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1. Introduction

States on MV-algebras have been introduced by Mundici in [18]. A state on an MV-algebra A is a map s from A into [0, 1]
such that:

(a) s(1) = 1, and

(b) if x � y = 0, then s(x ⊕ y) = s(x)+ s(y).
Special states are the so called [0, 1]-valuations on A, that is, the homomorphisms from A into the standard MV-algebra

[0, 1]MV on [0, 1].
States are related to [0, 1]-valuations by two important results. First of all, [0, 1]-valuations are precisely the extremal

states, that is, thosestates that cannotbeexpressedasnon-trivial convexcombinationsofother states.Moreover, by theKrein–

Milman Theorem, every state belongs to the convex closure of the set of all [0, 1]-valuations with respect to the topology of

weak convergence. Finally, every state coincides locally with a convex combination of [0, 1]-valuations (see [19,16]). More

precisely, given a state s on anMV-algebra A and given elements a1, . . . , an of A, there are n+1 extremal states s1, . . . , sn+1

and n + 1 elements λ1, . . . , λn+1 of [0, 1] such that
∑n+1

h=1 λh = 1 and for j = 1, . . . , n,
∑n+1

i=1 λisi(aj) = s(aj).
Another important relation between states and [0, 1]-valuations is the following: let XA be the set of [0, 1]-valuations

on A. Then XA becomes a compact Hausdorff subspace of [0, 1]A equipped with the Tychonoff topology. To every element a

of A we can associate its Gelfand transform â from XA into [0, 1], defined for all v ∈ XA, by â(v) = v(a). Now Panti [20] and

Kroupa [14] independently showed that to any state s on A it is possible to associate a (uniquely determined) Borel regular

probability measureμ on XA such that for all a ∈ A one has s(a) = ∫
â dμ. Hence, every state has an integral representation.
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Yet another important result motivating the use of states, related to de Finetti’s interpretation of probability in terms of

bets, is Mundici’s characterization of coherence [19]. That is, given anMV-algebra A, given a1, . . . , an ∈ A and α1, . . . , αn ∈
[0, 1], the following are equivalent:

(1) There is a state s on A such that, for i = 1, . . . , n, s(ai) = αi.
(2) For every choice of real numbers λ1, . . . , λn there is a [0, 1]-valuation v such that

∑n
i=1 λi(αi − v(ai)) ≥ 0.

These results show that the notion of state on an MV-algebra is a very important notion and the first one shows an

important connection between states and [0, 1]-valuations. However, MV-algebras with a state are not universal algebras,

and hence they do not provide for an algebraizable logic in the sense of [1] for reasoning on probability over many-valued

events.

In [11] the authors find an algebraizable logic for this purpose, whose equivalent algebraic semantics is the variety of

SMV-algebras. An SMV-algebra (see the next section for a precise definition) is an MV-algebra A equipped with an operator

τ whose properties resemble the properties of a state, but, unlike a state, is an internal unary operation (called also an

internal state) on A and not a map from A into [0, 1]. The analogue for SMV-algebras of an extremal state (or equivalently

of a [0, 1]-valuation) is the concept of state morphism. By this terminology we mean an idempotent endomorphism from

A into A. MV-algebras equipped with a state morphism form a variety, namely, the variety of SMMV-algebras, which is a

subvariety of the variety of SMV-algebras. The following are some motivations for the study of SMMV-algebras:

(1) Let (A, τ ) be an SMV-algebra, and assume that τ(A), the image of A under τ , is simple. Then τ(A) is isomorphic to

a subalgebra of [0, 1]MV , and τ may be regarded as a state on A. Moreover, by Di Nola’s theorem [6], A is isomorphic to a

subalgebra of [0, 1]∗I

for some ultrapower [0, 1]∗ of [0, 1]MV and for some index set I. Finally, using a result by Kroupa [15]

stating that any state on a subalgebra A of anMV-algebra B can be extended to a state on B, we obtain that τ can be extended

to a state τ ∗ on [0, 1]∗I

. Note that, after identifying a real number α ∈ [0, 1] with the function on I which is constantly

equal to α, τ ∗ is also an internal state, and it makes [0, 1]∗I

into an SMV-algebra. Moreover, by the Krein–Milman theorem,

for every real number ε > 0 there is a convex combination
∑n

i=1 λivi of [0, 1]-valuations v1, . . . , vn such that for every

a ∈ A, |τ(a)− ∑n
i=1 λivi(a)| < ε. After identifying vi(a) with the function from I into [0, 1]∗ which is constantly equal to

vi(a), these valuations can be regarded as idempotent endomorphisms on [0, 1]∗I

, and hence each of them makes [0, 1]∗I

into an SMMV-algebra. Summing up, if (A, τ ) is an SMV-algebra and τ(A) is simple, then τ can be approximated by convex

combinations of state morphisms on (an extension of) A.

(2) All subdirectly irreducible SMMV-algebras were described in [7,9], but the description of all subdirectly irreducible

SMV-algebras remains open, [11].

(3) As shown in [8], if (A, τ ) is an SMV-algebra and τ(A) belongs to a finitely generated variety of MV-algebras, then

(A, τ ) is an SMMV-algebra. In particular, MV-algebras from a finitely generated variety only admit internal states which are

state morphisms.

(4) A linearly ordered SMV-algebra is an SMMV-algebra, [8]. Moreover, wewill see that representable SMV-algebras form

a variety which is a subvariety of the variety of SMMV-algebras.

The goal of the present paper is to continue in the algebraic investigations on SMMV-algebras which begun in [8] and in

[7,9].

The paper is organized as follows. After preliminaries in Section 2, we give in Section 3 a complete characterization of

subdirectly irreducible SMV-algebras. This solves an open problem posed in [11]. In Section 4 we present a classification of

subdirectly irreducible SMMV-algebras introducing four types of subdirectly irreducible SMMV-algebras. In Section 5, we

describe some prominent varieties of SMMV-algebras and their generators. In particular, we answer in the positive to an

open question from [7] that the diagonalization of the real interval [0, 1] generates the variety of SMMV-algebras. Section 6

shows that every subdirectly irreducible SMMV-algebra is subdiagonal. Finally, Section7describes anaxiomatizationof some

varieties of SMMV-algebras, including a full characterization of representable SMMV-algebras. We show that in contrast to

MV-algebras, there is a continuum of varieties of SMMV-algebras. In addition, some open problems are formulated.

2. Preliminaries

For all concepts of Universal Algebra we refer to [2]. For concepts of many-valued logic, we refer to [12], for MV-algebras

in particular, we will also refer to [5], and for reasoning about uncertainty, we refer to [13].

Definition 2.1. AnMV-algebra is an algebra A = (A,⊕,¬, 0),where (A,⊕, 0) is a commutativemonoid,¬ is an involutive

unary operation on A, 1 = ¬0 is an absorbing element, that is, x ⊕ 1 = 1, and letting x → y = (¬x) ⊕ y, the identity

(x → y) → y = (y → x) → x holds.

In any MV-algebra A, we further define x � y = ¬(¬x ⊕ ¬y), x � y = ¬(¬x ⊕ y), x ∨ y = (x → y) → y,
x ∧ y = x � (x → y), and x ↔ y = (x → y)� (y → x).With respect to ∨ and ∧, A becomes a distributive lattice with

top element 1 and bottom element 0.

We also define nx for x ∈ A and natural number n by induction as follows: 0x = 0; (n + 1)x = nx ⊕ x.

MV-algebras constitute the equivalent algebraic semantics of Łukasiewicz logic Ł, cf. [12] for an axiomatization.
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The standard MV-algebra is the MV-algebra [0, 1]MV = ([0, 1],⊕,¬, 0), where r ⊕ s = min{r + s, 1} ¬r = 1 − r.

For the derived operations one has:

r � s = max{r − s, 0}, r � s = max{r + s − 1, 0}, r → s = min{1 − r + s, 1},
r ∨ s = max{r, s}, r ∧ s = min{r, s}.

The variety of all MV-algebras is generated as a quasi variety by [0, 1]MV . It follows that in order to check the validity of

an equation or a quasi equation in all MV-algebras, it is sufficient to check it in [0, 1]MV . We will tacitly use this fact in the

sequel.

Definition 2.2. A filter of an MV-algebra A is a subset F of A such that 1 ∈ F and if a and a → b are in F , then b ∈ F .

