International Journal of Approximate Reasoning 52 (2011) 1215-1228

Contents lists available at SciVerse ScienceDirect

International Journal of Approximate Reasoning

journal homepage:www.elsevier.com/locate/ijar

State morphism MV-algebras[☆]

Anatolij Dvurečenskij^{a,*}, Tomasz Kowalski^b, Franco Montagna^c

^a Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, SK-814 73 Bratislava, Slovakia

^b Department of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia

^c Università Degli Studi di Siena, Dipartimento di Scienze Matematiche e Informatiche "Roberto Magari", Pian dei Mantellini 44, I-53100 Siena, Italy

ARTICLE INFO

Article history: Received 3 February 2011 Revised 10 May 2011 Accepted 11 July 2011 Available online 28 July 2011

Keywords: MV-algebra State MV-algebra State morphism MV-algebra Varieties Subdirectly irreducible algebra Cover variety

1. Introduction

States on MV-algebras have been introduced by Mundici in [18]. A *state* on an MV-algebra **A** is a map *s* from *A* into [0, 1] such that:

(a) s(1) = 1, and

(b) if $x \odot y = 0$, then $s(x \oplus y) = s(x) + s(y)$.

Special states are the so called [0, 1]-valuations on **A**, that is, the homomorphisms from **A** into the standard MV-algebra $[0, 1]_{MV}$ on [0, 1].

States are related to [0, 1]-valuations by two important results. First of all, [0, 1]-valuations are precisely the *extremal states*, that is, those states that cannot be expressed as non-trivial convex combinations of other states. Moreover, by the Krein-Milman Theorem, every state belongs to the convex closure of the set of all [0, 1]-valuations with respect to the topology of weak convergence. Finally, every state coincides locally with a convex combination of [0, 1]-valuations (see [19, 16]). More precisely, given a state *s* on an MV-algebra **A** and given elements a_1, \ldots, a_n of *A*, there are n + 1 extremal states s_1, \ldots, s_{n+1} and n + 1 elements $\lambda_1, \ldots, \lambda_{n+1}$ of [0, 1] such that $\sum_{h=1}^{n+1} \lambda_h = 1$ and for $j = 1, \ldots, n, \sum_{i=1}^{n+1} \lambda_i s_i(a_j) = s(a_j)$. Another important relation between states and [0, 1]-valuations is the following: let X_A be the set of [0, 1]-valuations

Another important relation between states and [0, 1]-valuations is the following: let X_A be the set of [0, 1]-valuations on **A**. Then X_A becomes a compact Hausdorff subspace of $[0, 1]^A$ equipped with the Tychonoff topology. To every element a of A we can associate its Gelfand transform \hat{a} from X_A into [0, 1], defined for all $v \in X_A$, by $\hat{a}(v) = v(a)$. Now Panti [20] and Kroupa [14] independently showed that to any state s on **A** it is possible to associate a (uniquely determined) Borel regular probability measure μ on X_A such that for all $a \in A$ one has $s(a) = \int \hat{a} d\mu$. Hence, every state has an integral representation.

* Corresponding author.

ABSTRACT

We present a complete characterization of subdirectly irreducible MV-algebras with internal states (SMV-algebras). This allows us to classify subdirectly irreducible state morphism MV-algebras (SMMV-algebras) and describe single generators of the variety of SMMV-algebras, and show that we have a continuum of varieties of SMMV-algebras.

© 2011 Elsevier Inc. All rights reserved.

^{*} AD thanks for the support by Center of Excellence SAS – Quantum Technologies – ERDF OP R&D Projects CE QUTE ITMS 26240120009 and meta-QUTE ITMS 26240120022, the Grant VEGA No. 2/0032/09 SAV, and by Slovak-Italian project SK-IT 0016-08.

E-mail addresses: dvurecen@mat.savba.sk (A. Dvurečenskij), kowatomasz@gmail.com (T. Kowalski), montagna@unisi.it (F. Montagna).

⁰⁸⁸⁸⁻⁶¹³X/\$ - see front matter © 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.ijar.2011.07.003

Yet another important result motivating the use of states, related to de Finetti's interpretation of probability in terms of bets, is Mundici's characterization of coherence [19]. That is, given an MV-algebra **A**, given $a_1, \ldots, a_n \in A$ and $\alpha_1, \ldots, \alpha_n \in [0, 1]$, the following are equivalent:

(1) There is a state *s* on **A** such that, for i = 1, ..., n, $s(a_i) = \alpha_i$.

(2) For every choice of real numbers $\lambda_1, \ldots, \lambda_n$ there is a [0, 1]-valuation ν such that $\sum_{i=1}^n \lambda_i(\alpha_i - \nu(a_i)) \ge 0$.

These results show that the notion of state on an MV-algebra is a very important notion and the first one shows an important connection between states and [0, 1]-valuations. However, MV-algebras with a state are not universal algebras, and hence they do not provide for an algebraizable logic in the sense of [1] for reasoning on probability over many-valued events.

In [11] the authors find an algebraizable logic for this purpose, whose equivalent algebraic semantics is the variety of SMV-algebras. An SMV-algebra (see the next section for a precise definition) is an MV-algebra **A** equipped with an operator τ whose properties resemble the properties of a state, but, unlike a state, is an internal unary operation (called also an *internal state*) on **A** and not a map from *A* into [0, 1]. The analogue for SMV-algebras of an extremal state (or equivalently of a [0, 1]-valuation) is the concept of *state morphism*. By this terminology we mean an idempotent endomorphism from **A** into **A**. MV-algebras equipped with a state morphism form a variety, namely, the variety of SMMV-algebras, which is a subvariety of the variety of SMV-algebras. The following are some motivations for the study of SMMV-algebras:

(1) Let (\mathbf{A}, τ) be an SMV-algebra, and assume that $\tau(\mathbf{A})$, the image of \mathbf{A} under τ , is simple. Then $\tau(\mathbf{A})$ is isomorphic to a subalgebra of $[0, 1]_{MV}$, and τ may be regarded as a state on \mathbf{A} . Moreover, by Di Nola's theorem [6], \mathbf{A} is isomorphic to a subalgebra of $[0, 1]^{*l}$ for some ultrapower $[0, 1]^*$ of $[0, 1]_{MV}$ and for some index set *I*. Finally, using a result by Kroupa [15] stating that any state on a subalgebra \mathbf{A} of an MV-algebra \mathbf{B} can be extended to a state on \mathbf{B} , we obtain that τ can be extended to a state τ^* on $[0, 1]^{*l}$. Note that, after identifying a real number $\alpha \in [0, 1]$ with the function on *I* which is constantly equal to α , τ^* is also an internal state, and it makes $[0, 1]^{*l}$ into an SMV-algebra. Moreover, by the Krein–Milman theorem, for every real number $\varepsilon > 0$ there is a convex combination $\sum_{i=1}^{n} \lambda_i v_i$ of [0, 1]-valuations v_1, \ldots, v_n such that for every $a \in A$, $|\tau(a) - \sum_{i=1}^{n} \lambda_i v_i(a)| < \varepsilon$. After identifying $v_i(a)$ with the function from *I* into $[0, 1]^*$ which is constantly equal to $v_i(a)$, these valuations can be regarded as idempotent endomorphisms on $[0, 1]^{*l}$, and hence each of them makes $[0, 1]^{*l}$ into an SMV-algebra. Summing up, if (\mathbf{A}, τ) is an SMV-algebra and $\tau(\mathbf{A})$ is simple, then τ can be approximated by convex combinations of state morphisms on (an extension of) \mathbf{A} .

(2) All subdirectly irreducible SMMV-algebras were described in [7,9], but the description of all subdirectly irreducible SMV-algebras remains open, [11].

(3) As shown in [8], if (\mathbf{A} , τ) is an SMV-algebra and τ (\mathbf{A}) belongs to a finitely generated variety of MV-algebras, then (\mathbf{A} , τ) is an SMMV-algebra. In particular, MV-algebras from a finitely generated variety only admit internal states which are state morphisms.

(4) A linearly ordered SMV-algebra is an SMMV-algebra, [8]. Moreover, we will see that representable SMV-algebras form a variety which is a subvariety of the variety of SMMV-algebras.

The goal of the present paper is to continue in the algebraic investigations on SMMV-algebras which begun in [8] and in [7,9].

The paper is organized as follows. After preliminaries in Section 2, we give in Section 3 a complete characterization of subdirectly irreducible SMV-algebras. This solves an open problem posed in [11]. In Section 4 we present a classification of subdirectly irreducible SMMV-algebras introducing four types of subdirectly irreducible SMMV-algebras. In Section 5, we describe some prominent varieties of SMMV-algebras and their generators. In particular, we answer in the positive to an open question from [7] that the diagonalization of the real interval [0, 1] generates the variety of SMMV-algebras. Section 6 shows that every subdirectly irreducible SMMV-algebra is subdiagonal. Finally, Section 7 describes an axiomatization of some varieties of SMMV-algebras, including a full characterization of representable SMMV-algebras. We show that in contrast to MV-algebras, there is a continuum of varieties of SMMV-algebras. In addition, some open problems are formulated.

