \mathcal{I}, then $\mathbf{F}_{\tau}(\mathbf{A})$ is trivial, while if (\mathbf{A}, τ) is of type \mathcal{L} or \mathcal{D}, then $\mathbf{F}_{\tau}(\mathbf{A})$ is non-trivial. Moreover, the MV-reduct of a diagonal SMMV-algebra has two maximal filters, and hence it cannot be a local MV-algebra. This finishes the proof.

There is yet another type of subdirectly irreducible SMMV-algebras, namely, type \mathcal{K} (killing infinitesimals), which is described as follows:

Definition 4.4. An SMMV-algebra (\boldsymbol{A}, τ) is said to be of type \mathcal{K} if \boldsymbol{A} is of type \mathcal{L} and is linearly ordered.
The next example shows that the class of SMMV-algebras of type \mathcal{K} is properly contained in the class of SMMV-algebras of type \mathcal{L}.

Example 4.5. Let \mathbf{C}_{1} be the Chang MV-algebra. Let \boldsymbol{A} be the subalgebra of $\mathbf{C}_{1} \times \mathbf{C}_{1}$ generated by $\operatorname{Rad}\left(\mathbf{C}_{1}\right) \times \operatorname{Rad}\left(\mathbf{C}_{1}\right)$, i.e., $A=\left(\operatorname{Rad}\left(\mathbf{C}_{1}\right) \times \operatorname{Rad}\left(\mathbf{C}_{1}\right)\right) \cup\left(\operatorname{Rad}_{1}\left(\mathbf{C}_{1}\right) \times \operatorname{Rad}_{1}\left(\mathbf{C}_{1}\right)\right)$. We define $\tau: A \rightarrow A$ via $\tau(x, y)=(x, x)$. Then τ is a state morphism operator on \boldsymbol{A} such that (\boldsymbol{A}, τ) is a subdirectly irreducible SMMV-algebra, $\boldsymbol{F}_{\tau}(\boldsymbol{A})=\{1\} \times \operatorname{Rad}_{1}\left(\boldsymbol{C}_{1}\right), \tau$ is not faithful, \boldsymbol{A} has no non-trivial Boolean elements, but it is not linearly ordered. We note that $\operatorname{Rad}_{1}(\boldsymbol{A})=\operatorname{Rad}_{1}\left(\boldsymbol{C}_{1}\right) \times \operatorname{Rad}_{1}\left(\boldsymbol{C}_{1}\right)$ is the unique maximal filter.

5. Varieties of SMMV-algebras and their generators

We describe the varieties of SMMV-algebras and their generators. In particular, we answer in the positive to an open question from [7] that the diagonalization of the real interval [0, 1] generates the variety of SMMV-algebras.

Given a variety \mathcal{V} of MV-algebras, $\mathcal{V}_{S M M V}$ will denote the class of SMMV-algebras whose MV-reduct is in \mathcal{V}. Clearly, $\mathcal{V}_{S M M V}$ is a variety.

Definition 5.1. For every MV-algebra \boldsymbol{A} we set $D(\boldsymbol{A})=\left(\boldsymbol{A} \times \boldsymbol{A}, \tau_{A}\right)$, where τ_{A} is defined, for all $a, b \in A$, by $\tau_{A}(a, b)=(a, a)$. For every class \mathcal{K} of $M V$-algebras, we set $D(\mathcal{K})=\{D(\boldsymbol{A}): A \in \mathcal{K}\}$.

As usual, given a class \mathcal{K} of algebras of the same type, $\mathrm{I}(\mathcal{K}), \mathrm{H}(\mathcal{K}), \mathrm{S}(\mathcal{K})$ and $\mathrm{P}(\mathcal{K})$ and $\mathrm{P}_{\mathrm{U}}(\mathcal{K})$ will denote the class of isomorphic images, of homomorphic images, of subalgebras, of direct products and of ultraproducts of algebras from \mathcal{K}, respectively. Moreover, $\mathrm{V}(\mathcal{K})$ will denote the variety generated by \mathcal{K}.

Lemma 5.2. (1) Let \mathcal{K} be a class of MV-algebras. Then $\mathrm{VD}(\mathcal{K}) \subseteq \vee(\mathcal{K})_{S M M V}$.
(2) Let \mathcal{V} be any variety of MV-algebras. Then $\mathcal{V}_{S M M V}=\operatorname{ISD}(\mathcal{V})$.

Proof. (1) We have to prove that every MV-reduct of an algebra in $\mathrm{VD}(\mathcal{K})$ is in $\mathrm{V}(\mathcal{K})$. Let \mathcal{K}_{0} be the class of all MV-reducts of algebras in $D(\mathcal{K})$. Then since the MV-reduct of $D(\mathbf{A})$ is $\mathbf{A} \times \mathbf{A}$, and since \mathbf{A} is a homomorphic image (under the projection map) of $\mathbf{A} \times \mathbf{A}, \mathcal{K}_{0} \subseteq \mathrm{P}(\mathcal{K})$ and $\mathcal{K} \subseteq \mathrm{H}\left(\mathcal{K}_{0}\right)$. Hence, \mathcal{K}_{0} and \mathcal{K} generate the same variety. Moreover, MV-reducts of subalgebras (homomorphic images, direct products respectively) of algebras from $D(\mathcal{K})$ are subalgebras (homomorphic images, direct products respectively) of the corresponding MV-reducts. Therefore, the MV-reduct of any algebra in VD(K) is in $\operatorname{HSP}\left(\mathcal{K}_{0}\right)=\operatorname{HSP}(\mathcal{K})=\mathrm{V}(\mathcal{K})$, and claim (1) is proved.
(2) Let $(\mathbf{A}, \tau) \in \mathcal{V}_{S M M V}$. Then the map $\Phi: a \mapsto(\tau(a), a)$ is an embedding of (\mathbf{A}, τ) into $D(\mathbf{A})$. Conversely, the MV-reduct of any algebra in $D(\mathcal{V})$ is in \mathcal{V}, (being a direct product of algebras in \mathcal{V}), and hence the MV-reduct of any member of ISD (\mathcal{V}) is in $\operatorname{IS}(\mathcal{V})=\mathcal{V}$. Hence, any member of $\operatorname{ISD}(\mathcal{V})$ is in $\mathcal{V}_{\text {SMMV }}$.

Lemma 5.3. Let \mathcal{K} be a class of $M V$-algebras. Then:
(1) $\mathrm{DH}(\mathcal{K}) \subseteq \mathrm{HD}(\mathcal{K})$.
(2) $\mathrm{DS}(\mathcal{K}) \subseteq \operatorname{ISD}(\mathcal{K})$.
(3) $\mathrm{DP}(\mathcal{K}) \subseteq \operatorname{IPD}(\mathcal{K})$.
(4) $\mathrm{VD}(\mathcal{K})=\operatorname{ISD}(\mathrm{V}(\mathcal{K}))$.