Dually, an ideal of A is a subset J of A such that 0 ∈ J and if a and b� a are in J, then b ∈ J. A filter F (an ideal J respectively)

of A is called proper if 0 /∈ F (1 /∈ J respectively) and maximal if it is proper and it is not properly contained in any proper

filter (ideal respectively). The radical, Rad(A), of A, is the intersection of all its maximal ideals, and the co-radical, Rad1(A),
of A is the intersection of all its maximal filters. An MV-algebra A is called semisimple if Rad(A) = {0}, and is called local if

it has exactly one maximal filter.

It is well-known (and easy to prove) that anMV-algebra A is semisimple iff Rad1(A) = {1}, and it is local iff it has exactly

one maximal filter.

Both the lattice of ideals and the lattice of filters of an MV-algebra A are isomorphic to its congruence lattice via the isomor-

phisms θ �→ {a ∈ A : (a, 0) ∈ θ} and θ �→ {a ∈ A : (a, 1) ∈ θ}, respectively. The inverses of these isomorphisms are:

J �→
{
(a, b) ∈ A2 : ¬(a ↔ b) ∈ J

}
and F �→

{
(a, b) ∈ A2 : a ↔ b ∈ F

}
, respectively.

It follows that an MV-algebra is semisimple iff it has a subdirect embedding into a product of simple MV-algebras.

Definition 2.3. A Wajsberg hoop is a subreduct (subalgebra of a reduct) of an MV-algebra in the language {1,�,→}.
Definition 2.4. A lattice ordered abelian group is an algebra G = (G,+,−, 0,∨,∧) such that (G,+,−, 0) is an abelian

group, (G,∨,∧) is a lattice, and for all x, y, z ∈ G, one has x + (y ∨ z) = (x + y) ∨ (x + z).
A strong unit of a lattice ordered abelian group G is an element u ∈ G such that for all g ∈ G there is n ∈ N such that

g ≤ u + · · · + u︸ ︷︷ ︸
n times

.

If G is a lattice-ordered abelian group and u is a strong unit of G, then Γ (G, u) denotes the algebra A whose universe is

{x ∈ G : 0 ≤ x ≤ u}, equipped with the constant 0 and with the operations ⊕ and ¬ defined by x ⊕ y = (x + y) ∧ u and

¬x = u − x. It is well-known [17] that Γ (G, u) is an MV-algebra, and every MV-algebra can be represented as Γ (G, u) for
some lattice ordered abelian group Gwith strong unit u.

In the sequel, Z ×lex Z denotes the direct product of two copies of the group Z of integers, ordered lexicographically, i.e.,

(a, b) ≤ (c, d) if either a < c or a = c and b ≤ d. For every positive natural number n, Sn and Cn denote Γ (Z, n) and
Γ (Z ×lex Z, (n, 0)) respectively. The algebra C1, that is Γ (Z ×lex Z, (1, 0)), is also referred to as Chang’s algebra (cf. [3]).

Definition 2.5. A state on an MV-algebra A (cf. [18]) is a map s from A into [0, 1] satisfying:
(1) s(1) = 1.
(2) s(x ⊕ y) = s(x)+ s(y) for all x, y ∈ A such that x � y = 0.

Definition 2.6. AnMV-algebra with an internal state (SMV-algebra in the sequel) is an algebra (A, τ ) such that:

(a) A is an MV-algebra.

(b) τ is a unary operation on A satisfying the following equations:

(b1) τ(1) = 1.

(b2) τ(x ⊕ y) = τ(x)⊕ τ(y � (x � y)).
(b3) τ(¬x) = ¬τ(x).
(b4) τ(τ (x)⊕ τ(y)) = τ(x)⊕ τ(y).

An operator τ is said to be also an internal state. An operator τ is faithful if τ(a) = 1 implies a = 1.
A state morphism MV-algebra (SMMV-algebra for short) is an SMV-algebra further satisfying:

(c) τ(x ⊕ y) = τ(x)⊕ τ(y).

The following facts are easily provable:
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Lemma 2.7 (see [11,8]). (1) In an SMV-algebra (A, τ ), the following conditions hold:

(1a) τ(0) = 0.

(1b) If x � y = 0, then τ(x)� τ(y) = 0 and τ(x ⊕ y) = τ(x)⊕ τ(y).
(1c) τ(τ (x)) = τ(x).
(1d) Let τ(A) := {τ(a) : a ∈ A}. Then τ(A) = (τ (A),⊕,¬, 0) is an MV-subalgebra of A, and τ is the identity on it.

(1e) If x ≤ y, then τ(x) ≤ τ(y).
(1f) τ(x)� τ(y) ≤ τ(x � y).
(1g) τ(x → y) = τ(x) → τ(x ∧ y).
(1h) If (A, τ ) is subdirectly irreducible, then τ(A) is linearly ordered.

(2) The following conditions on SMMV-algebras hold:

(2a) In an SMMV-algebra (A, τ ), τ(A) is a retract of A, that is, τ is a homomorphism from A onto τ(A), the identity map is an

embedding from τ(A) into A, and the composition τ ◦ Idτ(A), that is, the restriction of τ to τ(A) is the identity on τ(A).
(2b) An algebra (A, τ ) is an SMMV-algebra iff A is an MV-algebra and τ is an idempotent endomorphism on A.

(2c) An SMV-algebra (A, τ ) is an SMMV-algebra iff it satisfies τ(x ∨ y) = τ(x)∨ τ(y) iff it satisfies τ(x ∧ y) = τ(x)∧ τ(y).
(2d) Any linearly ordered SMV-algebra is an SMMV-algebra.

3. Subdirectly irreducible SMV-algebras

In this section we characterize and classify subdirectly irreducible SMV-algebras which answers to an open problem

posed in [11]. Our result also characterizes subdirectly irreducible SMMV-algebras.

Definition 3.1. Let (A, τ ) be any SMV-algebra. Any filter F of A such that τ(F) ⊆ F is said to be a τ -filter.
Clearly, Fτ (A) is a τ -filter of A, and hence Fτ (A) = (Fτ (A),→, 0, 1) is a Wajsberg subhoop of A. Say that two Wajsberg

subhoops, B and C, of an MV-algebra A have the disjunction property if for all x ∈ B and y ∈ C, if x ∨ y = 1, then either x = 1

or y = 1.

We recall that τ -filters are in a bijection with SMV-congruences, and hence an SMV-algebra is subdirectly irreducible iff

it has a minimum τ -filter.

Lemma 3.2. Suppose that (A, τ ) is a subdirectly irreducible SMV-algebra. Then:

(1) If Fτ (A) = {1}, then τ(A) is subdirectly irreducible.

(2) Fτ (A) is (either trivial or) a subdirectly irreducible hoop.

(3) Fτ (A) and τ(A) have the disjunction property.

Proof. Let F denote the minimum τ -filter of (A, τ ).
(1) Suppose Fτ (A) = {1}. If τ(A)∩F �= {1}, then τ(A)∩F is theminimumnon-trivial filter of τ(A) and τ(A) is subdirectly

irreducible. If τ(A) ∩ F = {1}, then for all x ∈ F , τ(x) = 1 (because τ(x) ∈ τ(A) ∩ F) and F ⊆ Fτ (A) = {1} is the trivial

filter, a contradiction.

(2) Suppose that Fτ (A) is non-trivial. Then Fτ (A) is a non-trivial τ -filter. If (A, τ ) is subdirectly irreducible, it has a

minimum non-trivial τ -filter, F say. So, F ⊆ Fτ (A), and hence F is the minimum non-trivial filter of Fτ (A). Hence, Fτ (A) is
subdirectly irreducible.

(3) Suppose, by way of contradiction, that for some x ∈ Fτ (A) and y = τ(y) ∈ τ(A) one has x < 1, y < 1 and x ∨ y = 1.

Then since the MV-filters generated by x and by y, respectively, are τ -filters (easy to verify), they both contain F . Hence, the

intersection of these filters contains F . Now let c < 1 be in F . Then there is a natural number n such that xn ≤ c and yn ≤ c.

It follows that 1 = (x ∨ y)n = xn ∨ yn ≤ c, a contradiction. �

Corollary 3.3. If (A, τ ) is subdirectly irreducible, then τ(A) and Fτ (A) are linearly ordered.

Proof. That τ(A) is linearly ordered follows from [11]. As regards to Fτ (A), by Lemma 3.2, Fτ (A) is a (possibly trivial)

subdirectly irreducible Wajsberg hoop, and hence it is linearly ordered. �

Theorem 3.4. Suppose that (A, τ ) is an SMV-algebra satisfying conditions (1)–(3) in Lemma 3.2. Then (A, τ ) is subdirectly

irreducible, and hence, the above conditions constitute a characterization of subdirectly irreducible SMV-algebras.