2. Preliminaries

For all concepts of Universal Algebra we refer to [2]. For concepts of many-valued logic, we refer to [12], for MV-algebras in particular, we will also refer to [5], and for reasoning about uncertainty, we refer to [13].

Definition 2.1. An *MV*-algebra is an algebra $\mathbf{A} = (A, \oplus, \neg, 0)$, where $(A, \oplus, 0)$ is a commutative monoid, \neg is an involutive unary operation on A, $1 = \neg 0$ is an absorbing element, that is, $x \oplus 1 = 1$, and letting $x \to y = (\neg x) \oplus y$, the identity $(x \to y) \to y = (y \to x) \to x$ holds.

In any MV-algebra **A**, we further define $x \odot y = \neg(\neg x \oplus \neg y)$, $x \ominus y = \neg(\neg x \oplus y)$, $x \lor y = (x \to y) \to y$, $x \land y = x \odot (x \to y)$, and $x \leftrightarrow y = (x \to y) \odot (y \to x)$. With respect to \lor and \land , **A** becomes a distributive lattice with top element 1 and bottom element 0.

We also define *nx* for $x \in \mathbf{A}$ and natural number *n* by induction as follows: 0x = 0; $(n + 1)x = nx \oplus x$.

MV-algebras constitute the equivalent algebraic semantics of *Łukasiewicz logic* Ł, cf. [12] for an axiomatization.

The *standard MV-algebra* is the MV-algebra $[0, 1]_{MV} = ([0, 1], \oplus, \neg, 0)$, where $r \oplus s = \min\{r + s, 1\} \neg r = 1 - r$. For the derived operations one has:

$$r \ominus s = \max\{r - s, 0\}, r \odot s = \max\{r + s - 1, 0\}, r \to s = \min\{1 - r + s, 1\},$$

 $r \lor s = \max\{r, s\}, r \land s = \min\{r, s\}.$

The variety of all MV-algebras is generated as a quasi variety by $[0, 1]_{MV}$. It follows that in order to check the validity of an equation or a quasi equation in all MV-algebras, it is sufficient to check it in $[0, 1]_{MV}$. We will tacitly use this fact in the sequel.

Definition 2.2. A filter of an MV-algebra **A** is a subset *F* of *A* such that $1 \in F$ and if *a* and $a \rightarrow b$ are in *F*, then $b \in F$.

Dually, an *ideal* of **A** is a subset *J* of *A* such that $0 \in J$ and if *a* and $b \ominus a$ are in *J*, then $b \in J$. A filter *F* (an ideal *J* respectively) of **A** is called *proper* if $0 \notin F$ ($1 \notin J$ respectively) and *maximal* if it is proper and it is not properly contained in any proper filter (ideal respectively). The radical, *Rad*(**A**), of **A**, is the intersection of all its maximal ideals, and the co-radical, *Rad*₁(**A**), of **A** is the intersection of all its maximal ideals, and the co-radical, *Rad*₁(**A**), of **A** is the intersection of all its maximal filters. An MV-algebra **A** is called *semisimple* if *Rad*(**A**) = {0}, and is called *local* if it has exactly one maximal filter.

It is well-known (and easy to prove) that an MV-algebra **A** is semisimple iff $Rad_1(\mathbf{A}) = \{1\}$, and it is local iff it has exactly one maximal filter.

Both the lattice of ideals and the lattice of filters of an MV-algebra **A** are isomorphic to its congruence lattice via the isomorphisms $\theta \mapsto \{a \in A : (a, 0) \in \theta\}$ and $\theta \mapsto \{a \in A : (a, 1) \in \theta\}$, respectively. The inverses of these isomorphisms are: $J \mapsto \{(a, b) \in A^2 : \neg(a \leftrightarrow b) \in J\}$ and $F \mapsto \{(a, b) \in A^2 : a \leftrightarrow b \in F\}$, respectively.

It follows that an MV-algebra is semisimple iff it has a subdirect embedding into a product of simple MV-algebras.

Definition 2.3. A Wajsberg hoop is a subreduct (subalgebra of a reduct) of an MV-algebra in the language $\{1, \odot, \rightarrow\}$.

Definition 2.4. A *lattice ordered abelian group* is an algebra $\mathbf{G} = (G, +, -, 0, \vee, \wedge)$ such that (G, +, -, 0) is an abelian group, (G, \vee, \wedge) is a lattice, and for all $x, y, z \in G$, one has $x + (y \vee z) = (x + y) \vee (x + z)$.

A strong unit of a lattice ordered abelian group **G** is an element $u \in G$ such that for all $g \in G$ there is $n \in \mathbf{N}$ such that $g \leq u + \cdots + u$.

n times

If **G** is a lattice-ordered abelian group and *u* is a strong unit of **G**, then $\Gamma(\mathbf{G}, u)$ denotes the algebra **A** whose universe is $\{x \in G : 0 \le x \le u\}$, equipped with the constant 0 and with the operations \oplus and \neg defined by $x \oplus y = (x + y) \land u$ and $\neg x = u - x$. It is well-known [17] that $\Gamma(\mathbf{G}, u)$ is an MV-algebra, and every MV-algebra can be represented as $\Gamma(\mathbf{G}, u)$ for some lattice ordered abelian group **G** with strong unit *u*.

In the sequel, $\mathbf{Z} \times_{\text{lex}} \mathbf{Z}$ denotes the direct product of two copies of the group \mathbf{Z} of integers, ordered lexicographically, i.e., $(a, b) \leq (c, d)$ if either a < c or a = c and $b \leq d$. For every positive natural number n, \mathbf{S}_n and \mathbf{C}_n denote $\Gamma(\mathbf{Z}, n)$ and $\Gamma(\mathbf{Z} \times_{\text{lex}} \mathbf{Z}, (n, 0))$ respectively. The algebra \mathbf{C}_1 , that is $\Gamma(\mathbf{Z} \times_{\text{lex}} \mathbf{Z}, (1, 0))$, is also referred to as Chang's algebra (cf. [3]).

Definition 2.5. A state on an MV-algebra **A** (cf. [18]) is a map *s* from *A* into [0, 1] satisfying:

(1) s(1) = 1. (2) $s(x \oplus y) = s(x) + s(y)$ for all $x, y \in A$ such that $x \odot y = 0$.

Definition 2.6. An *MV*-algebra with an internal state (SMV-algebra in the sequel) is an algebra (\mathbf{A} , τ) such that:

(a) **A** is an MV-algebra.

(b) τ is a unary operation on **A** satisfying the following equations:

(b₁) $\tau(1) = 1$.

(b₂) $\tau(x \oplus y) = \tau(x) \oplus \tau(y \ominus (x \odot y)).$

(b₃) $\tau(\neg x) = \neg \tau(x)$.

(b₄) $\tau(\tau(x) \oplus \tau(y)) = \tau(x) \oplus \tau(y)$.

An operator τ is said to be also an *internal state*. An operator τ is *faithful* if $\tau(a) = 1$ implies a = 1. A *state morphism MV-algebra* (*SMMV-algebra* for short) is an SMV-algebra further satisfying:

(c) $\tau(x \oplus y) = \tau(x) \oplus \tau(y)$.

The following facts are easily provable:

Lemma 2.7 (see [11,8]). (1) In an SMV-algebra (\mathbf{A} , τ), the following conditions hold:

- (1a) $\tau(0) = 0$.
- (1b) If $x \odot y = 0$, then $\tau(x) \odot \tau(y) = 0$ and $\tau(x \oplus y) = \tau(x) \oplus \tau(y)$.
- (1c) $\tau(\tau(x)) = \tau(x)$.
- (1d) Let $\tau(A) := \{\tau(a) : a \in A\}$. Then $\tau(A) = (\tau(A), \oplus, \neg, 0)$ is an MV-subalgebra of A, and τ is the identity on it.
- (1e) If $x \le y$, then $\tau(x) \le \tau(y)$.
- (1f) $\tau(x) \odot \tau(y) \le \tau(x \odot y)$.
- (1g) $\tau(x \to y) = \tau(x) \to \tau(x \land y)$.
- (1h) If (\mathbf{A}, τ) is subdirectly irreducible, then $\tau(\mathbf{A})$ is linearly ordered.

(2) The following conditions on SMMV-algebras hold:

- (2a) In an SMMV-algebra $(\mathbf{A}, \tau), \tau(\mathbf{A})$ is a retract of \mathbf{A} , that is, τ is a homomorphism from \mathbf{A} onto $\tau(\mathbf{A})$, the identity map is an embedding from $\tau(\mathbf{A})$ into \mathbf{A} , and the composition $\tau \circ \mathrm{Id}_{\tau(A)}$, that is, the restriction of τ to $\tau(\mathbf{A})$ is the identity on $\tau(\mathbf{A})$.
- (2b) An algebra (\mathbf{A}, τ) is an SMMV-algebra iff \mathbf{A} is an MV-algebra and τ is an idempotent endomorphism on \mathbf{A} .