Proof. (1) Let $D(\mathbf{C}) \in \mathrm{DH}(\mathcal{K})$. Then there are $\mathbf{A} \in \mathcal{K}$ and a homomorphism h from \mathbf{A} onto \mathbf{C}. Let for all $a, b \in A, h^{*}(a, b)=$ $(h(a), h(b))$. We claim that h^{*} is a homomorphism from $D(\mathbf{A})$ onto $D(\mathbf{C})$. That h^{*} is an MV-homomorphism is clear. We verify that h^{*} is compatible with τ_{A}. We have $h^{*}\left(\tau_{A}(a, b)\right)=h^{*}(a, a)=(h(a), h(a))=\tau_{C}(h(a), h(b))=\tau_{C}\left(h^{*}(a, b)\right)$. Finally,
since h is onto, given $(c, d) \in C \times C$, there are $a, b \in A$ such that $h(a)=c$ and $h(b)=d$. Hence, $h^{*}(a, b)=(c, d), h^{*}$ is onto, and $D(\mathbf{C}) \in \mathrm{HD}(\mathcal{K})$.
(2) Almost trivial.
(3) Let $\mathbf{A}=\prod_{i \in I}\left(\mathbf{A}_{i}\right) \in \mathrm{P}(\mathcal{K})$, where each \mathbf{A}_{i} is in \mathcal{K}. Then the map

$$
\Phi:\left(\left(a_{i}: i \in I\right),\left(b_{i}: i \in I\right)\right) \mapsto\left(\left(a_{i}, b_{i}\right): i \in I\right)
$$

is an isomorphism from $D(\mathbf{A})$ onto $\prod_{i \in I} D\left(\mathbf{A}_{i}\right)$. Indeed, it is clear that Φ is an MV-isomorphism. Moreover, denoting the state morphism of $\prod_{i \in I} D\left(\mathbf{A}_{i}\right)$ by τ^{*}, we get:

$$
\begin{aligned}
& \Phi\left(\tau_{A}\left(\left(a_{i}: i \in I\right),\left(b_{i}: i \in I\right)\right)\right)=\Phi\left(\left(a_{i}: i \in I\right),\left(a_{i}: i \in I\right)\right) \\
& \quad=\left(\left(a_{i}, a_{i}\right): i \in I\right)=\left(\tau_{A_{i}}\left(a_{i}, b_{i}\right): i \in I\right)=\tau^{*}\left(\Phi\left(\left(a_{i}: i \in I\right),\left(b_{i}: i \in I\right)\right)\right)
\end{aligned}
$$

and hence Φ is an SMMV-isomorphism.
(4) By (1), (2) and (3), $\operatorname{DV}(\mathcal{K})=\operatorname{DHSP}(\mathcal{K}) \subseteq \operatorname{HSPD}(\mathcal{K})=\operatorname{VD}(\mathcal{K})$, and hence $\operatorname{ISDV}(\mathcal{K}) \subseteq \operatorname{ISVD}(\mathcal{K})=\operatorname{VD}(\mathcal{K})$. Conversely, by Lemma $5.2(1), \mathrm{VD}(\mathcal{K}) \subseteq \mathrm{V}(\mathcal{K})_{S M M V}$, and by Lemma $5.2(2), \mathrm{V}(\mathcal{K})_{S M M V}=\operatorname{ISDV}(\mathcal{K})$. This settles the claim.

Theorem 5.4. (1) For every MV-algebra $\boldsymbol{A}, \mathrm{V}(D(\boldsymbol{A}))=\mathrm{V}(\boldsymbol{A})_{S M M V}$.
(2) Let \boldsymbol{A} and \boldsymbol{B} be MV-algebras. Then $\mathrm{V}(D(\boldsymbol{A}))=\mathrm{V}(D(\boldsymbol{B}))$ iff $\mathrm{V}(\boldsymbol{A})=\mathrm{V}(\boldsymbol{B})$.
(3) The variety of all SMMV-algebras is generated by $D\left([0,1]_{M V}\right)$ as well as by any $D(\boldsymbol{A})$ such that \boldsymbol{A} generates the variety of MV-algebras.
(4) Let \mathbf{C}_{1} be Chang's algebra and let \mathcal{C} be the variety generated by it. Then $\mathcal{C}_{S M M V}$ is generated by $D\left(\boldsymbol{C}_{1}\right)$.

Proof. (1) By Lemma 5.3(4), $\mathrm{VD}(\mathbf{A})=\mathrm{V}(\mathrm{D}(\mathbf{A}))=\mathrm{ISD}\left(\mathrm{V}(\mathbf{A})\right.$). Moreover, by Lemma 5.2(2), $\mathrm{V}(\mathbf{A})_{S M M V}=\operatorname{ISDV}(\mathbf{A})$. Hence, $\mathrm{V}(\mathrm{D}(\mathbf{A}))=\mathrm{V}(\mathbf{A})_{\text {SMMV }}$.
(2) We have $\mathrm{V}(D(\mathbf{A}))=\mathrm{V}(\mathbf{A})_{S M M V}$ and $\mathrm{V}(D(\mathbf{B}))=\mathrm{V}(\mathbf{B})_{S M M V}$. Clearly, $\mathrm{V}(\mathbf{A})=\mathrm{V}(\mathbf{B})$ implies $\mathrm{V}(\mathbf{A})_{S M M V}=\mathrm{V}(\mathbf{B})_{S M M V}$, and hence $\mathrm{V}(D(\mathbf{A}))=\mathrm{V}(D(\mathbf{B}))$. Conversely, $\mathrm{V}(D(\mathbf{A}))=\mathrm{V}(D(\mathbf{B}))$ implies $\mathrm{V}(\mathbf{A})_{\text {SMMV }}=\mathrm{V}(\mathbf{B})_{\text {SMMV }}$. But any algebra $\mathbf{C} \in \bigvee(\mathbf{A})$ is the MV-reduct of an algebra in $V(\mathbf{A})_{S M M V}$, namely, of $\left(\mathbf{C}, \operatorname{Id}_{C}\right)$, where Id_{C} is the identity on C.

It follows that, if $\mathrm{V}(\mathbf{A})_{S M M V}=\mathrm{V}(\mathbf{B})_{S M M V}$, then the classes of MV-reducts of $\mathrm{V}(\mathbf{A})_{S M M V}$ and of $\mathrm{V}(\mathbf{B})_{\text {SMMV }}$ coincide, and hence $\mathrm{V}(\mathbf{A})=\mathrm{V}(\mathbf{B})$.
(3) Since $\mathrm{V}\left([0,1]_{M V}\right)$ is the variety $\mathcal{M V}$ of all MV-algebras, $\mathrm{V}\left(D\left([0,1]_{M V}\right)\right)$ is $\mathcal{M} \mathcal{V}_{S M M V}$, that is, the variety of all SMMValgebras. The same argument holds if we replace $[0,1]_{M V}$ by any MV-algebra which generates the whole variety $\mathcal{M V}$.
(4) Completely parallel to (3).

Another consequence is the decidability of the variety $\mathcal{S M M \mathcal { V }}$ of all SMMV-algebras.
Theorem 5.5. $\mathcal{S M M \mathcal { M }}$ is decidable.
Proof. We associate to every term $t\left(x_{1}, \ldots, x_{n}\right)$ of SMMV-algebras a pair of terms t^{1}, t^{2} whose variables are among $x_{1}^{1}, x_{1}^{2}, \ldots, x_{n}^{1}, x_{n}^{2}$ by induction as follows: If t is a variable, say, $t=x_{i}$, then $t^{1}=x_{i}^{1}$ and $t^{2}=x_{i}^{2}$; if $t=0$, then $t^{1}=t^{2}=0$. If $t=\neg s$, then $t^{1}=\neg s^{1}$ and $t^{2}=\neg s^{2}$; if $t=s \oplus u$, then $t^{1}=s^{1} \oplus u^{1}$ and $t^{2}=s^{2} \oplus u^{2}$. Finally, if $t=\tau(s)$, then $t^{1}=t^{2}=s^{1}$. The following lemma is straightforward.

Lemma 5.6. Let $a_{1}^{1}, a_{1}^{2}, \ldots, a_{n}^{1}, a_{n}^{2}, b^{1}, b^{2} \in[0,1]$ and let $t\left(x_{1}, \ldots, x_{n}\right)$ be a term. Then the following are equivalent:
(1) $t\left(\left(a_{1}^{1}, a_{1}^{2}\right), \ldots,\left(a_{n}^{1}, a_{n}^{2}\right)\right)=\left(b^{1}, b^{2}\right)$ holds in $D\left([0,1]_{M V}\right)$.
(2) $t^{i}\left(a_{1}^{1}, a_{1}^{2}, \ldots, a_{n}^{1}, a_{n}^{2}\right)=b^{i}$, for $i=1,2$ holds in $[0,1]_{M V}$.