Proof. Claim. Let F be the MV-filter of A generated by a filter F0 of τ(A). Then F is a τ -filter. Indeed, if x ∈ F , then there are

τ(a) ∈ F0 and a natural number n such that τ(a)n ≤ x. It follows that τ(x) ≥ τ(τ (a)n) = τ(a)n, and τ(x) ∈ F .
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Now suppose first that Fτ (A) = {1} and that τ(A) is subdirectly irreducible. Let F0 be the minimum non-trivial filter of

τ(A) and let F be the MV-filter of A generated by F0. By Claim 1, F is a τ -filter. We claim that F is the minimum non-trivial

τ -filter of (A, τ ). Let G be a non-trivial τ -filter of (A, τ ), and let G0 = τ(G) = G ∩ τ(A). Then G0 is a filter of τ(A), and it is

non-trivial. Indeed, since Fτ (A) = {1} we have that if c ∈ G and c < 1, then τ(c) ∈ G0 and τ(c) < 1. Since F0 is minimal,

F0 ⊆ G0. Finally, since F is the MV-filter generated by F0 and F0 ⊆ G0 ⊆ G, we have that F is the minimum non-trivial

τ -filter of (A, τ ), as desired.
Now suppose that Fτ (A) is non-trivial. By condition (2), Fτ (A) is subdirectly irreducible. Thus, let F be theminimumfilter

of Fτ (A). Then F is a non-trivial τ -filter, and it is left to prove that F is theminimumnon-trivial τ -filter of (A, τ ). Let G be any

non-trivial τ -filter of (A, τ ). If G ⊆ Fτ (A), then it contains the minimal filter, F , of Fτ (A), and F ⊆ G. Otherwise, G contains

some x /∈ Fτ (A), and hence it contains τ(x) < 1. Now by the disjunction property, for all y < 1 in Fτ (A), τ(x) ∨ y < 1 and

τ(x) ∨ y ∈ Fτ (A) ∩ G. Thus, G contains the filter generated by τ(x) ∨ y, which is a non-trivial filter of Fτ (A), and hence it

contains F , the minimum non-trivial filter of Fτ (A). This settles the claim. �

Theorem 3.5. (1), (2) and (3) are independent conditions, and hence none of them is redundant in Theorem 3.4.

Proof. (1) Let C1 be Chang’s MV-algebra, let τ1 be the identity on C1 and τ2 be the function defined by τ2(x) = 0 if x is an

infinitesimal and τ2(x) = 1 otherwise. Clearly, both (C1, τ1) and (C1, τ2) are SMV-algebras, and so is their direct product

(B, τ ) = (C1, τ1)× (C1, τ2). Let (D, τ ) be the subalgebra of (B, τ ) generating by all pairs (x, y) such that x is infinitesimal

iff y is infinitesimal. Clearly, (D, τ ) is not subdirectly irreducible. However, τ(D) consists of all pairs (x, 0) such that x is

infinitesimal and all pairs (y, 1) such that y is not infinitesimal, and hence it is subdirectly irreducible (the minimum filter

is the set of all (y, 1) such that y is not infinitesimal. Moreover, Fτ (D) consists of all elements of the form (1, y) such that

y is not infinitesimal, and hence it is subdirectly irreducible, by the same argument. Clearly (3) does not hold (e.g., if x is

not infinitesimal and x < 1, then (1, x) ∈ Fτ (D), (x, 1) ∈ τ(D), and (1, x) ∨ (x, 1) = (1, 1), but (x, 1) < (1, 1) and
(1, x) < (1, 1)).

(2) LetA be an ultrapower of [0, 1]MV , and let B be the subalgebra ofA generated by all the infinitesimals. Let τ be defined

by τ(x) = 0 if x is an infinitesimal and τ(x) = 1 otherwise. Then τ(B) is subdirectly irreducible, being theMV-algebra with

two elements, and the disjunction property holds because B is linearly ordered, but Fτ (B) consists of all infinitesimals and

hence it is not subdirectly irreducible. (If F is any non-trivial τ -filter and 1 − ε ∈ F , with ε a positive infinitesimal, then the

filter generated by 1 − ε2 is a non-trivial τ -filter strictly contained in F).

(3) Let B be as in (2) and let τ be the identity on B. Then Fτ (B) is subdirectly irreducible, being a trivial algebra, and the

disjunction property holds because B is linearly ordered, but τ(B) = B is not subdirectly irreducible. �

Lemma 3.6. If (A, τ ) is a subdirectly irreducible SMMV-algebra, then for all a ∈ A, either a ≤ τ(a) or τ(a) ≤ a.

Proof. Since (A, τ ) is subdirectly irreducible, Fτ (A) is subdirectly irreducible and hence it is linearly ordered. Hence, 1 is join

irreducible in Fτ (A). Now (a → τ(a))∨ (τ (a) → a) = 1, and hence either a → τ(a) = 1 and a ≤ τ(a), or τ(a) → a = 1

and τ(a) ≤ a. �

Subdirectly irreducible SMMV-algebras also enjoy another interesting property, namely:

Theorem 3.7. Let (A, τ ) be a subdirectly irreducible SSMV-algebra and let a ∈ A. Then there are uniquely determined b ∈ τ(A)
and c ∈ Fτ (A) such that exactly one of the following two conditions holds:

(a) a = b � c, and c is the greatest element with this property, when a ≤ τ(a), or
(b) a = c → b and b < c < 1 when τ(a) < a.

Proof. First of all, note that τ(a → τ(a)) = τ(τ (a) → a) = τ(a) → τ(a) = 1, and hence, for every a ∈ A, a → τ(a) and
τ(a) → a belong to Fτ (A).

Let b = τ(a) and let c = b → a if a ≤ b, and c = a → b otherwise.

Suppose a ≤ b. Then a = a ∧ b = b � (b → a) = b � c. Finally, c is the greatest element such that b � c = a, by the

definition of residuum, and τ(c) = 1.
Now suppose b < a. Then c → b = (a → b) → b = a ∨ b = a. Moreover, c < 1, as b < a. Finally, b < c. Indeed,

b ≤ a → b = c, and it cannot be c = b, as τ(c) = 1 and τ(b) = b < a.

Nowwe discuss uniqueness. (i) Let a ≤ τ(a). If a = b′ � c′, with b′ ∈ τ(A) and c′ ∈ Fτ (A), then τ(a) = τ(b′)� τ(c′) =
b′ � 1 = b′ = τ(b′). Thus b′ = τ(a) is uniquely determined; we denote it by b.Moreover, a ≤ b, b � c′ = a and c′ is the
greatest element with this property. Hence, c′ = a → b.

(ii) Let τ(a) < a. Then a < 1. If a = c′ → b′ with b′ < c′ ∈ Fτ (A) \ {1} and b′ ∈ τ(A), then by Lemma 2.7(1g),

τ(a) = τ(c′) → τ(c′ ∧ b′) = τ(c′) → τ(b′) = 1 → b′ = b′, and b′ is uniquely determined; we denote it by b. Then
b < a. Finally, in any MV-algebra, if z ≤ x, z ≤ y and x → z = y → z, then x = y (this property is expressed as a

quasi equation and holds in [0, 1]MV , and hence it holds in any MV-algebra). Now b < c′ < 1, b ≤ (a → b) → b, and

c′ → b = (a → b) → b. It follows that c′ = a → b, and uniqueness of c′ is proved. �
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Let (A, τ ) be a subdirectly irreducible SMMV-algebra. For all b ∈ τ(A), the defineM(b) = {x ∈ A : τ(x) = b}. Then A is

a disjoint union of the sets M(b) for b ∈ τ(A).
We assert that everyM(b) is linearly ordered. Indeed, let x, y ∈ M(b).Due to Lemma 3.6, there are three cases: (i) x ≤ b,

y > b or x > b, y ≤ b, (ii) x ≤ b, y ≤ b, and (iii) x > b and y > b. In the case (i), x and y are comparable. In the case (ii),

by Lemma 2.7(1b), τ(x ⊕ ¬b) = τ(x)⊕ τ(¬b) = 1 and τ(y ⊕ ¬b) = τ(y)⊕ τ(¬b) = 1 which by Corollary 3.3 entails

x ⊕ ¬b and y ⊕ ¬b are comparable. Because x � ¬b = 0 = y � ¬b,we have x and y are also comparable. In the case (iii),

¬x < ¬b and ¬y < ¬b, and in the same way as in (ii) we can prove ¬x and ¬y are comparable, consequently, x and y are

comparable.