(2c) An SMV-algebra (A, τ) is an SMMV-algebra iff it satisfies $\tau(x \lor y) = \tau(x) \lor \tau(y)$ iff it satisfies $\tau(x \land y) = \tau(x) \land \tau(y)$. (2d) Any linearly ordered SMV-algebra is an SMMV-algebra.

3. Subdirectly irreducible SMV-algebras

In this section we characterize and classify subdirectly irreducible SMV-algebras which answers to an open problem posed in [11]. Our result also characterizes subdirectly irreducible SMMV-algebras.

Definition 3.1. Let (\mathbf{A}, τ) be any SMV-algebra. Any filter F of \mathbf{A} such that $\tau(F) \subseteq F$ is said to be a τ -filter.

Clearly, $F_{\tau}(A)$ is a τ -filter of A, and hence $F_{\tau}(A) = (F_{\tau}(A), \rightarrow, 0, 1)$ is a Wajsberg subhoop of A. Say that two Wajsberg subhoops, B and C, of an MV-algebra A have the disjunction property if for all $x \in B$ and $y \in C$, if $x \lor y = 1$, then either x = 1 or y = 1.

We recall that τ -filters are in a bijection with SMV-congruences, and hence an SMV-algebra is subdirectly irreducible iff it has a minimum τ -filter.

Lemma 3.2. Suppose that (\mathbf{A}, τ) is a subdirectly irreducible SMV-algebra. Then:

- (1) If $F_{\tau}(A) = \{1\}$, then $\tau(A)$ is subdirectly irreducible.
- (2) $F_{\tau}(A)$ is (either trivial or) a subdirectly irreducible hoop.
- (3) $F_{\tau}(A)$ and $\tau(A)$ have the disjunction property.

Proof. Let *F* denote the minimum τ -filter of (**A**, τ).

(1) Suppose $F_{\tau}(A) = \{1\}$. If $\tau(A) \cap F \neq \{1\}$, then $\tau(A) \cap F$ is the minimum non-trivial filter of $\tau(A)$ and $\tau(A)$ is subdirectly irreducible. If $\tau(A) \cap F = \{1\}$, then for all $x \in F$, $\tau(x) = 1$ (because $\tau(x) \in \tau(A) \cap F$) and $F \subseteq F_{\tau}(A) = \{1\}$ is the trivial filter, a contradiction.

(2) Suppose that $\mathbf{F}_{\tau}(\mathbf{A})$ is non-trivial. Then $F_{\tau}(A)$ is a non-trivial τ -filter. If (\mathbf{A}, τ) is subdirectly irreducible, it has a minimum non-trivial τ -filter, F say. So, $F \subseteq F_{\tau}(A)$, and hence F is the minimum non-trivial filter of $\mathbf{F}_{\tau}(\mathbf{A})$. Hence, $\mathbf{F}_{\tau}(\mathbf{A})$ is subdirectly irreducible.

(3) Suppose, by way of contradiction, that for some $x \in F_{\tau}(A)$ and $y = \tau(y) \in \tau(A)$ one has x < 1, y < 1 and $x \lor y = 1$. Then since the MV-filters generated by x and by y, respectively, are τ -filters (easy to verify), they both contain F. Hence, the intersection of these filters contains F. Now let c < 1 be in F. Then there is a natural number n such that $x^n \le c$ and $y^n \le c$. It follows that $1 = (x \lor y)^n = x^n \lor y^n \le c$, a contradiction. \Box

Corollary 3.3. If (\mathbf{A}, τ) is subdirectly irreducible, then $\tau(\mathbf{A})$ and $\mathbf{F}_{\tau}(\mathbf{A})$ are linearly ordered.

Proof. That $\tau(\mathbf{A})$ is linearly ordered follows from [11]. As regards to $\mathbf{F}_{\tau}(\mathbf{A})$, by Lemma 3.2, $\mathbf{F}_{\tau}(\mathbf{A})$ is a (possibly trivial) subdirectly irreducible Wajsberg hoop, and hence it is linearly ordered. \Box

Theorem 3.4. Suppose that (\mathbf{A}, τ) is an SMV-algebra satisfying conditions (1)–(3) in Lemma 3.2. Then (\mathbf{A}, τ) is subdirectly irreducible, and hence, the above conditions constitute a characterization of subdirectly irreducible SMV-algebras.

Proof. Claim. Let *F* be the MV-filter of *A* generated by a filter F_0 of $\tau(A)$. Then *F* is a τ -filter. Indeed, if $x \in F$, then there are $\tau(a) \in F_0$ and a natural number *n* such that $\tau(a)^n \leq x$. It follows that $\tau(x) \geq \tau(\tau(a)^n) = \tau(a)^n$, and $\tau(x) \in F$.

1219

Now suppose first that $F_{\tau}(A) = \{1\}$ and that $\tau(\mathbf{A})$ is subdirectly irreducible. Let F_0 be the minimum non-trivial filter of $\tau(\mathbf{A})$ and let F be the MV-filter of \mathbf{A} generated by F_0 . By Claim 1, F is a τ -filter. We claim that F is the minimum non-trivial τ -filter of (\mathbf{A}, τ) . Let G be a non-trivial τ -filter of (\mathbf{A}, τ) , and let $G_0 = \tau(G) = G \cap \tau(\mathbf{A})$. Then G_0 is a filter of $\tau(\mathbf{A})$, and it is non-trivial. Indeed, since $F_{\tau}(A) = \{1\}$ we have that if $c \in G$ and c < 1, then $\tau(c) \in G_0$ and $\tau(c) < 1$. Since F_0 is minimal, $F_0 \subseteq G_0$. Finally, since F is the MV-filter generated by F_0 and $F_0 \subseteq G_0 \subseteq G$, we have that F is the minimum non-trivial τ -filter of (\mathbf{A}, τ) , as desired.

Now suppose that $\mathbf{F}_{\tau}(\mathbf{A})$ is non-trivial. By condition (2), $\mathbf{F}_{\tau}(\mathbf{A})$ is subdirectly irreducible. Thus, let *F* be the minimum filter of $\mathbf{F}_{\tau}(\mathbf{A})$. Then *F* is a non-trivial τ -filter, and it is left to prove that *F* is the minimum non-trivial τ -filter of (\mathbf{A}, τ). Let *G* be any non-trivial τ -filter of (\mathbf{A}, τ). If $G \subseteq F_{\tau}(\mathbf{A})$, then it contains the minimal filter, *F*, of $\mathbf{F}_{\tau}(\mathbf{A})$, and $F \subseteq G$. Otherwise, *G* contains some $x \notin F_{\tau}(A)$, and hence it contains $\tau(x) < 1$. Now by the disjunction property, for all y < 1 in $F_{\tau}(A), \tau(x) \lor y < 1$ and $\tau(x) \lor y \in F_{\tau}(A) \cap G$. Thus, *G* contains the filter generated by $\tau(x) \lor y$, which is a non-trivial filter of $\mathbf{F}_{\tau}(\mathbf{A})$, and hence it contains *F*, the minimum non-trivial filter of $\mathbf{F}_{\tau}(\mathbf{A})$. This settles the claim. \Box

Theorem 3.5. (1), (2) and (3) are independent conditions, and hence none of them is redundant in Theorem 3.4.

Proof. (1) Let C_1 be Chang's MV-algebra, let τ_1 be the identity on C_1 and τ_2 be the function defined by $\tau_2(x) = 0$ if x is an infinitesimal and $\tau_2(x) = 1$ otherwise. Clearly, both (C_1, τ_1) and (C_1, τ_2) are SMV-algebras, and so is their direct product $(\mathbf{B}, \tau) = (\mathbf{C}_1, \tau_1) \times (\mathbf{C}_1, \tau_2)$. Let (\mathbf{D}, τ) be the subalgebra of (\mathbf{B}, τ) generating by all pairs (x, y) such that x is infinitesimal iff y is infinitesimal. Clearly, (\mathbf{D}, τ) is not subdirectly irreducible. However, $\tau(\mathbf{D})$ consists of all pairs (x, 0) such that x is infinitesimal and all pairs (y, 1) such that y is not infinitesimal. Moreover, $F_{\tau}(D)$ consists of all elements of the form (1, y) such that y is not infinitesimal. Moreover, $F_{\tau}(D)$ consists of all elements of the form (1, y) such that y is not infinitesimal and x < 1, then $(1, x) \in F_{\tau}(D)$, $(x, 1) \in \tau(D)$, and $(1, x) \vee (x, 1) = (1, 1)$, but (x, 1) < (1, 1) and (1, x) < (1, 1)).