As a consequence, we obtain that an equation $t=s$ holds identically in $D\left([0,1]_{M V}\right)$ iff $t^{1}=s^{1}$ and $t^{2}=s^{2}$ hold identically in $[0,1]_{M V}$. Since validity of an equation in $[0,1]_{M V}$ is decidable, the equational logic of $D\left([0,1]_{M V}\right)$ is decidable, and since $D\left([0,1]_{M V}\right)$ generates the whole variety of SMMV-algebras, the claim follows.

6. Every subdirectly irreducible SMMV-algebra is subdiagonal

We are in a position to prove Theorem 3.9, stating that every subdirectly irreducible SMMV-algebra is subdiagonal (subalgebra of a diagonal SMMV-algebra). We start from some easy facts.

First of all, any linearly ordered SMMV-algebra (\mathbf{A}, τ) is subdiagonal, being isomorphic to a subalgebra of $\left(\tau(\mathbf{A}) \times \mathbf{A}, \tau^{*}\right)$, with $\tau^{*}(\tau(a), a)=(\tau(a), \tau(a))$. Next we prove that the variety of SMMV-algebras has CEP.

Lemma 6.1. The variety of SMMV-algebras has Congruence Extension Property.

Proof. Let $(\mathbf{A}, \tau) \subseteq(\mathbf{B}, \tau)$ be SMMV-algebras and θ a congruence on (\mathbf{A}, τ). Thus, $1 / \theta$ is a τ-filter of (\mathbf{A}, τ). By monotonicity of τ the upward closure (in \mathbf{B}) of $1 / \theta$ is a τ-filter of (\mathbf{B}, τ), which restricts to $1 / \theta$ on (\mathbf{A}, τ). This proves the claim.

The next lemma is also easy:
Lemma 6.2. The class of subdiagonal SMMV-algebras is closed under subalgebras and ultraproducts.
Proof. Closure under S is definitional. Closure under P_{U} follows from the following facts:
(1) For every class \mathcal{K} of algebras of the same type $P_{\cup} S(\mathcal{K}) \subseteq S P_{\cup}(\mathcal{K})$ (this is a well-known fact of Universal Algebra).
(2) Every ultraproduct $\left(\prod_{i \in I}\left(\mathbf{B}_{i} \times \mathbf{C}_{i}, \tau_{i}\right)\right) / U$ of diagonal SMMV-algebras is isomorphic to the diagonal SMMV-algebra $\left.\left(\left(\prod_{i \in I} \mathbf{B}_{i}\right) / U \times\left(\prod_{i \in I} \mathbf{C}_{i}\right) / U, \tau_{U}\right)\right)$, where $\tau_{U}\left(\left(b_{i}: i \in I\right) / U,\left(c_{i}: i \in I\right) / U\right)=\left(\left(b_{i}: i \in I\right) / U,\left(b_{i}: i \in I\right) / U\right)$, with respect to the isomorphism $\left(\left(b_{i}, c_{i}\right): i \in I\right) / U \mapsto\left(\left(b_{i}: i \in I\right) / U,\left(c_{i}: i \in I\right) / U\right)$.

To deal with homomorphic images we need the following definition:
Definition 6.3. An SMMV-algebra (\boldsymbol{A}, τ) is said to be skew diagonal if it has the form $(\boldsymbol{B} \times \boldsymbol{C} / \varphi, \tau)$, where \boldsymbol{B} and \mathbf{C} are MV-chains, \boldsymbol{B} is a subalgebra of \mathbf{C}, φ is a congruence of \boldsymbol{C} and τ is defined $\tau(b, c / \varphi)=(b, b / \varphi)$ for all $b \in B$ and $c \in C$.

The projection onto the first coordinate is a homomorphism from the skew-diagonal algebra $(\mathbf{B} \times \mathbf{C} / \varphi, \tau)$ onto $\left(\mathbf{B}, \operatorname{Id}_{B}\right)$. Compatibility with τ is proved as follows: $\pi_{1} \tau(b, c / \varphi)=\pi_{1}(b, b / \varphi)=b=\operatorname{Id}_{\mathrm{B}} \pi_{1}(\mathrm{~b}, \mathrm{c})$.

Lemma 6.4. Let (\boldsymbol{A}, τ) be a subdiagonal algebra with $\boldsymbol{A} \subseteq \boldsymbol{B} \times \mathbf{C}$, and θ a congruence on (\boldsymbol{A}, τ). Then there are $M V$-chains $\boldsymbol{D} \subseteq \boldsymbol{E}$, and a congruence φ on \boldsymbol{E} such that $(\boldsymbol{A}, \tau) / \theta$ is subdirectly embedded into a skew-diagonal algebra $(\boldsymbol{D} \times \boldsymbol{E} / \varphi, \tau)$.

Proof. Clearly, we may assume that the natural identity embedding $\mathbf{A} \subseteq \mathbf{B} \times \mathbf{C}$ is subdirect. By CEP, the congruence θ extends to a congruence ψ on ($\mathbf{B} \times \mathbf{C}, \tau$). Of course, ψ is also a congruence on the MV-reduct $\mathbf{B} \times \mathbf{C}$. By congruence distributivity, all congruences of finite products are product congruences, so $\psi=\psi_{B} \times \psi_{C}$ for some congruences ψ_{B} on \mathbf{B} and ψ_{C} on \mathbf{C}.

The congruences ψ_{B} and ψ_{C} are defined as follows: $\left(b, b^{\prime}\right) \in \psi_{B}$ iff there are $c, c^{\prime} \in C$ such that $\left((b, c),\left(b^{\prime}, c^{\prime}\right)\right) \in \psi$, and $\left(c, c^{\prime}\right) \in \psi_{c}$ iff there are $b, b^{\prime} \in B$ such that $\left((b, c),\left(b^{\prime}, c^{\prime}\right)\right) \in \psi$. Denoting by θ_{1} and θ_{2} the congruences associated to the projection maps, and using congruence distributivity, we have: $\left((b, c),\left(b^{\prime}, c^{\prime}\right)\right) \in \psi$ iff $\left((b, c),\left(b^{\prime}, c^{\prime}\right)\right) \in\left(\psi \vee \theta_{1}\right) \wedge\left(\psi \vee \theta_{2}\right)$ iff $\left(b, b^{\prime}\right) \in \psi_{B}$ and $\left(c, c^{\prime}\right) \in \psi_{C}$, and $\psi=\psi_{B} \times \psi_{C}$. It follows:

$$
(\mathbf{B} \times \mathbf{C}) / \psi=\mathbf{B} / \psi_{B} \times \mathbf{C} / \psi_{C}
$$

and moreover, since ψ is compatible with τ we obtain

$$
\tau(b, c) / \psi=(b, b) / \psi=\left(b / \psi_{B}, b / \psi_{C}\right)
$$

Furthermore, $((b, 1),(1,1)) \in \psi$ implies $(\tau(b, 1), \tau(1,1))=((b, b),(1,1)) \in \psi$. It follows that $(b, 1) \in \psi_{B}$ implies $(b, 1) \in \psi_{C}$. Let χ be the congruence of \mathbf{C} generated by ψ_{B}. Then $\chi \subseteq \psi_{C}$, and by the CEP, $\psi_{B}=\chi \cap B^{2}$. Now let $\mathbf{D}=\mathbf{B} / \psi_{B}$, $\mathbf{E}=\mathbf{C} / \chi, \varphi=\chi / \psi_{C}$. Note that \mathbf{D} and \mathbf{E} are MV-chains. Moreover, by construction we have $\mathbf{D} \subseteq \mathbf{E}$, and hence

$$
\mathbf{A} / \theta \subseteq(\mathbf{B} \times \mathbf{C}) / \psi=\mathbf{B} / \psi_{B} \times \mathbf{C} / \psi_{C}=\mathbf{D} \times \mathbf{E} / \varphi
$$

proving the claim for the MV-reducts of the appropriate algebras. In particular, the embedding is subdirect. Furthermore,

$$
\tau(b, c) / \psi=\left(b / \psi_{B}, b / \psi_{C}\right)=\left(b / \psi_{B},(b / \chi) / \varphi\right)
$$

and the embedding lifts to the full type of SMMV.
Lemma 6.5. Let (\boldsymbol{A}, τ) be a subdirectly irreducible SMMV-algebra, and suppose that (\boldsymbol{A}, τ) is a subalgebra of a skew diagonal SMMV-algebra $\left(\boldsymbol{B} \times \mathbf{C} / \varphi, \tau^{*}\right)$, and that the identity MV-embedding of \boldsymbol{A} into $(\boldsymbol{B} \times \mathbf{C} / \varphi)$ is subdirect. Then (\boldsymbol{A}, τ) is subdiagonal.