Thus, althoughAneednot be linearly ordered, it is close tobe such.Moreprecisely, letM = {±c : c ∈ Fτ (A), c < 1}∪{1}.
We define a poset M on M letting −c < −d iff d < c, and c < 1 < −d for all c, d ∈ Fτ (A) \ {1}. Now given x ∈ M(b), by
Lemma 3.6, it follows x ≤ b or b < τ(x). By Theorem 3.7, in the first case we can associate x with (b, b → x) and in the

second case with (b,−(x → b)) to obtain an order isomorphism from A into τ(A)× M. That is, A as a poset is isomorphic

to a quotient of a subposet of the product of two chains. This suggests that either A is a chain or a subalgebra of a product of

two chains. This conjecture will be proved in Section 6. More precisely:

Definition 3.8. An SMMV-algebra (A, τ ) is said to be diagonal if there are MV-chains B and C such that B ⊆ C, A = B × C

and τ is defined, for all b ∈ B and c ∈ C, by τ(b, c) = (b, b).
An SMMV-algebra is said to be subdiagonal if it is a subalgebra of a diagonal SMMV-algebra.

In Section 6 we will prove:

Theorem 3.9. Every subdirectly irreducible SMMV-algebra is subdiagonal.

4. A classification of subdirectly irreducible SMMV-algebras

We present a classification of SMMV-algebras introducing four types of subdirectly irreducible SMMV-algebras, type I,
identity, type L, local, type D, diagonalization, and type K, killing infinitesimals.

The following theorem was proved in [7,9,10].

Theorem 4.1. Let (A, τ ) be a subdirectly irreducible SMMV-algebra. Then (A, τ ) belongs to exactly one of the following classes:

(i) A is linearly ordered, τ is the identity on A and the MV-reduct of A is a subdirectly irreducible MV-algebra.

(ii) The state morphism operator τ is not faithful, A has no non-trivial Boolean elements and is a local MV-algebra. Moreover, A is

linearly ordered if and only if Rad1(A) is linearly ordered, and in such a case, A is a subdirectly irreducible MV-algebra such

that the smallest non-trivial τ -filter of (A, τ ), and the smallest non-trivial MV-filter for A coincide.

(iii) The state morphism operator τ is not faithful, A has a non-trivial Boolean element. There are a linearly ordered MV-algebra

B, a subdirectly irreducible MV-algebra C, and an injective MV-homomorphism h : B → C such that (A, τ ) is isomorphic to

(B × C, τh), where τh(x, y) = (x, h(x)) for any (x, y) ∈ B × C.

Note thatwhile every SMMV-algebra satisfying (i) or (iii) is subdirectly irreducible, the same is not true of SMMV-algebras

satisfying (ii). A full classification of subdirectly irreducible SMMV-algebras is obtained by combining Theorem 4.1, Theorem

3.9, and Theorem 3.4.

Let us consider the following classes of SMMV-algebras:

Definition 4.2. Type I (identity). The MV-reduct, A, of (A, τ ) is a subdirectly irreducible MV-algebra and τ is the identity

function on A.

Type L (local). (A, τ ) is subdiagonal, theMV-reduct, A, of (A, τ ) is a local MV-algebra (hence it has no Boolean non-trivial

elements), Fτ (A) is a non-trivial subdirectly irreducible hoop, Fτ (A) and τ(A) have the disjunction property.

TypeD (diagonalization). TheMV-reduct, A, of (A, τ ) is of the form B×C, where C is a subdirectly irreducibleMV-algebra

and B is a subalgebra of C. Moreover, τ is defined by τ(b, c) = (b, b).

Theorem 4.3. An SMMV-algebra is subdirectly irreducible if and only if it is of one of the types I , L and D. Moreover, these types

are mutually disjoint.

Proof. We first prove, using Theorem 3.4, that all members of I ∪ L∪D are subdirectly irreducible. For type I , the claim is

easy and for typeL the claim follows from the definition of typeL and from Theorem3.4. For typeD, if (A, τ ) is diagonal, say,
A = B×CwithB ⊆ C, C is subdirectly irreducible and τ is diagonal, we have that Fτ (A) consists of all pairs (1, c)with c ∈ C,

and hence it is isomorphic (as a Wajsberg hoop) to C. Since C is subdirectly irreducible, so is Fτ (A). Finally, τ(A) consists of
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all pairs of the form (b, b)with b ∈ B. Now if (b, b) ∨ (1, c) = (1, 1), then either (b, b) = (1, 1) or (1, c) = (1, 1). Hence,
τ(A) and Fτ (A) have the disjunction property, and by Theorem 3.4, (A, τ ) is subdirectly irreducible.

For the converse, we use Theorem 4.1. It is clear that condition (i) in Theorem 4.1 corresponds to type I . For case (ii) the

additional conditions that Fτ (A) is subdirectly irreducible and Fτ (A) and τ(A) have the disjunction property follows from

Theorem 3.4 and the additional condition that (A, τ ) is subdiagonal follows from Theorem 3.9.

Now, suppose (iii) is the case. IdentifyingBwith its isomorphic copy h(B), we can rephrase the definition of τ as τ(b, c) =
(b, b), and hence (A, τ ) is of type D.

Finally, types I , L andD are mutually disjoint, because if (A, τ ) is of type I , then Fτ (A) is trivial, while if (A, τ ) is of type
L or D, then Fτ (A) is non-trivial. Moreover, the MV-reduct of a diagonal SMMV-algebra has two maximal filters, and hence

it cannot be a local MV-algebra. This finishes the proof. �

There is yet another type of subdirectly irreducible SMMV-algebras, namely, type K (killing infinitesimals), which is

described as follows:

Definition 4.4. An SMMV-algebra (A, τ ) is said to be of type K if A is of type L and is linearly ordered.

The next example shows that the class of SMMV-algebras of type K is properly contained in the class of SMMV-algebras

of type L.

Example 4.5. Let C1 be the Chang MV-algebra. Let A be the subalgebra of C1 × C1 generated by Rad(C1) × Rad(C1), i.e.,
A = (Rad(C1) × Rad(C1)) ∪ (Rad1(C1) × Rad1(C1)). We define τ : A → A via τ(x, y) = (x, x). Then τ is a state morphism

operator on A such that (A, τ ) is a subdirectly irreducible SMMV-algebra, Fτ (A) = {1} × Rad1(C1), τ is not faithful, A has no

non-trivial Boolean elements, but it is not linearly ordered. We note that Rad1(A) = Rad1(C1)× Rad1(C1) is the unique maximal

filter.

5. Varieties of SMMV-algebras and their generators

We describe the varieties of SMMV-algebras and their generators. In particular, we answer in the positive to an open

question from [7] that the diagonalization of the real interval [0, 1] generates the variety of SMMV-algebras.

Given a variety V of MV-algebras, VSMMV will denote the class of SMMV-algebras whoseMV-reduct is in V . Clearly, VSMMV

is a variety.

Definition 5.1. For every MV-algebra A we set D(A) = (A × A, τA), where τA is defined, for all a, b ∈ A, by τA(a, b) = (a, a).
For every class K of MV-algebras, we set D(K) = {D(A) : A ∈ K}.

As usual, given a classK of algebras of the same type, I(K),H(K),S(K) andP(K) andPU(K)will denote the class of isomorphic

images, of homomorphic images, of subalgebras, of direct products and of ultraproducts of algebras fromK, respectively. Moreover,

V(K) will denote the variety generated by K.

Lemma 5.2. (1) Let K be a class of MV-algebras. Then VD(K) ⊆ V(K)SMMV .

(2) Let V be any variety of MV-algebras. Then VSMMV = ISD(V).

Proof. (1) We have to prove that every MV-reduct of an algebra in VD(K) is in V(K). Let K0 be the class of all MV-reducts

of algebras in D(K). Then since the MV-reduct of D(A) is A × A, and since A is a homomorphic image (under the projection

map) of A × A, K0 ⊆ P(K) and K ⊆ H(K0). Hence, K0 and K generate the same variety. Moreover, MV-reducts of

subalgebras (homomorphic images, direct products respectively) of algebras from D(K) are subalgebras (homomorphic

images, direct products respectively) of the corresponding MV-reducts. Therefore, the MV-reduct of any algebra in VD(K)
is in HSP(K0) = HSP(K) = V(K), and claim (1) is proved.