(2) Let **A** be an ultrapower of $[0, 1]_{MV}$, and let **B** be the subalgebra of **A** generated by all the infinitesimals. Let τ be defined by $\tau(x) = 0$ if x is an infinitesimal and $\tau(x) = 1$ otherwise. Then $\tau(\mathbf{B})$ is subdirectly irreducible, being the MV-algebra with two elements, and the disjunction property holds because **B** is linearly ordered, but $\mathbf{F}_{\tau}(\mathbf{B})$ consists of all infinitesimals and hence it is not subdirectly irreducible. (If F is any non-trivial τ -filter and $1 - \epsilon \in F$, with ϵ a positive infinitesimal, then the filter generated by $1 - \epsilon^2$ is a non-trivial τ -filter strictly contained in F).

(3) Let **B** be as in (2) and let τ be the identity on **B**. Then $\mathbf{F}_{\tau}(\mathbf{B})$ is subdirectly irreducible, being a trivial algebra, and the disjunction property holds because *B* is linearly ordered, but $\tau(\mathbf{B}) = \mathbf{B}$ is not subdirectly irreducible. \Box

Lemma 3.6. If (\mathbf{A}, τ) is a subdirectly irreducible SMMV-algebra, then for all $a \in A$, either $a \leq \tau(a)$ or $\tau(a) \leq a$.

Proof. Since (\mathbf{A}, τ) is subdirectly irreducible, $\mathbf{F}_{\tau}(\mathbf{A})$ is subdirectly irreducible and hence it is linearly ordered. Hence, 1 is join irreducible in $\mathbf{F}_{\tau}(\mathbf{A})$. Now $(a \to \tau(a)) \lor (\tau(a) \to a) = 1$, and hence either $a \to \tau(a) = 1$ and $a \le \tau(a)$, or $\tau(a) \to a = 1$ and $\tau(a) \le a$. \Box

Subdirectly irreducible SMMV-algebras also enjoy another interesting property, namely:

Theorem 3.7. Let (\mathbf{A}, τ) be a subdirectly irreducible SSMV-algebra and let $a \in A$. Then there are uniquely determined $b \in \tau(A)$ and $c \in F_{\tau}(A)$ such that exactly one of the following two conditions holds:

(a) $a = b \odot c$, and c is the greatest element with this property, when $a \le \tau(a)$, or

(b) $a = c \rightarrow b$ and b < c < 1 when $\tau(a) < a$.

Proof. First of all, note that $\tau(a \to \tau(a)) = \tau(\tau(a) \to a) = \tau(a) \to \tau(a) = 1$, and hence, for every $a \in A$, $a \to \tau(a)$ and $\tau(a) \to a$ belong to $F_{\tau}(A)$.

Let $b = \tau(a)$ and let $c = b \rightarrow a$ if $a \le b$, and $c = a \rightarrow b$ otherwise.

Suppose $a \le b$. Then $a = a \land b = b \odot (b \to a) = b \odot c$. Finally, *c* is the greatest element such that $b \odot c = a$, by the definition of residuum, and $\tau(c) = 1$.

Now suppose b < a. Then $c \rightarrow b = (a \rightarrow b) \rightarrow b = a \lor b = a$. Moreover, c < 1, as b < a. Finally, b < c. Indeed, $b \le a \rightarrow b = c$, and it cannot be c = b, as $\tau(c) = 1$ and $\tau(b) = b < a$.

Now we discuss uniqueness. (i) Let $a \le \tau(a)$. If $a = b' \odot c'$, with $b' \in \tau(A)$ and $c' \in F_{\tau}(A)$, then $\tau(a) = \tau(b') \odot \tau(c') = b' \odot 1 = b' = \tau(b')$. Thus $b' = \tau(a)$ is uniquely determined; we denote it by b. Moreover, $a \le b$, $b \odot c' = a$ and c' is the greatest element with this property. Hence, $c' = a \rightarrow b$.

(ii) Let $\tau(a) < a$. Then a < 1. If $a = c' \rightarrow b'$ with $b' < c' \in F_{\tau}(A) \setminus \{1\}$ and $b' \in \tau(A)$, then by Lemma 2.7(1g), $\tau(a) = \tau(c') \rightarrow \tau(c' \land b') = \tau(c') \rightarrow \tau(b') = 1 \rightarrow b' = b'$, and b' is uniquely determined; we denote it by b. Then b < a. Finally, in any MV-algebra, if $z \leq x, z \leq y$ and $x \rightarrow z = y \rightarrow z$, then x = y (this property is expressed as a quasi equation and holds in $[0, 1]_{MV}$, and hence it holds in any MV-algebra). Now $b < c' < 1, b \leq (a \rightarrow b) \rightarrow b$, and $c' \rightarrow b = (a \rightarrow b) \rightarrow b$. It follows that $c' = a \rightarrow b$, and uniqueness of c' is proved. \Box

Let (\mathbf{A}, τ) be a subdirectly irreducible SMMV-algebra. For all $b \in \tau(A)$, the define $M(b) = \{x \in A : \tau(x) = b\}$. Then A is a disjoint union of the sets M(b) for $b \in \tau(A)$.

We assert that every M(b) is linearly ordered. Indeed, let $x, y \in M(b)$. Due to Lemma 3.6, there are three cases: (i) $x \le b$, y > b or x > b, $y \le b$, (ii) $x \le b$, $y \le b$, and (iii) x > b and y > b. In the case (i), x and y are comparable. In the case (ii), by Lemma 2.7(1b), $\tau(x \oplus \neg b) = \tau(x) \oplus \tau(\neg b) = 1$ and $\tau(y \oplus \neg b) = \tau(y) \oplus \tau(\neg b) = 1$ which by Corollary 3.3 entails $x \oplus \neg b$ and $y \oplus \neg b$ are comparable. Because $x \odot \neg b = 0 = y \odot \neg b$, we have x and y are also comparable. In the case (iii), $\neg x < \neg b$ and $\neg y < \neg b$, and in the same way as in (ii) we can prove $\neg x$ and $\neg y$ are comparable, consequently, x and y are comparable.

Thus, although **A** need not be linearly ordered, it is close to be such. More precisely, let $M = \{\pm c : c \in F_{\tau}(A), c < 1\} \cup \{1\}$. We define a poset **M** on M letting -c < -d iff d < c, and c < 1 < -d for all $c, d \in F_{\tau}(A) \setminus \{1\}$. Now given $x \in M(b)$, by Lemma 3.6, it follows $x \leq b$ or $b < \tau(x)$. By Theorem 3.7, in the first case we can associate x with $(b, b \rightarrow x)$ and in the second case with $(b, -(x \rightarrow b))$ to obtain an order isomorphism from A into $\tau(A) \times M$. That is, **A** as a poset is isomorphic to a quotient of a subposet of the product of two chains. This suggests that either **A** is a chain or a subalgebra of a product of two chains. This conjecture will be proved in Section 6. More precisely:

Definition 3.8. An SMMV-algebra (\mathbf{A} , τ) is said to be *diagonal* if there are MV-chains \mathbf{B} and \mathbf{C} such that $\mathbf{B} \subseteq \mathbf{C}$, $\mathbf{A} = \mathbf{B} \times \mathbf{C}$ and τ is defined, for all $b \in B$ and $c \in C$, by $\tau(b, c) = (b, b)$.

An SMMV-algebra is said to be *subdiagonal* if it is a subalgebra of a diagonal SMMV-algebra.

In Section 6 we will prove:

Theorem 3.9. Every subdirectly irreducible SMMV-algebra is subdiagonal.

4. A classification of subdirectly irreducible SMMV-algebras

We present a classification of SMMV-algebras introducing four types of subdirectly irreducible SMMV-algebras, type \mathcal{I} , identity, type \mathcal{L} , local, type \mathcal{D} , diagonalization, and type \mathcal{K} , killing infinitesimals.

The following theorem was proved in [7,9,10].

Theorem 4.1. Let (\mathbf{A}, τ) be a subdirectly irreducible SMMV-algebra. Then (\mathbf{A}, τ) belongs to exactly one of the following classes:

- (i) **A** is linearly ordered, τ is the identity on A and the MV-reduct of **A** is a subdirectly irreducible MV-algebra.
- (ii) The state morphism operator τ is not faithful, A has no non-trivial Boolean elements and is a local MV-algebra. Moreover, A is linearly ordered if and only if Rad₁(A) is linearly ordered, and in such a case, A is a subdirectly irreducible MV-algebra such that the smallest non-trivial τ -filter of (A, τ), and the smallest non-trivial MV-filter for A coincide.
- (iii) The state morphism operator τ is not faithful, A has a non-trivial Boolean element. There are a linearly ordered MV-algebra B, a subdirectly irreducible MV-algebra C, and an injective MV-homomorphism $h : B \to C$ such that (A, τ) is isomorphic to $(B \times C, \tau_h)$, where $\tau_h(x, y) = (x, h(x))$ for any $(x, y) \in B \times C$.

Note that while every SMMV-algebra satisfying (i) or (iii) is subdirectly irreducible, the same is not true of SMMV-algebras satisfying (ii). A full classification of subdirectly irreducible SMMV-algebras is obtained by combining Theorem 4.1, Theorem 3.9, and Theorem 3.4.