Proof. If for all $b \in B,(b, 1) \in \varphi$ implies $b=1$, then the map $b \mapsto b / \varphi$ is one-one and \mathbf{B} is (isomorphic to) a subalgebra of \mathbf{C} / φ. Hence, \mathbf{C} / φ is an MV-chain and \mathbf{B} is a subchain of \mathbf{C} / φ. It follows that $\left(\mathbf{B} \times \mathbf{C} / \varphi, \tau^{*}\right)$ is diagonal and (\mathbf{A}, τ) is subdiagonal. Now suppose that $(b, 1) \in \varphi$ for some $b \in B \backslash\{1\}$. Since \mathbf{A} is a subdirect product of $\mathbf{B} \times \mathbf{C} / \varphi$, there is $c \in C$ such that $(b, c / \varphi) \in A$. Moreover, $\tau(b, c / \varphi)=(b, b / \varphi)=(b, 1 / \varphi) \in \tau(A)$.

Now if $(1, c / \varphi) \in A$, then $\tau(1, c / \varphi)=(1,1 / \varphi)$ and hence $(1, c / \varphi) \in F_{\tau}(A)$. Clearly, $(1, c / \varphi) \vee(b, 1 / \varphi)=(1,1 / \varphi)$, and since $\tau(\mathbf{A})$ and $\mathbf{F}_{\tau}(\mathbf{A})$ have the disjunction property, we must have $c / \varphi=1 / \varphi$. Now $F_{\tau}(A)$ consists of all elements of the form $(1, c / \varphi)$, and hence it is the singleton of $(1,1 / \varphi)$. On the other hand, $F_{\tau}(A)$ is the filter associated to the homomorphism τ, and hence τ is an embedding and \mathbf{A} is isomorphic to $\tau(\mathbf{A})$, which is in turn isomorphic to \mathbf{B} via the map $b \mapsto(b, b / \varphi)$. Since \mathbf{B} is linearly ordered, \mathbf{A} is linearly ordered and hence subdiagonal.

We can conclude the proof of Theorem 3.9.

Proof. Let \mathbf{A} be subdirectly irreducible. Since the variety of SMMV-algebras is generated by $\mathrm{D}\left([0,1]_{M V}\right)$, and since SMMValgebras are congruence distributive, by Jónsson's lemma \mathbf{A} belongs to $\operatorname{HSP} \cup\left(\mathrm{D}\left([0,1]_{M V}\right)\right)$. Thus, A is a homomorphic image of some $\mathbf{B} \in \operatorname{SP}_{\cup}\left(\mathrm{D}\left([0,1]_{M V}\right)\right)$.

Now $\mathrm{D}\left([0,1]_{M V}\right)$ is subdiagonal, and by Lemma 6.4 subdiagonal SMMV-algebras are closed under S and P_{U}, so \mathbf{B} is subdiagonal as well. Then, since \mathbf{A} is subdirectly irreducible, Lemma 6.5 applies, and we conclude that \mathbf{A} is subdiagonal. Hence, every subdirectly irreducible SMMV-algebra is subdiagonal.

We end this section with an example showing that the class of subdiagonal SMMV-algebras is not closed under homomorphic images. Indeed, our example shows that not even the class of subdirectly irreducible subdiagonal SMMV-algebras is closed under homomorphic images. Consider the diagonal algebra $\mathbf{A}=\left(\mathbf{C}_{1} \times \mathbf{C}_{1}, \tau_{C_{1}}\right)$. Here again \mathbf{C}_{1} stands for Chang's algebra. The set $F=\{1\} \times \operatorname{Rad}\left(\mathbf{C}_{1}\right)$ is a τ-filter of \mathbf{A}. It is easy to see that the congruence θ_{F} corresponding to F is the smallest non-trivial congruence on \mathbf{A}, so \mathbf{A} is subdirectly irreducible. It is not difficult to see that the MV-reduct of the quotient algebra \mathbf{A} / θ_{F} is isomorphic to $\mathbf{C}_{1} \times \mathbf{2}$, where $\mathbf{2}$ is the two-element Boolean algebra. The operation τ on this algebra is given by

$$
\tau(c, 1)=\tau(c, 0)= \begin{cases}(c, 1) & \text { if } c \in \operatorname{Rad}_{1}\left(\mathbf{C}_{1}\right) \\ (c, 0) & \text { if } c \notin \operatorname{Rad}_{1}\left(\mathbf{C}_{1}\right)\end{cases}
$$

Lemma 6.6. The algebra $\boldsymbol{A} / \theta_{F}$ is not subdiagonal.
Proof. If A / θ_{F} is subdiagonal then there exist linearly ordered MV-algebras \mathbf{D} and \mathbf{E} such that $\mathbf{C}_{1} \subseteq \mathbf{D}, \mathbf{2} \subseteq \mathbf{E}$ and either $(\mathbf{D} \times \mathbf{E}, \tau)$ is diagonal, or $(\mathbf{E} \times \mathbf{D}, \tau)$ is diagonal. Now, if $(\mathbf{D} \times \mathbf{E}, \tau)$ is diagonal, we have $\tau(d, e)=(d, d)$ for all $(d, e) \in D \times E$. In particular, $(c, z)=(c, c)$ for any $(c, z) \in C_{1} \times 2$. This fails for any $c \notin\{0,1\}$. Then, if $(\mathbf{E} \times \mathbf{D}, \tau)$ is diagonal, we have $\tau(e, d)=(e, e)$ for all $(e, d) \in E \times D$. In particular, $(z, c)=(z, z)$ for any $(z, c) \in 2 \times C_{1}$. This again fails for any $c \notin\{0,1\}$. Thus, A / θ_{F} is not subdiagonal.

7. Varieties of SMMV-algebras

When studying a variety of universal algebras, an interesting problem is the investigation of the lattice of its subvarieties. In the case of SMMV-algebras, we have a unique atom (above the trivial variety), namely, the variety $\mathcal{B I}$ of Boolean algebras equipped with the identical endomorphism. This variety is generated by the two element Boolean algebra equipped with the identity map. Since this algebra is a subalgebra of any non-trivial SMMV-algebra, $\mathcal{B I}$ is contained in any non-trivial variety of SMMV-algebras.

Other varieties of SMMV-algebras are obtained as follows: let \mathcal{V} be a variety of MV-algebras, let $\mathcal{V}_{S M M V}$ denote the class of algebras whose MV-reduct is in \mathcal{V}, and $\mathcal{V I}$ denote the class of SMMV-algebras $\left(A, \operatorname{Id}_{A}\right)$, where Id_{A} is the identity on A and $A \in \mathcal{V}$. The following problem arises: given a variety \mathcal{V} of $M V$-algebras, investigate the varieties of SMMV-algebras between $\mathcal{V} \mathcal{I}$ and $\mathcal{V}_{S M M V}$. To begin with, besides $\mathcal{V I}$ and $\mathcal{V}_{S M M V}$, we will discuss two more kinds of subvarieties, namely, the subvariety generated by all SMMV-chains in $\mathcal{V}_{S M M V}$ (representable SMMV-algebras) and the subvariety generated by all algebras in $\mathcal{V}_{S M M V}$ whose MV-reduct is a local MV-algebra. The above classes will be denoted by $\mathcal{V} \mathcal{R}$ and $\mathcal{V} \mathcal{L}$ respectively. We consider $\mathcal{V}_{S M M V}$ and $\mathcal{V I}$ first. The following result is straightforward.