(2) Let (A, τ ) ∈ VSMMV . Then themapΦ : a �→ (τ (a), a) is an embedding of (A, τ ) intoD(A). Conversely, theMV-reduct

of any algebra in D(V) is in V , (being a direct product of algebras in V), and hence the MV-reduct of any member of ISD(V)
is in IS(V) = V . Hence, any member of ISD(V) is in VSMMV . �

Lemma 5.3. Let K be a class of MV-algebras. Then:

(1) DH(K) ⊆ HD(K).
(2) DS(K) ⊆ ISD(K).
(3) DP(K) ⊆ IPD(K).
(4) VD(K) = ISD(V(K)).

Proof. (1) Let D(C) ∈ DH(K). Then there are A ∈ K and a homomorphism h from A onto C. Let for all a, b ∈ A, h∗(a, b) =
(h(a), h(b)). We claim that h∗ is a homomorphism fromD(A) ontoD(C). That h∗ is anMV-homomorphism is clear.We verify

that h∗ is compatible with τA. We have h∗(τA(a, b)) = h∗(a, a) = (h(a), h(a)) = τC(h(a), h(b)) = τC(h
∗(a, b)). Finally,
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since h is onto, given (c, d) ∈ C × C, there are a, b ∈ A such that h(a) = c and h(b) = d. Hence, h∗(a, b) = (c, d), h∗ is

onto, and D(C) ∈ HD(K).
(2) Almost trivial.

(3) Let A = ∏
i∈I(Ai) ∈ P(K), where each Ai is in K. Then the map

Φ : ((ai : i ∈ I), (bi : i ∈ I)) �→ ((ai, bi) : i ∈ I)

is an isomorphism from D(A) onto
∏

i∈I D(Ai). Indeed, it is clear thatΦ is anMV-isomorphism.Moreover, denoting the state

morphism of
∏

i∈I D(Ai) by τ
∗, we get:

Φ(τA((ai : i ∈ I), (bi : i ∈ I))) = Φ((ai : i ∈ I), (ai : i ∈ I))

= ((ai, ai) : i ∈ I) = (τAi(ai, bi) : i ∈ I) = τ ∗(Φ((ai : i ∈ I), (bi : i ∈ I))),

and henceΦ is an SMMV-isomorphism.

(4) By (1), (2) and (3), DV(K) = DHSP(K) ⊆ HSPD(K) = VD(K), and hence ISDV(K) ⊆ ISVD(K) = VD(K).
Conversely, by Lemma 5.2(1),VD(K) ⊆ V(K)SMMV , and by Lemma 5.2(2),V(K)SMMV = ISDV(K). This settles the claim. �

Theorem 5.4. (1) For every MV-algebra A, V(D(A)) = V(A)SMMV .

(2) Let A and B be MV-algebras. Then V(D(A)) = V(D(B)) iff V(A) = V(B).
(3) The variety of all SMMV-algebras is generated by D([0, 1]MV ) as well as by any D(A) such that A generates the variety of

MV-algebras.

(4) Let C1 be Chang’s algebra and let C be the variety generated by it. Then CSMMV is generated by D(C1).

Proof. (1) By Lemma 5.3(4),VD(A) = V(D(A)) = ISD(V(A)). Moreover, by Lemma 5.2(2),V(A)SMMV = ISDV(A). Hence,
V(D(A)) = V(A)SMMV .

(2) We have V(D(A)) = V(A)SMMV and V(D(B)) = V(B)SMMV . Clearly, V(A) = V(B) implies V(A)SMMV = V(B)SMMV ,

andhenceV(D(A)) = V(D(B)). Conversely,V(D(A)) = V(D(B)) impliesV(A)SMMV = V(B)SMMV . But any algebraC ∈ V(A)
is the MV-reduct of an algebra in V(A)SMMV , namely, of (C, IdC), where IdC is the identity on C.

It follows that, if V(A)SMMV = V(B)SMMV , then the classes of MV-reducts of V(A)SMMV and of V(B)SMMV coincide, and

hence V(A) = V(B).
(3) Since V([0, 1]MV ) is the varietyMV of all MV-algebras, V(D([0, 1]MV )) isMVSMMV , that is, the variety of all SMMV-

algebras. The same argument holds if we replace [0, 1]MV by any MV-algebra which generates the whole varietyMV .
(4) Completely parallel to (3). �

Another consequence is the decidability of the variety SMMV of all SMMV-algebras.

Theorem 5.5. SMMV is decidable.

Proof. We associate to every term t(x1, . . . , xn) of SMMV-algebras a pair of terms t1, t2 whose variables are among

x11, x
2
1, . . . , x

1
n, x

2
n by induction as follows: If t is a variable, say, t = xi, then t1 = x1i and t2 = x2i ; if t = 0, then t1 = t2 = 0.

If t = ¬s, then t1 = ¬s1 and t2 = ¬s2; if t = s ⊕ u, then t1 = s1 ⊕ u1 and t2 = s2 ⊕ u2. Finally, if t = τ(s), then
t1 = t2 = s1. The following lemma is straightforward.

Lemma 5.6. Let a11, a
2
1, . . . , a

1
n, a

2
n, b

1, b2 ∈ [0, 1] and let t(x1, . . . , xn) be a term. Then the following are equivalent:

(1) t((a11, a
2
1), . . . , (a

1
n, a

2
n)) = (b1, b2) holds in D([0, 1]MV ).

(2) ti(a11, a
2
1, . . . , a

1
n, a

2
n) = bi, for i = 1, 2 holds in [0, 1]MV .

As a consequence, we obtain that an equation t = s holds identically in D([0, 1]MV ) iff t
1 = s1 and t2 = s2 hold

identically in [0, 1]MV . Since validity of an equation in [0, 1]MV is decidable, the equational logic of D([0, 1]MV ) is decidable,
and since D([0, 1]MV ) generates the whole variety of SMMV-algebras, the claim follows. �

6. Every subdirectly irreducible SMMV-algebra is subdiagonal

We are in a position to prove Theorem 3.9, stating that every subdirectly irreducible SMMV-algebra is subdiagonal

(subalgebra of a diagonal SMMV-algebra). We start from some easy facts.

First of all, any linearly ordered SMMV-algebra (A, τ ) is subdiagonal, being isomorphic to a subalgebra of (τ (A)×A, τ ∗),
with τ ∗(τ (a), a) = (τ (a), τ (a)). Next we prove that the variety of SMMV-algebras has CEP.

Lemma 6.1. The variety of SMMV-algebras has Congruence Extension Property.
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Proof. Let (A, τ ) ⊆ (B, τ )be SMMV-algebras and θ a congruence on (A, τ ). Thus, 1/θ is a τ -filter of (A, τ ). Bymonotonicity

of τ the upward closure (in B) of 1/θ is a τ -filter of (B, τ ), which restricts to 1/θ on (A, τ ). This proves the claim. �

The next lemma is also easy:

Lemma 6.2. The class of subdiagonal SMMV-algebras is closed under subalgebras and ultraproducts.

Proof. Closure under S is definitional. Closure under PU follows from the following facts:

(1) For every class K of algebras of the same type PUS(K) ⊆ SPU(K) (this is a well-known fact of Universal Algebra).

(2) Every ultraproduct (
∏

i∈I(Bi × Ci, τi))/U of diagonal SMMV-algebras is isomorphic to the diagonal SMMV-algebra

((
∏

i∈I Bi)/U × (
∏

i∈I Ci)/U, τU)), where τU((bi : i ∈ I)/U, (ci : i ∈ I)/U) = ((bi : i ∈ I)/U, (bi : i ∈ I)/U), with respect

to the isomorphism ((bi, ci) : i ∈ I)/U �→ ((bi : i ∈ I)/U, (ci : i ∈ I)/U). �

To deal with homomorphic images we need the following definition:

Definition 6.3. An SMMV-algebra (A, τ ) is said to be skewdiagonal if it has the form (B×C/ϕ, τ ), whereB and C areMV-chains,

B is a subalgebra of C, ϕ is a congruence of C and τ is defined τ(b, c/ϕ) = (b, b/ϕ) for all b ∈ B and c ∈ C.

The projection onto the first coordinate is a homomorphism from the skew-diagonal algebra (B× C/ϕ, τ ) onto (B, IdB).
Compatibility with τ is proved as follows: π1τ(b, c/ϕ) = π1(b, b/ϕ) = b = IdBπ1(b, c).