Let us consider the following classes of SMMV-algebras:

Definition 4.2. *Type* \mathcal{I} (*identity*). The MV-reduct, **A**, of (**A**, τ) is a subdirectly irreducible MV-algebra and τ is the identity function on *A*.

Type \mathcal{L} (*local*). (**A**, τ) is subdiagonal, the MV-reduct, **A**, of (**A**, τ) is a local MV-algebra (hence it has no Boolean non-trivial elements), **F**_{τ} (**A**) is a non-trivial subdirectly irreducible hoop, **F**_{τ} (**A**) and τ (**A**) have the disjunction property.

Type D (*diagonalization*). The MV-reduct, **A**, of (**A**, τ) is of the form **B** × **C**, where **C** is a subdirectly irreducible MV-algebra and **B** is a subalgebra of **C**. Moreover, τ is defined by $\tau(b, c) = (b, b)$.

Theorem 4.3. An SMMV-algebra is subdirectly irreducible if and only if it is of one of the types \mathcal{I} , \mathcal{L} and \mathcal{D} . Moreover, these types are mutually disjoint.

Proof. We first prove, using Theorem 3.4, that all members of $\mathcal{I} \cup \mathcal{L} \cup \mathcal{D}$ are subdirectly irreducible. For type \mathcal{I} , the claim is easy and for type \mathcal{L} the claim follows from the definition of type \mathcal{L} and from Theorem 3.4. For type \mathcal{D} , if (\mathbf{A}, τ) is diagonal, say, $\mathbf{A} = \mathbf{B} \times \mathbf{C}$ with $\mathbf{B} \subseteq \mathbf{C}$, \mathbf{C} is subdirectly irreducible and τ is diagonal, we have that $\mathbf{F}_{\tau}(\mathbf{A})$ consists of all pairs (1, c) with $c \in C$, and hence it is isomorphic (as a Wajsberg hoop) to \mathbf{C} . Since \mathbf{C} is subdirectly irreducible, so is $\mathbf{F}_{\tau}(\mathbf{A})$. Finally, $\tau(\mathbf{A})$ consists of

all pairs of the form (b, b) with $b \in B$. Now if $(b, b) \lor (1, c) = (1, 1)$, then either (b, b) = (1, 1) or (1, c) = (1, 1). Hence, τ (**A**) and **F**_{τ} (**A**) have the disjunction property, and by Theorem 3.4, (**A**, τ) is subdirectly irreducible.

For the converse, we use Theorem 4.1. It is clear that condition (i) in Theorem 4.1 corresponds to type \mathcal{I} . For case (ii) the additional conditions that $\mathbf{F}_{\tau}(\mathbf{A})$ is subdirectly irreducible and $\mathbf{F}_{\tau}(\mathbf{A})$ and $\tau(\mathbf{A})$ have the disjunction property follows from Theorem 3.4 and the additional condition that (\mathbf{A}, τ) is subdiagonal follows from Theorem 3.9.

Now, suppose (iii) is the case. Identifying **B** with its isomorphic copy $h(\mathbf{B})$, we can rephrase the definition of τ as $\tau(b, c) = (b, b)$, and hence (\mathbf{A}, τ) is of type \mathcal{D} .

Finally, types \mathcal{I} , \mathcal{L} and \mathcal{D} are mutually disjoint, because if (\mathbf{A}, τ) is of type \mathcal{I} , then $\mathbf{F}_{\tau}(\mathbf{A})$ is trivial, while if (\mathbf{A}, τ) is of type \mathcal{L} or \mathcal{D} , then $\mathbf{F}_{\tau}(\mathbf{A})$ is non-trivial. Moreover, the MV-reduct of a diagonal SMMV-algebra has two maximal filters, and hence it cannot be a local MV-algebra. This finishes the proof. \Box

There is yet another type of subdirectly irreducible SMMV-algebras, namely, type \mathcal{K} (killing infinitesimals), which is described as follows:

Definition 4.4. An SMMV-algebra (\mathbf{A}, τ) is said to be of type \mathcal{K} if \mathbf{A} is of type \mathcal{L} and is linearly ordered.

The next example shows that the class of SMMV-algebras of type \mathcal{K} is properly contained in the class of SMMV-algebras of type \mathcal{L} .

Example 4.5. Let C_1 be the Chang MV-algebra. Let A be the subalgebra of $C_1 \times C_1$ generated by $Rad(C_1) \times Rad(C_1)$, i.e., $A = (Rad(C_1) \times Rad(C_1)) \cup (Rad_1(C_1) \times Rad_1(C_1))$. We define $\tau : A \to A$ via $\tau(x, y) = (x, x)$. Then τ is a state morphism operator on A such that (A, τ) is a subdirectly irreducible SMMV-algebra, $F_{\tau}(A) = \{1\} \times Rad_1(C_1), \tau$ is not faithful, A has no non-trivial Boolean elements, but it is not linearly ordered. We note that $Rad_1(A) = Rad_1(C_1) \times Rad_1(C_1)$ is the unique maximal filter.

5. Varieties of SMMV-algebras and their generators

We describe the varieties of SMMV-algebras and their generators. In particular, we answer in the positive to an open question from [7] that the diagonalization of the real interval [0, 1] generates the variety of SMMV-algebras.

Given a variety V of MV-algebras, V_{SMMV} will denote the class of SMMV-algebras whose MV-reduct is in V. Clearly, V_{SMMV} is a variety.

Definition 5.1. For every MV-algebra \mathbf{A} we set $D(\mathbf{A}) = (\mathbf{A} \times \mathbf{A}, \tau_A)$, where τ_A is defined, for all $a, b \in A$, by $\tau_A(a, b) = (a, a)$. For every class \mathcal{K} of MV-algebras, we set $D(\mathcal{K}) = \{D(\mathbf{A}) : \mathbf{A} \in \mathcal{K}\}$.

As usual, given a class \mathcal{K} of algebras of the same type, $I(\mathcal{K})$, $H(\mathcal{K})$, $S(\mathcal{K})$ and $P(\mathcal{K})$ and $P_U(\mathcal{K})$ will denote the class of isomorphic images, of subalgebras, of direct products and of ultraproducts of algebras from \mathcal{K} , respectively. Moreover, $V(\mathcal{K})$ will denote the variety generated by \mathcal{K} .

Lemma 5.2. (1) Let \mathcal{K} be a class of MV-algebras. Then $VD(\mathcal{K}) \subseteq V(\mathcal{K})_{SMMV}$. (2) Let \mathcal{V} be any variety of MV-algebras. Then $\mathcal{V}_{SMMV} = \mathsf{ISD}(\mathcal{V})$.

Proof. (1) We have to prove that every MV-reduct of an algebra in VD(\mathcal{K}) is in V(\mathcal{K}). Let \mathcal{K}_0 be the class of all MV-reducts of algebras in D(\mathcal{K}). Then since the MV-reduct of D(A) is A × A, and since A is a homomorphic image (under the projection map) of A × A, $\mathcal{K}_0 \subseteq P(\mathcal{K})$ and $\mathcal{K} \subseteq H(\mathcal{K}_0)$. Hence, \mathcal{K}_0 and \mathcal{K} generate the same variety. Moreover, MV-reducts of subalgebras (homomorphic images, direct products respectively) of algebras from D(\mathcal{K}) are subalgebras (homomorphic images, direct products respectively) of the corresponding MV-reducts. Therefore, the MV-reduct of any algebra in VD(\mathcal{K}) is in HSP(\mathcal{K}_0) = HSP(\mathcal{K}) = V(\mathcal{K}), and claim (1) is proved.

(2) Let $(\mathbf{A}, \tau) \in \mathcal{V}_{SMMV}$. Then the map $\Phi : a \mapsto (\tau(a), a)$ is an embedding of (\mathbf{A}, τ) into $D(\mathbf{A})$. Conversely, the MV-reduct of any algebra in $D(\mathcal{V})$ is in \mathcal{V} , (being a direct product of algebras in \mathcal{V}), and hence the MV-reduct of any member of $\mathsf{ISD}(\mathcal{V})$ is in $\mathsf{IS}(\mathcal{V}) = \mathcal{V}$. Hence, any member of $\mathsf{ISD}(\mathcal{V})$ is in \mathcal{V}_{SMMV} . \Box

Lemma 5.3. Let \mathcal{K} be a class of MV-algebras. Then:

(1) $DH(\mathcal{K}) \subseteq HD(\mathcal{K}).$ (2) $DS(\mathcal{K}) \subseteq ISD(\mathcal{K}).$ (3) $DP(\mathcal{K}) \subseteq IPD(\mathcal{K}).$

(4) $VD(\mathcal{K}) = ISD(V(\mathcal{K})).$

Proof. (1) Let $D(\mathbb{C}) \in DH(\mathcal{K})$. Then there are $\mathbb{A} \in \mathcal{K}$ and a homomorphism h from \mathbb{A} onto \mathbb{C} . Let for all $a, b \in A$, $h^*(a, b) = (h(a), h(b))$. We claim that h^* is a homomorphism from $D(\mathbb{A})$ onto $D(\mathbb{C})$. That h^* is an MV-homomorphism is clear. We verify that h^* is compatible with τ_A . We have $h^*(\tau_A(a, b)) = h^*(a, a) = (h(a), h(a)) = \tau_C(h(a), h(b)) = \tau_C(h^*(a, b))$. Finally,

since *h* is onto, given $(c, d) \in C \times C$, there are $a, b \in A$ such that h(a) = c and h(b) = d. Hence, $h^*(a, b) = (c, d)$, h^* is onto, and $D(\mathbf{C}) \in HD(\mathcal{K})$.