Theorem 7.1. (1) $\mathcal{V}_{S M M V}$ is axiomatized over the axioms of SMMV-algebras by the defining equations of \mathcal{V}.
(2) $\mathcal{V I}$ is axiomatized over $\mathcal{V}_{S M M V}$ by the identity $\tau(x)=x$.
(3) $\mathcal{V I} \subseteq \mathcal{V} \mathcal{R}$, and the inclusion is proper if and only if \mathcal{V} is not finitely generated.
(4) The maps $\mathcal{V} \mapsto \mathcal{V} \mathcal{I}$ and $\mathcal{V} \mapsto \mathcal{V}_{\text {SMMV }}$ are embeddings of the lattice of $M V$-varieties into the lattice of SMMV-varieties.

Proof. Claims (1) and (2) are immediate.
As regards to (3), since subdirectly irreducible algebras of type \mathcal{I} are linearly ordered we have that $\mathcal{V} \mathcal{I} \subseteq \mathcal{V} \mathcal{R}$. If \mathcal{V} is finitely generated, then $\mathcal{V I}=\mathcal{V} \mathcal{R}$, because every $M V$-chain in \mathcal{V} is finite, and its only endomorphism is the identity. Finally, if \mathcal{V} is not finitely generated, then it contains Chang's algebra, \mathbf{C}_{1}. Let τ be defined for all $x \in C_{1}$, by $\tau(x)=0$ if x is infinitesimal and $\tau(x)=1$ otherwise. Then $\left(\mathbf{C}_{1}, \tau\right) \in \mathcal{V} \mathcal{R} \backslash \mathcal{V I}$, and the inclusion $\mathcal{V I} \subseteq \mathcal{V} \mathcal{R}$ is proper.

Finally, claim (4) is almost immediate (using Theorem 5.4).
Now we concentrate ourselves on $\mathcal{V} \mathcal{R}$.
Theorem 7.2. Representable SMMV-algebras constitute a proper subvariety of the variety of SMMV-algebras, which is characterized by the equation

$$
\left(\operatorname{lin}_{\tau}\right) \quad \tau(x) \vee(x \rightarrow(\tau(y) \leftrightarrow y))=1
$$

Proof. We have to prove that a subdirectly irreducible SMMV-algebra (\mathbf{A}, τ) satisfies $\left(\operatorname{lin}_{\tau}\right)$ iff it is linearly ordered. Thus, let (\mathbf{A}, τ) be a subdirectly irreducible SMMV-algebra.

Suppose first that (\mathbf{A}, τ) satisfies $\left(\operatorname{lin}_{\tau}\right)$. We start from the following observation. Let $z, u \in A$. Then $z \rightarrow(\tau(u) \leftrightarrow u) \in$ $F_{\tau}(A)$. Since $\tau(\mathbf{A})$ and $\mathbf{F}_{\tau}(\mathbf{A})$ have the disjunction property, we have that either $\tau(z)=1$ or $z \leq \tau(u) \leftrightarrow u$. Now every element $u \in F_{\tau}(A)$ is equal to $\tau(u) \leftrightarrow u$, and vice versa every element of the form $\tau(u) \leftrightarrow u$ is in $F_{\tau}(A)$. It follows that if $\tau(z)<1$, then z is a lower bound of $F_{\tau}(A)$.

Now assume, by way of contradiction, that $x, y \in A$ are incomparable with respect to the order. We distinguish three cases.
(i) If $x \rightarrow y \in F_{\tau}(A)$ and $y \rightarrow x \in F_{\tau}(A)$, then since $\mathbf{F}_{\tau}(\mathbf{A})$ is linearly ordered and $(x \rightarrow y) \vee(y \rightarrow x)=1$, we must have either $x \rightarrow y=1$ or $y \rightarrow x=1$, a contradiction.
(ii) If $x \rightarrow y \notin F_{\tau}(A)$ and $y \rightarrow x \notin F_{\tau}(A)$, then they are both lower bounds of $F_{\tau}(A)$, and hence $1=(x \rightarrow y) \vee(y \rightarrow x)$ is a lower bound of $F_{\tau}(A)$. But then \mathbf{A} would be isomorphic to $\tau(\mathbf{A})$, and hence it would be linearly ordered, a contradiction.
(iii) Finally, suppose $x \rightarrow y \in F_{\tau}(A)$ and $y \rightarrow x \notin F_{\tau}(A)$ (or vice versa). Then $y \rightarrow x$ is a lower bound of $F_{\tau}(A)$, and hence $y \rightarrow x \leq x \rightarrow y$. But in any MV-algebra this is the case iff $x \leq y$, and again a contradiction has been obtained.

Hence, (\mathbf{A}, τ) is linearly ordered. Conversely, if (\mathbf{A}, τ) is linearly ordered, then for all x, z such that $\tau(x)<1$ and $\tau(z)=1$, we cannot have $z<x$, and hence we must have $x \leq z$. Taking $z=\tau(y) \leftrightarrow y$, we obtain that for all x either $\tau(x)=1$ or $x \leq z$, and $\left(\operatorname{lin}_{\tau}\right)$ holds.

Finally, representable SMMV-algebras constitute a proper subvariety of the variety of SMMV-algebras, because any subdirectly irreducible SMMV-algebra of type \mathcal{D} is not linearly ordered.

Remark 7.3. According to [8, Prop. 3.6], if (\mathbf{A}, τ) is an SMV-algebra such that \mathbf{A} is a chain, then (\mathbf{A}, τ) is an SMMV-algebra. Hence, the class of all representable SMV-algebras satisfies ($\operatorname{lin}_{\tau}$). We do not know whether every subdirectly irreducible SMV-algebra satisfying $\left(\operatorname{lin}_{\tau}\right)$ has a linearly ordered MV-reduct.

Theorem 7.4. $\mathcal{V R} \subseteq \mathcal{V} \mathcal{L}$, and the inclusion is proper if and only if \mathcal{V} is not finitely generated.
Proof. Since every linearly ordered SMMV-algebra is local, the inclusion follows. Moreover, every local and finite MV-algebra is linearly ordered, and hence for finitely generated MV-varieties the opposite inclusion also holds. On the other hand, if \mathcal{V} is not finitely generated, then it contains Chang's algebra \mathbf{C}_{1}, and the subalgebra of $D\left(\mathbf{C}_{1}\right)$ described in Example 4.5, is a local subdirectly irreducible SMMV-algebra in $\mathcal{V}_{S M M V}$ which is not linearly ordered. Hence, the inclusion $\mathcal{V} \mathcal{R} \subseteq \mathcal{V} \mathcal{L}$ is proper.

Next, we discuss varieties of the form $\mathcal{V} \mathcal{L}$.
Theorem 7.5. (1) The variety $\mathcal{V} \mathcal{L}$ is axiomatized over $\mathcal{V}_{S M M V}$ by the equation

$$
\left(l o c_{\tau}\right) \quad \neg(\tau(x) \leftrightarrow x) \leq(\tau(x) \leftrightarrow x)
$$

(2) For any non-trivial variety \mathcal{V} of $M V$-algebras, $\mathcal{V} \mathcal{L}$ is a proper subvariety of $\mathcal{V}_{S M M V}$.