Lemma 6.4. Let (A, τ ) be a subdiagonal algebra with A ⊆ B × C, and θ a congruence on (A, τ ). Then there are MV-chains

D ⊆ E, and a congruence ϕ on E such that ( A, τ )/θ is subdirectly embedded into a skew-diagonal algebra (D × E/ϕ, τ ).

Proof. Clearly,wemay assume that the natural identity embeddingA ⊆ B×C is subdirect. By CEP, the congruence θ extends
to a congruence ψ on (B × C, τ ). Of course, ψ is also a congruence on the MV-reduct B × C. By congruence distributivity,

all congruences of finite products are product congruences, soψ = ψB × ψC for some congruencesψB on B andψC on C.

The congruencesψB andψC are defined as follows: (b, b′) ∈ ψB iff there are c, c
′ ∈ C such that ((b, c), (b′, c′)) ∈ ψ , and

(c, c′) ∈ ψC iff there are b, b′ ∈ B such that ((b, c), (b′, c′)) ∈ ψ . Denoting by θ1 and θ2 the congruences associated to the

projectionmaps, andusing congruencedistributivity,wehave: ((b, c), (b′, c′)) ∈ ψ iff ((b, c), (b′, c′)) ∈ (ψ∨θ1)∧(ψ∨θ2)
iff (b, b′) ∈ ψB and (c, c′) ∈ ψC , andψ = ψB × ψC . It follows:

(B × C)/ψ = B/ψB × C/ψC

and moreover, sinceψ is compatible with τ we obtain

τ(b, c)/ψ = (b, b)/ψ = (b/ψB, b/ψC).

Furthermore, ((b, 1), (1, 1)) ∈ ψ implies (τ (b, 1), τ (1, 1)) = ((b, b), (1, 1)) ∈ ψ . It follows that (b, 1) ∈ ψB implies

(b, 1) ∈ ψC . Letχ be the congruence of C generated byψB. Thenχ ⊆ ψC , and by the CEP,ψB = χ ∩B2. Now letD = B/ψB,

E = C/χ , ϕ = χ/ψC . Note that D and E are MV-chains. Moreover, by construction we have D ⊆ E, and hence

A/θ ⊆ (B × C)/ψ = B/ψB × C/ψC = D × E/ϕ

proving the claim for the MV-reducts of the appropriate algebras. In particular, the embedding is subdirect. Furthermore,

τ(b, c)/ψ = (b/ψB, b/ψC) = (b/ψB, (b/χ)/ϕ)

and the embedding lifts to the full type of SMMV. �

Lemma 6.5. Let (A, τ ) be a subdirectly irreducible SMMV-algebra, and suppose that (A, τ ) is a subalgebra of a skew diagonal

SMMV-algebra (B× C/ϕ, τ ∗), and that the identity MV-embedding of A into (B× C/ϕ) is subdirect. Then (A, τ ) is subdiagonal.

Proof. If for all b ∈ B, (b, 1) ∈ ϕ implies b = 1, then the map b �→ b/ϕ is one-one and B is (isomorphic to) a subalgebra of

C/ϕ. Hence,C/ϕ is anMV-chain andB is a subchain ofC/ϕ. It follows that (B×C/ϕ, τ ∗) is diagonal and (A, τ ) is subdiagonal.
Now suppose that (b, 1) ∈ ϕ for some b ∈ B \ {1}. Since A is a subdirect product of B × C/ϕ, there is c ∈ C such that

(b, c/ϕ) ∈ A. Moreover, τ(b, c/ϕ) = (b, b/ϕ) = (b, 1/ϕ) ∈ τ(A).
Now if (1, c/ϕ) ∈ A, then τ(1, c/ϕ) = (1, 1/ϕ) and hence (1, c/ϕ) ∈ Fτ (A). Clearly, (1, c/ϕ) ∨ (b, 1/ϕ) = (1, 1/ϕ),

and since τ(A) and Fτ (A) have the disjunction property, wemust have c/ϕ = 1/ϕ. Now Fτ (A) consists of all elements of the

form (1, c/ϕ), andhence it is the singleton of (1, 1/ϕ). On the other hand, Fτ (A) is thefilter associated to thehomomorphism

τ , and hence τ is an embedding and A is isomorphic to τ(A), which is in turn isomorphic to B via the map b �→ (b, b/ϕ).
Since B is linearly ordered, A is linearly ordered and hence subdiagonal. �

We can conclude the proof of Theorem 3.9.
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Proof. Let A be subdirectly irreducible. Since the variety of SMMV-algebras is generated by D([0, 1]MV ), and since SMMV-

algebras are congruence distributive, by Jónsson’s lemmaA belongs toHSPU(D([0, 1]MV )). Thus,A is a homomorphic image

of some B ∈ SPU(D([0, 1]MV )).
Now D([0, 1]MV ) is subdiagonal, and by Lemma 6.4 subdiagonal SMMV-algebras are closed under S and PU, so B is

subdiagonal as well. Then, since A is subdirectly irreducible, Lemma 6.5 applies, and we conclude that A is subdiagonal.

Hence, every subdirectly irreducible SMMV-algebra is subdiagonal. �

We end this section with an example showing that the class of subdiagonal SMMV-algebras is not closed under homo-

morphic images. Indeed, our example shows that not even the class of subdirectly irreducible subdiagonal SMMV-algebras

is closed under homomorphic images. Consider the diagonal algebra A = (C1 × C1, τC1). Here again C1 stands for Chang’s

algebra. The set F = {1}×Rad1(C1) is a τ -filter ofA. It is easy to see that the congruence θF corresponding to F is the smallest

non-trivial congruence onA, soA is subdirectly irreducible. It is not difficult to see that theMV-reduct of the quotient algebra

A/θF is isomorphic to C1 × 2, where 2 is the two-element Boolean algebra. The operation τ on this algebra is given by

τ(c, 1) = τ(c, 0) =
{
(c, 1) if c ∈ Rad1(C1)

(c, 0) if c /∈ Rad1(C1).

Lemma 6.6. The algebra A/θF is not subdiagonal.

Proof. If A/θF is subdiagonal then there exist linearly ordered MV-algebras D and E such that C1 ⊆ D, 2 ⊆ E and either

(D×E, τ ) is diagonal, or (E×D, τ ) is diagonal. Now, if (D×E, τ ) is diagonal, we have τ(d, e) = (d, d) for all (d, e) ∈ D×E.

In particular, (c, z) = (c, c) for any (c, z) ∈ C1 × 2. This fails for any c /∈ {0, 1}. Then, if (E × D, τ ) is diagonal, we have

τ(e, d) = (e, e) for all (e, d) ∈ E ×D. In particular, (z, c) = (z, z) for any (z, c) ∈ 2× C1. This again fails for any c /∈ {0, 1}.
Thus, A/θF is not subdiagonal. �

7. Varieties of SMMV-algebras

When studying a variety of universal algebras, an interesting problem is the investigation of the lattice of its subvarieties.

In the case of SMMV-algebras, we have a unique atom (above the trivial variety), namely, the variety BI of Boolean algebras

equippedwith the identical endomorphism. This variety is generated by the two element Boolean algebra equippedwith the

identity map. Since this algebra is a subalgebra of any non-trivial SMMV-algebra, BI is contained in any non-trivial variety

of SMMV-algebras.

Other varieties of SMMV-algebras are obtained as follows: let V be a variety of MV-algebras, let VSMMV denote the class

of algebras whose MV-reduct is in V , and VI denote the class of SMMV-algebras (A, IdA), where IdA is the identity on A and

A ∈ V . The following problem arises: given a variety V of MV-algebras, investigate the varieties of SMMV-algebras between

VI and VSMMV . To begin with, besides VI and VSMMV , we will discuss twomore kinds of subvarieties, namely, the subvariety

generated by all SMMV-chains in VSMMV (representable SMMV-algebras) and the subvariety generated by all algebras in

VSMMV whose MV-reduct is a local MV-algebra. The above classes will be denoted by VR and VL respectively. We consider

VSMMV and VI first. The following result is straightforward.

Theorem 7.1. (1) VSMMV is axiomatized over the axioms of SMMV-algebras by the defining equations of V .
(2) VI is axiomatized over VSMMV by the identity τ(x) = x.

(3) VI ⊆ VR, and the inclusion is proper if and only if V is not finitely generated.