(2) Almost trivial.

(3) Let $\mathbf{A} = \prod_{i \in I} (\mathbf{A}_i) \in \mathsf{P}(\mathcal{K})$, where each \mathbf{A}_i is in \mathcal{K} . Then the map

$$\Phi: ((a_i: i \in I), (b_i: i \in I)) \mapsto ((a_i, b_i): i \in I)$$

is an isomorphism from $D(\mathbf{A})$ onto $\prod_{i \in I} D(\mathbf{A}_i)$. Indeed, it is clear that Φ is an MV-isomorphism. Moreover, denoting the state morphism of $\prod_{i \in I} D(\mathbf{A}_i)$ by τ^* , we get:

$$\Phi(\tau_A((a_i : i \in I), (b_i : i \in I))) = \Phi((a_i : i \in I), (a_i : i \in I)) \\
= ((a_i, a_i) : i \in I) = (\tau_{A_i}(a_i, b_i) : i \in I) = \tau^*(\Phi((a_i : i \in I), (b_i : i \in I)))),$$

and hence Φ is an SMMV-isomorphism.

(4) By (1), (2) and (3), $DV(\mathcal{K}) = DHSP(\mathcal{K}) \subseteq HSPD(\mathcal{K}) = VD(\mathcal{K})$, and hence $ISDV(\mathcal{K}) \subseteq ISVD(\mathcal{K}) = VD(\mathcal{K})$. Conversely, by Lemma 5.2(1), $VD(\mathcal{K}) \subseteq V(\mathcal{K})_{SMMV}$, and by Lemma 5.2(2), $V(\mathcal{K})_{SMMV} = ISDV(\mathcal{K})$. This settles the claim. \Box

Theorem 5.4. (1) For every MV-algebra A, $V(D(A)) = V(A)_{SMMV}$.

(2) Let **A** and **B** be MV-algebras. Then $V(D(\mathbf{A})) = V(D(\mathbf{B}))$ iff $V(\mathbf{A}) = V(\mathbf{B})$.

(3) The variety of all SMMV-algebras is generated by $D([0, 1]_{MV})$ as well as by any $D(\mathbf{A})$ such that \mathbf{A} generates the variety of MV-algebras.

(4) Let C_1 be Chang's algebra and let C be the variety generated by it. Then C_{SMMV} is generated by $D(C_1)$.

Proof. (1) By Lemma 5.3(4), $VD(\mathbf{A}) = V(D(\mathbf{A})) = ISD(V(\mathbf{A}))$. Moreover, by Lemma 5.2(2), $V(\mathbf{A})_{SMMV} = ISDV(\mathbf{A})$. Hence, $V(D(\mathbf{A})) = V(\mathbf{A})_{SMMV}$.

(2) We have $V(D(\mathbf{A})) = V(\mathbf{A})_{SMMV}$ and $V(D(\mathbf{B})) = V(\mathbf{B})_{SMMV}$. Clearly, $V(\mathbf{A}) = V(\mathbf{B})$ implies $V(\mathbf{A})_{SMMV} = V(\mathbf{B})_{SMMV}$, and hence $V(D(\mathbf{A})) = V(D(\mathbf{B}))$. Conversely, $V(D(\mathbf{A})) = V(D(\mathbf{B}))$ implies $V(\mathbf{A})_{SMMV} = V(\mathbf{B})_{SMMV}$. But *any* algebra $\mathbf{C} \in V(\mathbf{A})$ is the MV-reduct of an algebra in $V(\mathbf{A})_{SMMV}$, namely, of $(\mathbf{C}, \mathrm{Id}_C)$, where Id_C is the identity on C.

It follows that, if $V(\mathbf{A})_{SMMV} = V(\mathbf{B})_{SMMV}$, then the classes of MV-reducts of $V(\mathbf{A})_{SMMV}$ and of $V(\mathbf{B})_{SMMV}$ coincide, and hence $V(\mathbf{A}) = V(\mathbf{B})$.

(3) Since $V([0, 1]_{MV})$ is the variety \mathcal{MV} of all MV-algebras, $V(D([0, 1]_{MV}))$ is \mathcal{MV}_{SMMV} , that is, the variety of all SMMValgebras. The same argument holds if we replace $[0, 1]_{MV}$ by any MV-algebra which generates the whole variety \mathcal{MV} .

(4) Completely parallel to (3). \Box

Another consequence is the decidability of the variety *SMMV* of all SMMV-algebras.

Theorem 5.5. *SMMV is decidable.*

Proof. We associate to every term $t(x_1, ..., x_n)$ of SMMV-algebras a pair of terms t^1 , t^2 whose variables are among $x_1^1, x_1^2, ..., x_n^1, x_n^2$ by induction as follows: If t is a variable, say, $t = x_i$, then $t^1 = x_i^1$ and $t^2 = x_i^2$; if t = 0, then $t^1 = t^2 = 0$. If $t = \neg s$, then $t^1 = \neg s^1$ and $t^2 = \neg s^2$; if $t = s \oplus u$, then $t^1 = s^1 \oplus u^1$ and $t^2 = s^2 \oplus u^2$. Finally, if $t = \tau(s)$, then $t^1 = t^2 = s^1$. The following lemma is straightforward.

Lemma 5.6. Let $a_1^1, a_1^2, \ldots, a_n^1, a_n^2, b^1, b^2 \in [0, 1]$ and let $t(x_1, \ldots, x_n)$ be a term. Then the following are equivalent: (1) $t((a_1^1, a_1^2), \ldots, (a_n^1, a_n^2)) = (b^1, b^2)$ holds in $D([0, 1]_{MV})$.

(2) $t^{i}(a_{1}^{1}, a_{1}^{2}, ..., a_{n}^{1}, a_{n}^{2}) = b^{i}$, for i = 1, 2 holds in $[0, 1]_{MV}$.

As a consequence, we obtain that an equation t = s holds identically in $D([0, 1]_{MV})$ iff $t^1 = s^1$ and $t^2 = s^2$ hold identically in $[0, 1]_{MV}$. Since validity of an equation in $[0, 1]_{MV}$ is decidable, the equational logic of $D([0, 1]_{MV})$ is decidable, and since $D([0, 1]_{MV})$ generates the whole variety of SMMV-algebras, the claim follows. \Box

6. Every subdirectly irreducible SMMV-algebra is subdiagonal

We are in a position to prove Theorem 3.9, stating that every subdirectly irreducible SMMV-algebra is subdiagonal (subalgebra of a diagonal SMMV-algebra). We start from some easy facts.

First of all, any linearly ordered SMMV-algebra (**A**, τ) is subdiagonal, being isomorphic to a subalgebra of (τ (**A**) × **A**, τ^*), with $\tau^*(\tau(a), a) = (\tau(a), \tau(a))$. Next we prove that the variety of SMMV-algebras has CEP.

Lemma 6.1. The variety of SMMV-algebras has Congruence Extension Property.

Proof. Let $(\mathbf{A}, \tau) \subseteq (\mathbf{B}, \tau)$ be SMMV-algebras and θ a congruence on (\mathbf{A}, τ) . Thus, $1/\theta$ is a τ -filter of (\mathbf{A}, τ) . By monotonicity of τ the upward closure (in **B**) of $1/\theta$ is a τ -filter of (\mathbf{B}, τ) , which restricts to $1/\theta$ on (\mathbf{A}, τ) . This proves the claim. \Box

The next lemma is also easy:

Lemma 6.2. The class of subdiagonal SMMV-algebras is closed under subalgebras and ultraproducts.