Proof. We start from the following lemma:
Lemma 7.6. Let \boldsymbol{A} be a local MV-algebra and M be its only maximal filter. Then for every $m \in M, \neg m \leq m$.
Proof. The claim follows from [4], where it is shown that if \mathbf{A} is a non-trivial BL-algebra and $a, b \in \operatorname{Rad}(\mathbf{A})$, then $a \leq \neg b$.
We continue the proof of Theorem 7.5. In order to prove claim (1), it suffices to prove that an SMMV-algebra is subdirectly irreducible iff it satisfies $\left(l o c_{\tau}\right)$. Now in every SMMV-algebra we have $\tau(\tau(x) \leftrightarrow x)=1$, and hence $\tau(x) \leftrightarrow x \in F_{\tau}(A) \subseteq M$, where M denotes the unique maximal filter of \mathbf{A}. Then Lemma 7.6 implies that every subdirectly irreducible local SMMValgebra satisfies $\left(l o c_{\tau}\right)$. Before proving the converse, we prove claim (2).

Let \mathbf{A} be a non-trivial chain in \mathcal{V}. Then $\left(l o c_{\tau}\right)$ is invalidated in $D(\mathbf{A})$, taking $x=(1,0)$. We have $\tau(x)=(1,1), \tau(x) \leftrightarrow$ $x=(1,0)$, and

$$
\neg(\tau(x) \leftrightarrow x)=(0,1) \not 又(1,0)=\neg(\tau(x) \leftrightarrow x) .
$$

This settles the claim.
In order to prove the opposite direction of claim (1), note that every subdirectly irreducible SMMV-algebra is either of type \mathcal{I} (in which case it is local) or of type \mathcal{L} (in which case, once again it is local) or of type \mathcal{D}. In the last case the proof of (2) shows that it does not satisfy $\left(l o c_{\tau}\right)$. Hence if a subdirectly irreducible SMMV-algebra satisfies $\left(l o c_{\tau}\right)$ it is local.

Another interesting problem in the study of the lattice of subvarieties of a variety is the investigation of covers of a given subvariety (if any). For instance, one may wonder what are the covers of $\mathcal{B I}$. We note that, for any variety defined by a finite set of equations (such as $\mathcal{B I}$), every variety which properly contains it it contains a cover of it. A partial answer to this question is provided by the following theorem:

Theorem 7.7. Let \mathcal{V} and \mathcal{W} be varieties of $M V$-algebras. If \mathcal{W} is a cover of \mathcal{V}, then $\mathcal{W} \mathcal{I}$ is a cover of $\mathcal{V I}$. Hence, if \mathcal{W} is generated either by \boldsymbol{S}_{p} for some prime number p or by Chang's algebra \mathbf{C}_{1}, then $\mathcal{W I}$ is a cover of $\mathcal{B I}$.

Proof. If $(\mathbf{A}, \tau) \in \mathcal{W} \mathcal{I} \backslash \mathcal{V} \mathcal{I}$, then since τ is forced to be the identity, we must have $\mathbf{A} \in \mathcal{W} \backslash \mathcal{V}$, and since \mathcal{W} is a cover of \mathcal{V}, the variety generated by $\{\mathbf{A}\} \cup \mathcal{V}$ is \mathcal{W}, and hence the variety generated by $\{(\mathbf{A}, \tau)\} \cup \mathcal{V} \mathcal{I}$ is $\mathcal{W} \mathcal{I}$, and the claim follows.

Remark 7.8. Varieties $\mathcal{V I}$, where \mathcal{V} is a cover of the Boolean variety \mathcal{B}, do not exhaust the covers of $\mathcal{B I}$. Another cover is $\mathcal{B}_{S M M V}$. Indeed, any subdirectly irreducible SMMV-algebra (\mathbf{A}, τ) in $\mathcal{B}_{S M M V} \backslash \mathcal{B I}$ must have a Boolean reduct and cannot be of type \mathcal{I} or \mathcal{L}, otherwise τ would be identical. Hence, it must be of type \mathcal{D} and $D\left(\mathbf{S}_{1}\right)$ is a subalgebra of (\mathbf{A}, τ). Therefore, (\mathbf{A}, τ) generates the whole variety $\mathcal{B}_{S M M V}$.

Theorem 7.7 suggests the following problem:
Problem 2. Let \mathcal{V} be a variety of MV-algebras and let \mathcal{V}^{\prime} be a cover of \mathcal{V}. Is it true that $\mathcal{V}_{S M M V}^{\prime}$ is a cover of $\mathcal{V}_{S M M V}$? Or, equivalently, is $\operatorname{VD}(\mathcal{V})$ a cover of $\mathrm{VD}\left(\mathcal{V}^{\prime}\right)$?

The answer to these questions is no, in general. Here is a sample of counterexamples.
(1) Let \mathcal{V} be the variety of Boolean algebras and \mathcal{V}^{\prime} be the variety generated by Chang's algebra. Then \mathcal{V}^{\prime} is a cover of \mathcal{V}. However, there is an intermediate variety between $\mathcal{V}_{S M M V}$ and $\mathcal{V}_{S M M V}^{\prime}$, namely, the subvariety $\mathcal{V}_{S M M V}^{\prime \prime}$ of $\mathcal{V}_{S M M V}^{\prime}$ axiomatized by the equation

$$
\begin{equation*}
\tau(x) \vee \tau(\neg x)=1 \tag{*}
\end{equation*}
$$

Indeed, clearly the equation $(*)$ holds in any Boolean SMMV-algebra. Moreover, there is an algebra in $\mathcal{V}_{S M M V}^{\prime}$ which satisfies $(*)$ and its reduct is not a Boolean algebra, namely, Chang's algebra \mathbf{C}_{1} with τ defined by $\tau(x)=0$ if $x \in \operatorname{Rad}\left(\mathbf{C}_{1}\right)$ and $\tau(x)=1$ otherwise.

Finally, there is an algebra in $\mathcal{V}_{S M M V}^{\prime}$ which does not satisfy $(*)$, namely, the diagonalization, $D\left(\mathbf{C}_{1}\right)$, of Chang's algebra. Indeed, if $c \in \operatorname{Rad}\left(\mathbf{C}_{1}\right) \backslash\{0\}$, then $\tau(c, c)=(c, c)$ and $\tau(\neg(c, c))=(\neg c, \neg c)$. Hence, $\tau(c, c) \vee \tau(\neg(c, c))=(\neg c, \neg c)<1$.
(2) Let $\mathcal{V}=\mathrm{V}\left(\mathbf{S}_{i_{1}}, \ldots, \mathbf{S}_{i_{n}}\right)$ and $\mathcal{V}^{\prime}=\mathrm{V}\left(\mathbf{S}_{i_{1}}, \ldots, \mathbf{S}_{i_{n}}, \mathbf{C}_{1}\right)$ for some integers $1 \leq i_{1}<\cdots<i_{n}$. Then \mathcal{V}^{\prime} is a cover variety of \mathcal{V}. Define $\mathcal{V}_{S M M V}^{\prime \prime}$ as the class of all $(\mathbf{A}, \tau) \in \mathcal{V}^{\prime}$ such that $\tau(\mathbf{A}) \in \mathcal{V}$.

Then $\mathcal{V}_{S M M V} \subseteq \mathcal{V}_{S M M V}^{\prime \prime} \subseteq \mathcal{V}^{\prime}$. But if τ is as in (1), then $\left(\mathbf{c}_{1}, \tau\right) \in \mathcal{V}_{S M M V}^{\prime \prime} \backslash \mathcal{V}_{S M M V}$ and $D\left(\mathbf{c}_{1}\right) \in \mathcal{V}_{S M M V}^{\prime} \backslash \mathcal{V}_{S M M V}^{\prime \prime}$.
(3) Define on $\mathbf{C}_{n} \times \mathbf{C}_{n}$ a map $\tau_{n}(i, j)=(i, 0)$ for all $(i, j) \in \mathbf{C}_{n}$, then $\left(\mathbf{C}_{n}, \tau_{n}\right)$ is an SMMV-algebra.

Let $1=i_{1}<\cdots<i_{n}$ and $1=j_{1}<\cdots<j_{k}$ with $k \geq 2$ be finite sets of integers such that every j_{s} does not divide any j_{t} with $1<j_{s}<j_{t}$ and fix an index $j_{0} \in J:=\left\{j_{1}, \ldots, j_{k}\right\}$ with $j_{0} \geq 2$ such that $j_{0} \in I:=\left\{i_{1}, \ldots, i_{k}\right\}$.