(4) The maps V �→ VI and V �→ VSMMV are embeddings of the lattice of MV-varieties into the lattice of SMMV-varieties.

Proof. Claims (1) and (2) are immediate.

As regards to (3), since subdirectly irreducible algebras of type I are linearly orderedwehave thatVI ⊆ VR. IfV is finitely

generated, then VI = VR, because every MV-chain in V is finite, and its only endomorphism is the identity. Finally, if V is

not finitely generated, then it contains Chang’s algebra, C1. Let τ be defined for all x ∈ C1, by τ(x) = 0 if x is infinitesimal

and τ(x) = 1 otherwise. Then (C1, τ ) ∈ VR \ VI , and the inclusion VI ⊆ VR is proper.

Finally, claim (4) is almost immediate (using Theorem 5.4). �

Now we concentrate ourselves on VR.

Theorem 7.2. Representable SMMV-algebras constitute a proper subvariety of the variety of SMMV-algebras, which is character-

ized by the equation

(linτ ) τ (x) ∨ (x → (τ (y) ↔ y)) = 1.

Proof. We have to prove that a subdirectly irreducible SMMV-algebra (A, τ ) satisfies (linτ ) iff it is linearly ordered. Thus,

let (A, τ ) be a subdirectly irreducible SMMV-algebra.
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Suppose first that (A, τ ) satisfies (linτ ). We start from the following observation. Let z, u ∈ A. Then z → (τ (u) ↔ u) ∈
Fτ (A). Since τ(A) and Fτ (A) have the disjunction property, we have that either τ(z) = 1 or z ≤ τ(u) ↔ u. Now every

element u ∈ Fτ (A) is equal to τ(u) ↔ u, and vice versa every element of the form τ(u) ↔ u is in Fτ (A). It follows that if

τ(z) < 1, then z is a lower bound of Fτ (A).
Now assume, by way of contradiction, that x, y ∈ A are incomparable with respect to the order. We distinguish three

cases.

(i) If x → y ∈ Fτ (A) and y → x ∈ Fτ (A), then since Fτ (A) is linearly ordered and (x → y) ∨ (y → x) = 1, we must

have either x → y = 1 or y → x = 1, a contradiction.

(ii) If x → y /∈ Fτ (A) and y → x /∈ Fτ (A), then they are both lower bounds of Fτ (A), and hence 1 = (x → y)∨ (y → x)
is a lower bound of Fτ (A). But then Awould be isomorphic to τ(A), and hence it would be linearly ordered, a contradiction.

(iii) Finally, suppose x → y ∈ Fτ (A) and y → x /∈ Fτ (A) (or vice versa). Then y → x is a lower bound of Fτ (A), and
hence y → x ≤ x → y. But in any MV-algebra this is the case iff x ≤ y, and again a contradiction has been obtained.

Hence, (A, τ ) is linearly ordered. Conversely, if (A, τ ) is linearly ordered, then for all x, z such that τ(x) < 1 and τ(z) = 1,

we cannot have z < x, and hence we must have x ≤ z. Taking z = τ(y) ↔ y, we obtain that for all x either τ(x) = 1 or

x ≤ z, and (linτ ) holds.
Finally, representable SMMV-algebras constitute a proper subvariety of the variety of SMMV-algebras, because any sub-

directly irreducible SMMV-algebra of type D is not linearly ordered. �

Remark 7.3. According to [8, Prop. 3.6], if (A, τ ) is an SMV-algebra such that A is a chain, then (A, τ ) is an SMMV-algebra.

Hence, the class of all representable SMV-algebras satisfies (linτ ).We do not know whether every subdirectly irreducible

SMV-algebra satisfying (linτ ) has a linearly ordered MV-reduct.

Theorem 7.4. VR ⊆ VL, and the inclusion is proper if and only if V is not finitely generated.

Proof. Since every linearly ordered SMMV-algebra is local, the inclusion follows.Moreover, every local andfiniteMV-algebra

is linearly ordered, and hence for finitely generated MV-varieties the opposite inclusion also holds. On the other hand, if V
is not finitely generated, then it contains Chang’s algebra C1, and the subalgebra of D(C1) described in Example 4.5, is a local

subdirectly irreducible SMMV-algebra in VSMMV which is not linearly ordered. Hence, the inclusion VR ⊆ VL is proper. �

Next, we discuss varieties of the form VL.

Theorem 7.5. (1) The variety VL is axiomatized over VSMMV by the equation

(locτ ) ¬(τ (x) ↔ x) ≤ (τ (x) ↔ x).

(2) For any non-trivial variety V of MV-algebras, VL is a proper subvariety of VSMMV .

Proof. We start from the following lemma:

Lemma 7.6. Let A be a local MV-algebra and M be its only maximal filter. Then for every m ∈ M, ¬m ≤ m.

Proof. The claim follows from [4], where it is shown that if A is a non-trivial BL-algebra and a, b ∈ Rad(A), then a ≤ ¬b. �

We continue the proof of Theorem 7.5. In order to prove claim (1), it suffices to prove that an SMMV-algebra is subdirectly

irreducible iff it satisfies (locτ ). Now in every SMMV-algebrawe have τ(τ (x) ↔ x) = 1, and hence τ(x) ↔ x ∈ Fτ (A) ⊆ M,

where M denotes the unique maximal filter of A. Then Lemma 7.6 implies that every subdirectly irreducible local SMMV-

algebra satisfies (locτ ). Before proving the converse, we prove claim (2).

Let A be a non-trivial chain in V . Then (locτ ) is invalidated in D(A), taking x = (1, 0). We have τ(x) = (1, 1), τ(x) ↔
x = (1, 0), and

¬(τ (x) ↔ x) = (0, 1) �≤ (1, 0) = ¬(τ (x) ↔ x).

This settles the claim.

In order to prove the opposite direction of claim (1), note that every subdirectly irreducible SMMV-algebra is either of

type I (in which case it is local) or of type L (in which case, once again it is local) or of type D. In the last case the proof of

(2) shows that it does not satisfy (locτ ). Hence if a subdirectly irreducible SMMV-algebra satisfies (locτ ) it is local. �

Another interesting problem in the study of the lattice of subvarieties of a variety is the investigation of covers of a given

subvariety (if any). For instance, one may wonder what are the covers of BI . We note that, for any variety defined by a

finite set of equations (such as BI), every variety which properly contains it it contains a cover of it. A partial answer to this

question is provided by the following theorem:
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Theorem 7.7. Let V and W be varieties of MV-algebras. If W is a cover of V , then WI is a cover of VI . Hence, if W is generated

either by Sp for some prime number p or by Chang’s algebra C1, then WI is a cover of BI .

Proof. If (A, τ ) ∈ WI \ VI , then since τ is forced to be the identity, we must have A ∈ W \ V , and since W is a cover of V ,
the variety generated by {A} ∪ V isW , and hence the variety generated by {(A, τ )} ∪ VI is WI , and the claim follows. �

Remark 7.8. Varieties VI , where V is a cover of the Boolean variety B, do not exhaust the covers of BI . Another cover is
BSMMV . Indeed, any subdirectly irreducible SMMV-algebra (A, τ ) in BSMMV \ BI must have a Boolean reduct and cannot be

of type I or L, otherwise τ would be identical. Hence, it must be of type D and D(S1) is a subalgebra of (A, τ ). Therefore,
(A, τ ) generates the whole variety BSMMV .

Theorem 7.7 suggests the following problem:

Problem 2. Let V be a variety of MV-algebras and let V ′ be a cover of V . Is it true that V ′
SMMV is a cover of VSMMV? Or,

equivalently, is VD(V) a cover of VD(V ′)?
The answer to these questions is no, in general. Here is a sample of counterexamples.

(1) Let V be the variety of Boolean algebras and V ′ be the variety generated by Chang’s algebra. Then V ′ is a cover of V .
However, there is an intermediate variety between VSMMV and V ′

SMMV , namely, the subvariety V ′′
SMMV of V ′

SMMV axiomatized

by the equation

(∗) τ (x) ∨ τ(¬x) = 1.

Indeed, clearly the equation (∗) holds in any Boolean SMMV-algebra. Moreover, there is an algebra in V ′
SMMV which

satisfies (∗) and its reduct is not a Boolean algebra, namely, Chang’s algebra C1 with τ defined by τ(x) = 0 if x ∈ Rad(C1)
and τ(x) = 1 otherwise.

Finally, there is an algebra in V ′
SMMV which does not satisfy (∗), namely, the diagonalization, D(C1), of Chang’s algebra.