Proof. Closure under S is definitional. Closure under P_U follows from the following facts:

(1) For every class \mathcal{K} of algebras of the same type $P_US(\mathcal{K}) \subseteq SP_U(\mathcal{K})$ (this is a well-known fact of Universal Algebra). (2) Every ultraproduct $(\prod_{i \in I} (\mathbf{B}_i \times \mathbf{C}_i, \tau_i))/U$ of diagonal SMMV-algebras is isomorphic to the diagonal SMMV-algebra $((\prod_{i \in I} \mathbf{B}_i)/U \times (\prod_{i \in I} \mathbf{C}_i)/U, \tau_U))$, where $\tau_U((b_i : i \in I)/U, (c_i : i \in I)/U) = ((b_i : i \in I)/U, (b_i : i \in I)/U)$, with respect to the isomorphism $((b_i, c_i) : i \in I)/U \mapsto ((b_i : i \in I)/U, (c_i : i \in I)/U)$. \Box

To deal with homomorphic images we need the following definition:

Definition 6.3. An SMMV-algebra (\mathbf{A}, τ) is said to be skew diagonal if it has the form $(\mathbf{B} \times \mathbf{C}/\varphi, \tau)$, where **B** and **C** are MV-chains, **B** is a subalgebra of **C**, φ is a congruence of **C** and τ is defined $\tau(b, c/\varphi) = (b, b/\varphi)$ for all $b \in B$ and $c \in C$.

The projection onto the first coordinate is a homomorphism from the skew-diagonal algebra ($\mathbf{B} \times \mathbf{C}/\varphi, \tau$) onto ($\mathbf{B}, \mathrm{Id}_B$). Compatibility with τ is proved as follows: $\pi_1 \tau(b, c/\varphi) = \pi_1(b, b/\varphi) = b = \mathrm{Id}_B \pi_1(b, c)$.

Lemma 6.4. Let (\mathbf{A}, τ) be a subdiagonal algebra with $\mathbf{A} \subseteq \mathbf{B} \times \mathbf{C}$, and θ a congruence on (\mathbf{A}, τ) . Then there are MV-chains $\mathbf{D} \subseteq \mathbf{E}$, and a congruence φ on \mathbf{E} such that $(\mathbf{A}, \tau)/\theta$ is subdirectly embedded into a skew-diagonal algebra $(\mathbf{D} \times \mathbf{E}/\varphi, \tau)$.

Proof. Clearly, we may assume that the natural identity embedding $\mathbf{A} \subseteq \mathbf{B} \times \mathbf{C}$ is subdirect. By CEP, the congruence θ extends to a congruence ψ on ($\mathbf{B} \times \mathbf{C}, \tau$). Of course, ψ is also a congruence on the MV-reduct $\mathbf{B} \times \mathbf{C}$. By congruence distributivity, all congruences of finite products are product congruences, so $\psi = \psi_B \times \psi_C$ for some congruences ψ_B on \mathbf{B} and ψ_C on \mathbf{C} .

The congruences ψ_B and ψ_C are defined as follows: $(b, b') \in \psi_B$ iff there are $c, c' \in C$ such that $((b, c), (b', c')) \in \psi$, and $(c, c') \in \psi_C$ iff there are $b, b' \in B$ such that $((b, c), (b', c')) \in \psi$. Denoting by θ_1 and θ_2 the congruences associated to the projection maps, and using congruence distributivity, we have: $((b, c), (b', c')) \in \psi$ iff $((b, c), (b', c')) \in (\psi \lor \theta_1) \land (\psi \lor \theta_2)$ iff $(b, b') \in \psi_B$ and $(c, c') \in \psi_C$, and $\psi = \psi_B \times \psi_C$. It follows:

$$(\mathbf{B} \times \mathbf{C})/\psi = \mathbf{B}/\psi_B \times \mathbf{C}/\psi_C$$

and moreover, since ψ is compatible with τ we obtain

$$\tau(b,c)/\psi = (b,b)/\psi = (b/\psi_B, b/\psi_C).$$

Furthermore, $((b, 1), (1, 1)) \in \psi$ implies $(\tau(b, 1), \tau(1, 1)) = ((b, b), (1, 1)) \in \psi$. It follows that $(b, 1) \in \psi_B$ implies $(b, 1) \in \psi_C$. Let χ be the congruence of **C** generated by ψ_B . Then $\chi \subseteq \psi_C$, and by the CEP, $\psi_B = \chi \cap B^2$. Now let $\mathbf{D} = \mathbf{B}/\psi_B$, $\mathbf{E} = \mathbf{C}/\chi$, $\varphi = \chi/\psi_C$. Note that **D** and **E** are MV-chains. Moreover, by construction we have $\mathbf{D} \subseteq \mathbf{E}$, and hence

$$\mathbf{A}/\theta \subseteq (\mathbf{B} \times \mathbf{C})/\psi = \mathbf{B}/\psi_B \times \mathbf{C}/\psi_C = \mathbf{D} \times \mathbf{E}/\varphi$$

proving the claim for the MV-reducts of the appropriate algebras. In particular, the embedding is subdirect. Furthermore,

$$\tau(b,c)/\psi = (b/\psi_B, b/\psi_C) = (b/\psi_B, (b/\chi)/\varphi)$$

and the embedding lifts to the full type of SMMV. \Box

Lemma 6.5. Let (\mathbf{A}, τ) be a subdirectly irreducible SMMV-algebra, and suppose that (\mathbf{A}, τ) is a subalgebra of a skew diagonal SMMV-algebra $(\mathbf{B} \times \mathbf{C}/\varphi, \tau^*)$, and that the identity MV-embedding of \mathbf{A} into $(\mathbf{B} \times \mathbf{C}/\varphi)$ is subdirect. Then (\mathbf{A}, τ) is subdiagonal.

Proof. If for all $b \in B$, $(b, 1) \in \varphi$ implies b = 1, then the map $b \mapsto b/\varphi$ is one-one and **B** is (isomorphic to) a subalgebra of \mathbf{C}/φ . Hence, \mathbf{C}/φ is an MV-chain and **B** is a subchain of \mathbf{C}/φ . It follows that $(\mathbf{B} \times \mathbf{C}/\varphi, \tau^*)$ is diagonal and (\mathbf{A}, τ) is subdiagonal. Now suppose that $(b, 1) \in \varphi$ for some $b \in B \setminus \{1\}$. Since **A** is a subdirect product of $\mathbf{B} \times \mathbf{C}/\varphi$, there is $c \in C$ such that $(b, c/\varphi) \in A$. Moreover, $\tau(b, c/\varphi) = (b, b/\varphi) = (b, 1/\varphi) \in \tau(A)$.

Now if $(1, c/\varphi) \in A$, then $\tau(1, c/\varphi) = (1, 1/\varphi)$ and hence $(1, c/\varphi) \in F_{\tau}(A)$. Clearly, $(1, c/\varphi) \lor (b, 1/\varphi) = (1, 1/\varphi)$, and since $\tau(\mathbf{A})$ and $\mathbf{F}_{\tau}(\mathbf{A})$ have the disjunction property, we must have $c/\varphi = 1/\varphi$. Now $F_{\tau}(A)$ consists of all elements of the form $(1, c/\varphi)$, and hence it is the singleton of $(1, 1/\varphi)$. On the other hand, $F_{\tau}(A)$ is the filter associated to the homomorphism τ , and hence τ is an embedding and \mathbf{A} is isomorphic to $\tau(\mathbf{A})$, which is in turn isomorphic to \mathbf{B} via the map $b \mapsto (b, b/\varphi)$. Since \mathbf{B} is linearly ordered, \mathbf{A} is linearly ordered and hence subdiagonal. \Box

We can conclude the proof of Theorem 3.9.

Proof. Let **A** be subdirectly irreducible. Since the variety of SMMV-algebras is generated by $D([0, 1]_{MV})$, and since SMMV-algebras are congruence distributive, by Jónsson's lemma **A** belongs to $HSP_U(D([0, 1]_{MV}))$. Thus, **A** is a homomorphic image of some $\mathbf{B} \in SP_U(D([0, 1]_{MV}))$.

Now $D([0, 1]_{MV})$ is subdiagonal, and by Lemma 6.4 subdiagonal SMMV-algebras are closed under S and P_U, so **B** is subdiagonal as well. Then, since **A** is subdirectly irreducible, Lemma 6.5 applies, and we conclude that **A** is subdiagonal. Hence, every subdirectly irreducible SMMV-algebra is subdiagonal. \Box

We end this section with an example showing that the class of subdiagonal SMMV-algebras is not closed under homomorphic images. Indeed, our example shows that not even the class of subdirectly irreducible subdiagonal SMMV-algebras is closed under homomorphic images. Consider the diagonal algebra $\mathbf{A} = (\mathbf{C}_1 \times \mathbf{C}_1, \tau_{C_1})$. Here again \mathbf{C}_1 stands for Chang's algebra. The set $F = \{1\} \times Rad_1(\mathbf{C}_1)$ is a τ -filter of \mathbf{A} . It is easy to see that the congruence θ_F corresponding to F is the smallest non-trivial congruence on \mathbf{A} , so \mathbf{A} is subdirectly irreducible. It is not difficult to see that the MV-reduct of the quotient algebra \mathbf{A}/θ_F is isomorphic to $\mathbf{C}_1 \times \mathbf{2}$, where $\mathbf{2}$ is the two-element Boolean algebra. The operation τ on this algebra is given by

 $\tau(c, 1) = \tau(c, 0) = \begin{cases} (c, 1) & \text{if } c \in Rad_1(\mathbf{C}_1) \\ (c, 0) & \text{if } c \notin Rad_1(\mathbf{C}_1). \end{cases}$

Lemma 6.6. The algebra \mathbf{A}/θ_F is not subdiagonal.