Let $\mathcal{V}^{\prime}=\mathrm{V}\left(\left\{\mathbf{S}_{i}, \mathbf{C}_{j}: i \in I, j \in J\right\}\right)$ and $\mathcal{V}=\mathrm{V}\left(\left\{\mathbf{S}_{i}, \mathbf{C}_{j}: i \in I, j \in J \backslash\left\{j_{0}\right\}\right\}\right)$. Set $\mathcal{V}_{S M M V}^{\prime \prime}$ as the class of $(\mathbf{A}, \tau) \in \mathcal{V}_{S M M V}^{\prime}$ such that $\tau(\mathbf{A}) \in \mathcal{V}$. Then $\left(\mathbf{C}_{j_{0}}, \tau_{j_{0}}\right) \in \mathcal{V}_{S M M V}^{\prime \prime} \backslash \mathcal{V}_{S M M V}$ and $D\left(\mathbf{C}_{j_{0}}\right) \in \mathcal{V}_{S M M V}^{\prime} \backslash \mathcal{V}_{S M M V}^{\prime \prime}$.
(4) Let $\mathcal{V}^{\prime}=\mathrm{V}\left(\mathbf{S}_{i_{1}}, \ldots, \mathbf{S}_{i_{n}}\right)$, where $1=i_{1}<\cdots<i_{n}, n \geq 2$ and every i_{s} does not divide any i_{t} with $1<i_{s}<i_{t}$. Let $i_{0} \in\left\{i_{2}, \ldots, i_{n}\right\}$ be fixed and let $\mathcal{V}=V\left(\mathbf{S}_{i}: i \in\left\{i_{1}, \ldots, i_{n}\right\} \backslash i_{0}\right)$. Then \mathcal{V}^{\prime} is a cover of \mathcal{V}. Let $\mathcal{V}^{\prime \prime}$ be the variety generated by $\mathcal{V}_{S M M V}$ and $\left(\mathbf{S}_{i_{0}}, \operatorname{Id}_{S_{i_{0}}}\right)$. Then $\mathcal{V}_{S M M V} \subset \mathcal{V}^{\prime \prime} \subset \mathcal{V}_{S M V V}^{\prime}$ because $\left(\mathbf{S}_{i_{0}}, \mathrm{Id}_{S_{i_{0}}}\right) \in \mathcal{V}^{\prime \prime} \backslash \mathcal{V}_{S M M V}$ and $D\left(\mathbf{S}_{i_{0}}\right) \in \mathcal{V}_{S M M V}^{\prime} \backslash \mathcal{V}^{\prime \prime}$.
(5) Let $\mathcal{V}^{\prime}=\mathrm{V}\left(\mathbf{C}_{j_{1}}, \ldots, S_{j_{k}}\right)$, where $1=i_{1}<\cdots<i_{k}, k \geq 2$ and every j_{s} does not divide any j_{t} with $1<j_{s}<j_{t}$. Let $j_{0} \in\left\{j_{2}, \ldots, j_{n}\right\}$ be fixed and let $\mathcal{V}=V\left(\mathbf{C}_{j}: j \in\left\{j_{1}, \ldots, j_{k}\right\} \backslash j_{0}\right)$. Let $\mathcal{V}^{\prime \prime}$ be the variety generated by $\mathcal{V}_{\text {SMMV }}$ and ($\left.\mathbf{S}_{i_{0}}, \tau\right)$. Then $\mathcal{V}_{S M M V} \subset \mathcal{V}^{\prime \prime} \subset \mathcal{V}_{S M V V}^{\prime}$ because $\left(\mathbf{c}_{j_{0}}, \operatorname{Id}_{\mathrm{c}_{0}}\right) \in \mathcal{V}^{\prime \prime} \backslash \mathcal{V}_{S M M V}$ and $D\left(\mathbf{C}_{j_{0}}\right) \in \mathcal{V}_{S M M V}^{\prime} \backslash \mathcal{V}^{\prime \prime}$.

The above examples offer several interesting methods for obtaining intermediate varieties. But the fact that if \mathcal{W} is an MV-cover of \mathcal{V}, then $\mathcal{W}_{\text {SMMV }}$ need not be a cover of $\mathcal{V}_{\text {SMMV }}$ can be strengthened:

Theorem 7.9. If \mathcal{W} properly contains \mathcal{V}, then the join, $\mathcal{V}_{S M M V} \vee \mathcal{W} \mathcal{I}$, of $\mathcal{V}_{S M M V}$ and $\mathcal{W} \mathcal{I}$, is a proper extension of $\mathcal{V}_{S M M V}$ and a proper subvariety of $\mathcal{W}_{\text {SMMV }}$. Hence, $\mathcal{W}_{\text {SMMV }}$ can never be a cover of $\mathcal{V}_{\text {SMMV }}$.

Proof. Inclusions are clear. Moreover, if $\mathbf{A} \in \mathcal{W} \backslash \mathcal{V}$, then $\left(\mathbf{A}, \operatorname{Id}_{A}\right) \in\left(\mathcal{W} \mathcal{I} \vee \mathcal{V}_{\text {SMMV }}\right) \backslash \mathcal{V}_{\text {SMMV }}$, and hence the first inclusion is proper. In order to prove that also the inclusion $\left(\mathcal{W} \mathcal{I} \vee \mathcal{V}_{S M M V}\right) \subseteq \mathcal{W}_{S M M V}$, consider an MV-identity $\eta(x)=1$ which axiomatizes \mathcal{V} over \mathcal{W}, and set

$$
\left(\epsilon_{V}\right)
$$

$$
\eta(x) \vee(\tau(y) \leftrightarrow y)=1
$$

Clearly, $\left(\epsilon_{V}\right)$ holds both in $\mathcal{V}_{S M M V}$ and in $\mathcal{W} \mathcal{I}$, and hence it holds in $\mathcal{V}_{S M M V} \vee \mathcal{W} \mathcal{I}$. Now take a subdirectly irreducible MV-algebra $\mathbf{A} \in \mathcal{W} \backslash \mathcal{V}$. Then $D(\mathbf{A}) \in \mathcal{W}_{S M M V}$, but it is readily seen that $\left(\epsilon_{V}\right)$ is not valid in $D(\mathbf{A})$, and also the inclusion $\left(\mathcal{V}_{S M M V} \vee \mathcal{W} \mathcal{I}\right) \subseteq \mathcal{W}_{\text {SMMV }}$ is proper.

It follows that Problem 2 should be replaced by the following:
Problem 3. Suppose that \mathcal{W} is an MV-cover of \mathcal{V}. Is it true that $\mathcal{W I} \vee \mathcal{V}_{S M M V}$ is a cover of $\mathcal{V}_{\text {SMMV }}$?

According to Komori, [5, Theorem 8.4.4], the lattice of subvarieties of the variety of MV-algebras is countable. Now we investigate the number of varieties of SMMV-algebras, and we prove that there are uncountably many of them. Let [0,1$]^{*}$ be an ultrapower of the MV-algebra on $[0,1]$, and let us fix a positive infinitesimal $\varepsilon \in[0,1]^{*}$. For every set X of prime numbers, we denote by $\mathbf{A}(X)$ the subalgebra of $[0,1]^{*}$ generated by ε and by the set of all rational numbers $\frac{n}{m}$ with $0 \leq n \leq m$, and $m>0$ such that:
(1) either $n=0$ or $\operatorname{gcd}(n, m)=1$;
(2) for all $p \in X, p$ does not divide m.

Note that for all $x \in A(X)$, the standard part of x is a rational number $\frac{n}{m}$ satisfying (1) and (2). Indeed the set of rational numbers satisfying (1) and (2) is closed under all MV-operations.