Indeed, if c ∈ Rad(C1)\{0}, then τ(c, c) = (c, c) and τ(¬(c, c)) = (¬c,¬c). Hence, τ(c, c)∨τ(¬(c, c)) = (¬c,¬c) < 1.

(2) Let V = V(Si1 , . . . , Sin) and V ′ = V(Si1 , . . . , Sin , C1) for some integers 1 ≤ i1 < · · · < in. Then V ′ is a cover variety

of V. Define V ′′
SMMV as the class of all (A, τ ) ∈ V ′ such that τ(A) ∈ V.

Then VSMMV ⊆ V ′′
SMMV ⊆ V ′. But if τ is as in (1), then (C1, τ ) ∈ V ′′

SMMV \ VSMMV and D(C1) ∈ V ′
SMMV \ V ′′

SMMV .
(3) Define on Cn × Cn a map τn(i, j) = (i, 0) for all (i, j) ∈ Cn, then (Cn, τn) is an SMMV-algebra.

Let 1 = i1 < · · · < in and 1 = j1 < · · · < jk with k ≥ 2 be finite sets of integers such that every js does not divide any

jt with 1 < js < jt and fix an index j0 ∈ J := {j1, . . . , jk} with j0 ≥ 2 such that j0 ∈ I := {i1, . . . , ik}.
Let V ′ = V({Si, Cj : i ∈ I, j ∈ J}) and V = V({Si, Cj : i ∈ I, j ∈ J \ {j0}}). Set V ′′

SMMV as the class of (A, τ ) ∈ V ′
SMMV such

that τ(A) ∈ V. Then (Cj0 , τj0) ∈ V ′′
SMMV \ VSMMV and D(Cj0) ∈ V ′

SMMV \ V ′′
SMMV .

(4) Let V ′ = V(Si1 , . . . , Sin), where 1 = i1 < · · · < in, n ≥ 2 and every is does not divide any it with 1 < is < it . Let
i0 ∈ {i2, . . . , in} be fixed and let V = V(Si : i ∈ {i1, . . . , in} \ i0). Then V ′ is a cover of V. Let V ′′ be the variety generated

by VSMMV and (Si0 , IdSi0 ). Then VSMMV ⊂ V ′′ ⊂ V ′
SMVV because (Si0 , IdSi0 ) ∈ V ′′ \ VSMMV and D(Si0) ∈ V ′

SMMV \ V ′′.
(5) Let V ′ = V(Cj1 , . . . , Sjk), where 1 = i1 < · · · < ik, k ≥ 2 and every js does not divide any jt with 1 < js < jt . Let

j0 ∈ {j2, . . . , jn} be fixed and let V = V(Cj : j ∈ {j1, . . . , jk} \ j0). Let V ′′ be the variety generated by VSMMV and (Si0 , τ ).

Then VSMMV ⊂ V ′′ ⊂ V ′
SMVV because (Cj0 , IdCj0 ) ∈ V ′′ \ VSMMV and D(Cj0) ∈ V ′

SMMV \ V ′′.

The above examples offer several interesting methods for obtaining intermediate varieties. But the fact that if W is an

MV-cover of V , thenWSMMV need not be a cover of VSMMV can be strengthened:

Theorem 7.9. If W properly contains V , then the join, VSMMV ∨ WI , of VSMMV and WI , is a proper extension of VSMMV and a

proper subvariety ofWSMMV . Hence, WSMMV can never be a cover of VSMMV .

Proof. Inclusions are clear. Moreover, if A ∈ W \ V , then (A, IdA) ∈ (WI ∨ VSMMV) \ VSMMV, and hence the first inclusion

is proper. In order to prove that also the inclusion (WI ∨ VSMMV ) ⊆ WSMMV , consider an MV-identity η(x) = 1 which

axiomatizes V over W , and set

(εV ) η(x) ∨ (τ (y) ↔ y) = 1.

Clearly, (εV ) holds both in VSMMV and in WI , and hence it holds in VSMMV ∨ WI . Now take a subdirectly irreducible

MV-algebra A ∈ W \ V . Then D(A) ∈ WSMMV , but it is readily seen that (εV ) is not valid in D(A), and also the inclusion

(VSMMV ∨ WI) ⊆ WSMMV is proper. �

It follows that Problem 2 should be replaced by the following:

Problem 3. Suppose thatW is an MV-cover of V . Is it true thatWI ∨ VSMMV is a cover of VSMMV?
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According to Komori, [5, Theorem 8.4.4], the lattice of subvarieties of the variety of MV-algebras is countable. Now we

investigate the number of varieties of SMMV-algebras, andwe prove that there are uncountablymany of them. Let [0, 1]∗ be

an ultrapower of theMV-algebra on [0, 1], and let us fix a positive infinitesimal ε ∈ [0, 1]∗. For every setX of primenumbers,

we denote by A(X) the subalgebra of [0, 1]∗ generated by ε and by the set of all rational numbers n
m

with 0 ≤ n ≤ m, and

m > 0 such that:

(1) either n = 0 or gcd(n,m) = 1;

(2) for all p ∈ X , p does not divide m.

Note that for all x ∈ A(X), the standard part of x is a rational number n
m

satisfying (1) and (2). Indeed the set of rational

numbers satisfying (1) and (2) is closed under all MV-operations.

On A(X)we define τ(x) to be the standard part of x. Note that τ is an idempotent homomorphism from A(X) into itself,

and hence (A(X), τ ) is a linearly ordered SMMV-algebra.

Lemma 7.10. If X and Y are distinct sets of primes, then A(X) and A(Y) generate different varieties.

Proof. Without loss of generality, we may assume that there is a prime p such that p ∈ X\Y . Consider the equations:

(ap) (p − 1)x ↔ ¬x = 1

(bp) τ((p − 1)x) ↔ τ(¬x) = 1

(cp) (τ ((p − 1)x) ↔ τ(¬x))2 ≤ ((p − 1)x ↔ ¬x).

The following claims are easy to prove, recalling that 1
p

∈ A(Y)\A(X):

Claim 1. Eq. (ap) has no solution in (A(X), τ ), and its only solution in (A(Y), τ ) is 1
p
.

Claim 2. Eq. (bp) has no solution in (A(X), τ ), and its solutions in (A(Y), τ ) are precisely those real numbers in A(Y) whose

standard part is 1
p
.

Claim 3. In both (A(X), τ ) and (A(Y), τ ), for every x, τ((p − 1)x) ↔ τ(¬x) is the standard part of (p − 1)x ↔ ¬x.

Now consider the equation (cp).

Claim 4. Eq. (cp) is valid in (A(X), τ ) and it is not valid in (A(Y), τ ).

Proof of Claim 4. Let x ∈ A(X), let α = τ((p − 1)x) ↔ τ(¬x) and β = (p − 1)x ↔ ¬x. By Claims 2 and 3, α is a real

number strictly less than 1, and differs from β by an infinitesimal. Hence, α2 is either 0 or a real strictly smaller than α, and hence

it is smaller than β . It follows that (cp) holds in (A(X), τ ).

Nowwe prove that equation (cp) is not valid in (A(Y), τ ). Let x = 1
p
+ε. Then x ∈ A(Y). Moreover, by Claim 2, τ((p−1)x) ↔

τ(¬x) = (τ ((p − 1)x) ↔ τ(¬x))2 = 1, and by Claim 1,

(p − 1)x ↔ ¬x = (
1

p
− (p − 1)ε)+ (1 − 1

p
− ε) = 1 − pε < 1.

Thus, Eq. (cp) is not valid in A(Y). This concludes the proof of Claim 4, and hence of Lemma 7.10. �

We can say more:

Theorem 7.11. Let MV denote the variety of all MV-algebras. Then there are uncountably many varieties between MVI and

MVR.

Proof. Consider, for every set X of prime numbers, the variety V(X) axiomatized by (linτ ) and by all equations (cp) with

p ∈ X . Clearly, A(X) ∈ V(X) for every set X of primes. By Lemma 7.10, different sets of primes originate different varieties,

and hence there is a continuum of varieties of the form V(X). Moreover, both equations (linτ ) and (cp) hold in all SMMV-

algebras of type I , and hence MVI ⊆ V(X) for any set X of primes. Finally, since (linτ ) is an axiom of every V(X), we have

V(X) ⊆ MVR. �

Corollary 7.12. There are varieties of representable SMMV-algebraswhich are not recursively axiomatizable, andhence not finitely

axiomatizable.
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