On $\mathbf{A}(X)$ we define $\tau(x)$ to be the standard part of x. Note that τ is an idempotent homomorphism from $\mathbf{A}(X)$ into itself, and hence $(\mathbf{A}(X), \tau)$ is a linearly ordered SMMV-algebra.

Lemma 7.10. If X and Y are distinct sets of primes, then $\boldsymbol{A}(X)$ and $\boldsymbol{A}(Y)$ generate different varieties.
Proof. Without loss of generality, we may assume that there is a prime p such that $p \in X \backslash Y$. Consider the equations:
$\left(\mathrm{a}_{p}\right)(p-1) x \leftrightarrow \neg x=1$
$\left(\mathrm{b}_{\mathrm{p}}\right) \tau((p-1) x) \leftrightarrow \tau(\neg x)=1$
$\left(c_{p}\right)(\tau((p-1) x) \leftrightarrow \tau(\neg x))^{2} \leq((p-1) x \leftrightarrow \neg x)$.
The following claims are easy to prove, recalling that $\frac{1}{p} \in A(Y) \backslash A(X)$:
Claim 1. Eq. $\left(a_{p}\right)$ has no solution in $(\boldsymbol{A}(X), \tau)$, and its only solution in $(\boldsymbol{A}(Y), \tau)$ is $\frac{1}{p}$.
Claim 2. Eq. (b_{p}) has no solution in $(\boldsymbol{A}(X), \tau)$, and its solutions in $(\boldsymbol{A}(Y), \tau)$ are precisely those real numbers in $A(Y)$ whose standard part is $\frac{1}{p}$.

Claim 3. In both $(\boldsymbol{A}(X), \tau)$ and $(\boldsymbol{A}(Y), \tau)$, for every $x, \tau((p-1) x) \leftrightarrow \tau(\neg x)$ is the standard part of $(p-1) x \leftrightarrow \neg x$.
Now consider the equation (c_{p}).
Claim 4. Eq. $\left(c_{p}\right)$ is valid in $(\boldsymbol{A}(X), \tau)$ and it is not valid in $(\boldsymbol{A}(Y), \tau)$.
Proof of Claim 4. Let $x \in A(X)$, let $\alpha=\tau((p-1) x) \leftrightarrow \tau(\neg x)$ and $\beta=(p-1) x \leftrightarrow \neg x$. By Claims 2 and 3, α is a real number strictly less than 1 , and differs from β by an infinitesimal. Hence, α^{2} is either 0 or a real strictly smaller than α, and hence it is smaller than β. It follows that $\left(c_{p}\right)$ holds in $(\boldsymbol{A}(X), \tau)$.

Now we prove that equation $\left(c_{p}\right)$ is not valid in $(\boldsymbol{A}(Y), \tau)$. Let $x=\frac{1}{p}+\varepsilon$. Then $x \in A(Y)$. Moreover, by Claim $2, \tau((p-1) x) \leftrightarrow$ $\tau(\neg x)=(\tau((p-1) x) \leftrightarrow \tau(\neg x))^{2}=1$, and by Claim 1,

$$
(p-1) x \leftrightarrow \neg x=\left(\frac{1}{p}-(p-1) \varepsilon\right)+\left(1-\frac{1}{p}-\varepsilon\right)=1-p \varepsilon<1
$$

Thus, Eq. $\left(c_{p}\right)$ is not valid in $\boldsymbol{A}(Y)$. This concludes the proof of Claim 4, and hence of Lemma 7.10.
We can say more:
Theorem 7.11. Let $\mathcal{M V}$ denote the variety of all MV-algebras. Then there are uncountably many varieties between $\mathcal{M V I}$ and $\mathcal{M V R}$.

Proof. Consider, for every set X of prime numbers, the variety $\mathcal{V}(X)$ axiomatized by ($\operatorname{lin}_{\tau}$) and by all equations (c_{p}) with $p \in X$. Clearly, $\mathbf{A}(X) \in \mathcal{V}(X)$ for every set X of primes. By Lemma 7.10, different sets of primes originate different varieties, and hence there is a continuum of varieties of the form $\mathcal{V}(X)$. Moreover, both equations $\left(\operatorname{lin}_{\tau}\right)$ and $\left(c_{p}\right)$ hold in all SMMValgebras of type \mathcal{I}, and hence $\mathcal{M V \mathcal { I }} \subseteq \mathcal{V}(X)$ for any set X of primes. Finally, since $\left(\operatorname{lin}_{\tau}\right)$ is an axiom of every $\mathcal{V}(X)$, we have $\mathcal{V}(X) \subseteq \mathcal{M V \mathcal { R }}$.

Corollary 7.12. There are varieties of representable SMMV-algebras which are not recursively axiomatizable, and hence not finitely axiomatizable.

Acknowledgements

The authors are indebted to the referees for their careful reading and suggestions.

References

[1] W. Blok, D. Pigozzi, Algebraizable logics, Mem. Amer. Math. Soc. 396 (77) (1989) .
[2] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York, 1981.
[3] C.C. Chang, A new proof of the completeness of Łukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1989) 74-80.
[4] R. Cignoli, A. Torrens, Free algebras in varieties of BL-algebras with a Boolean retract, Algebra Universalis 48 (2002) 55-79.
[5] R. Cignoli, I. D’Ottaviano, D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer Academic Publishers, Dordrecht, 2000.
[6] A. Di Nola, Representation and reticulation by quotients of MV-algebras, Ricerche Mat. 40 (1991) 291-297.
[7] A. Di Nola, A. Dvurečenskij, State-morphism MV-algebras, Ann. Pure Appl. Logic 161 (2009) 161-173.
[8] A. Di Nola, A. Dvurečenskij, A. Lettieri, On varieties of MV-algebras with internal states, Internat. J. Approx. Reason. 51 (2010) 680-694.
[9] A. Di Nola, A. Dvurečenskij, A. Lettieri, Erratum "State-morphism MV-algebras", Ann. Pure Appl. Logic 161 (2009) 161-173. Ann. Pure Appl. Logic 161 (2010) 1605-1607.
[10] A. Dvurečenskij, Subdirectly irreducible state-morphism BL-algebras, Arch. Math. Logic 50 (2011) 145-160, doi:10.1007/s00153-010-0206-7.
[11] T. Flaminio, F. Montagna, MV-algebras with internal states and probabilistic fuzzy logics, Internat. J. Approx. Reason. 50 (2009) 138-152.
[12] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.
[13] J.Y. Halpern, Reasoning about Uncertaintity, MIT Press, 2003.
[14] T. Kroupa, Every state on a semisimple MV algebra is integral, Fuzzy Sets and Systems 157 (2006) 2771-2787.
[15] T. Kroupa, Representation and extension of states on MV-algebras, Arch. Math. Logic 45 (2006) 381-392.
[16] J. Kühr, D. Mundici, De Finetti theorem and Borel states in [0, 1]-valued algebraic logic, Internat. J. Approx. Reason. 46 (2007) 605-616.
[17] D. Mundici, Interpretations of AF C ${ }^{\text {s }}$-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986) 15-63.
[18] D. Mundici, Averaging the truth value in Łukasiewicz logic, Studia Logica 55 (1995) 113-127.
[19] D. Mundici, Bookmaking over infinite-valued events, Internat. J. Approx. Reason. 46 (2006) 223-240.
[20] G. Panti, Invariant measures in free MV-algebras, Comm. Algebra 36 (2008) 2849-2861.

[^0]: ${ }^{4}$ AD thanks for the support by Center of Excellence SAS - Quantum Technologies - ERDF OP R\&D Projects CE QUTE ITMS 26240120009 and meta-QUTE ITMS 26240120022, the Grant VEGA No. 2/0032/09 SAV, and by Slovak-Italian project SK-IT 0016-08.

 * Corresponding author.

 E-mail addresses: dvurecen@mat.savba.sk (A. Dvurečenskij), kowatomasz@gmail.com (T. Kowalski), montagna@unisi.it (F. Montagna).