Proof. If A/θ_F is subdiagonal then there exist linearly ordered MV-algebras **D** and **E** such that $C_1 \subseteq D, 2 \subseteq E$ and either $(D \times E, \tau)$ is diagonal, or $(E \times D, \tau)$ is diagonal. Now, if $(D \times E, \tau)$ is diagonal, we have $\tau(d, e) = (d, d)$ for all $(d, e) \in D \times E$. In particular, (c, z) = (c, c) for any $(c, z) \in C_1 \times 2$. This fails for any $c \notin \{0, 1\}$. Then, if $(E \times D, \tau)$ is diagonal, we have $\tau(e, d) = (e, e)$ for all $(e, d) \in E \times D$. In particular, (z, c) = (z, z) for any $(z, c) \in 2 \times C_1$. This again fails for any $c \notin \{0, 1\}$. Thus, A/θ_F is not subdiagonal. \Box

7. Varieties of SMMV-algebras

When studying a variety of universal algebras, an interesting problem is the investigation of the lattice of its subvarieties. In the case of SMMV-algebras, we have a unique atom (above the trivial variety), namely, the variety \mathcal{BI} of Boolean algebras equipped with the identical endomorphism. This variety is generated by the two element Boolean algebra equipped with the identity map. Since this algebra is a subalgebra of any non-trivial SMMV-algebra, \mathcal{BI} is contained in any non-trivial variety of SMMV-algebras.

Other varieties of SMMV-algebras are obtained as follows: let \mathcal{V} be a variety of MV-algebras, let \mathcal{V}_{SMMV} denote the class of algebras whose MV-reduct is in \mathcal{V} , and \mathcal{VI} denote the class of SMMV-algebras (**A**, Id_A), where Id_A is the identity on *A* and $\mathbf{A} \in \mathcal{V}$. The following problem arises: given a variety \mathcal{V} of MV-algebras, investigate the varieties of SMMV-algebras between \mathcal{VI} and \mathcal{V}_{SMMV} . To begin with, besides \mathcal{VI} and \mathcal{V}_{SMMV} , we will discuss two more kinds of subvarieties, namely, the subvariety generated by all SMMV-chains in \mathcal{V}_{SMMV} (representable SMMV-algebras) and the subvariety generated by all algebras in \mathcal{V}_{SMMV} whose MV-reduct is a local MV-algebra. The above classes will be denoted by \mathcal{VR} and \mathcal{VL} respectively. We consider \mathcal{V}_{SMMV} and \mathcal{VI} first. The following result is straightforward.

Theorem 7.1. (1) V_{SMMV} is axiomatized over the axioms of SMMV-algebras by the defining equations of V.

- (2) \mathcal{VI} is axiomatized over \mathcal{V}_{SMMV} by the identity $\tau(x) = x$.
- (3) $\mathcal{VI} \subseteq \mathcal{VR}$, and the inclusion is proper if and only if \mathcal{V} is not finitely generated.
- (4) The maps $\mathcal{V} \mapsto \mathcal{VI}$ and $\mathcal{V} \mapsto \mathcal{V}_{SMMV}$ are embeddings of the lattice of MV-varieties into the lattice of SMMV-varieties.

Proof. Claims (1) and (2) are immediate.

As regards to (3), since subdirectly irreducible algebras of type \mathcal{I} are linearly ordered we have that $\mathcal{VI} \subseteq \mathcal{VR}$. If \mathcal{V} is finitely generated, then $\mathcal{VI} = \mathcal{VR}$, because every MV-chain in \mathcal{V} is finite, and its only endomorphism is the identity. Finally, if \mathcal{V} is not finitely generated, then it contains Chang's algebra, \mathbf{C}_1 . Let τ be defined for all $x \in C_1$, by $\tau(x) = 0$ if x is infinitesimal and $\tau(x) = 1$ otherwise. Then $(\mathbf{C}_1, \tau) \in \mathcal{VR} \setminus \mathcal{VI}$, and the inclusion $\mathcal{VI} \subseteq \mathcal{VR}$ is proper.

Finally, claim (4) is almost immediate (using Theorem 5.4). \Box

Now we concentrate ourselves on VR.

Theorem 7.2. Representable SMMV-algebras constitute a proper subvariety of the variety of SMMV-algebras, which is characterized by the equation

 $(lin_{\tau}) \qquad \qquad \tau(x) \lor (x \to (\tau(y) \leftrightarrow y)) = 1.$

Proof. We have to prove that a subdirectly irreducible SMMV-algebra (\mathbf{A} , τ) satisfies (lin_{τ}) iff it is linearly ordered. Thus, let (\mathbf{A} , τ) be a subdirectly irreducible SMMV-algebra.

Suppose first that (\mathbf{A}, τ) satisfies (lin_{τ}) . We start from the following observation. Let $z, u \in A$. Then $z \to (\tau(u) \leftrightarrow u) \in F_{\tau}(A)$. Since $\tau(\mathbf{A})$ and $\mathbf{F}_{\tau}(\mathbf{A})$ have the disjunction property, we have that either $\tau(z) = 1$ or $z \leq \tau(u) \leftrightarrow u$. Now every element $u \in F_{\tau}(A)$ is equal to $\tau(u) \leftrightarrow u$, and vice versa every element of the form $\tau(u) \leftrightarrow u$ is in $F_{\tau}(A)$. It follows that if $\tau(z) < 1$, then z is a lower bound of $F_{\tau}(A)$.

Now assume, by way of contradiction, that $x, y \in A$ are incomparable with respect to the order. We distinguish three cases.

(i) If $x \to y \in F_{\tau}(A)$ and $y \to x \in F_{\tau}(A)$, then since $\mathbf{F}_{\tau}(\mathbf{A})$ is linearly ordered and $(x \to y) \lor (y \to x) = 1$, we must have either $x \to y = 1$ or $y \to x = 1$, a contradiction.

(ii) If $x \to y \notin F_{\tau}(A)$ and $y \to x \notin F_{\tau}(A)$, then they are both lower bounds of $F_{\tau}(A)$, and hence $1 = (x \to y) \lor (y \to x)$ is a lower bound of $F_{\tau}(A)$. But then **A** would be isomorphic to $\tau(\mathbf{A})$, and hence it would be linearly ordered, a contradiction. (iii) Finally, suppose $x \to y \in F_{\tau}(A)$ and $y \to x \notin F_{\tau}(A)$ (or vice versa). Then $y \to x$ is a lower bound of $F_{\tau}(A)$, and hence $y \to x < x \to y$. But in any MV-algebra this is the case iff x < y, and again a contradiction has been obtained.

Hence, (\mathbf{A}, τ) is linearly ordered. Conversely, if (\mathbf{A}, τ) is linearly ordered, then for all x, z such that $\tau(x) < 1$ and $\tau(z) = 1$, we cannot have z < x, and hence we must have $x \le z$. Taking $z = \tau(y) \leftrightarrow y$, we obtain that for all x either $\tau(x) = 1$ or x < z, and (lin_{τ}) holds.

Finally, representable SMMV-algebras constitute a proper subvariety of the variety of SMMV-algebras, because any subdirectly irreducible SMMV-algebra of type D is not linearly ordered. \Box

Remark 7.3. According to [8, Prop. 3.6], if (\mathbf{A} , τ) is an SMV-algebra such that \mathbf{A} is a chain, then (\mathbf{A} , τ) is an SMMV-algebra. Hence, the class of all representable SMV-algebras satisfies (lin_{τ}). We do not know whether every subdirectly irreducible SMV-algebra satisfying (lin_{τ}) has a linearly ordered MV-reduct.

Theorem 7.4. $\mathcal{VR} \subseteq \mathcal{VL}$, and the inclusion is proper if and only if \mathcal{V} is not finitely generated.

Proof. Since every linearly ordered SMMV-algebra is local, the inclusion follows. Moreover, every local and finite MV-algebra is linearly ordered, and hence for finitely generated MV-varieties the opposite inclusion also holds. On the other hand, if \mathcal{V} is not finitely generated, then it contains Chang's algebra \mathbf{C}_1 , and the subalgebra of $D(\mathbf{C}_1)$ described in Example 4.5, is a local subdirectly irreducible SMMV-algebra in \mathcal{V}_{SMMV} which is not linearly ordered. Hence, the inclusion $\mathcal{VR} \subseteq \mathcal{VL}$ is proper. \Box

Next, we discuss varieties of the form \mathcal{VL} .

Theorem 7.5. (1) The variety \mathcal{VL} is axiomatized over \mathcal{V}_{SMMV} by the equation

 $(loc_{\tau}) \qquad \neg(\tau(x) \leftrightarrow x) \leq (\tau(x) \leftrightarrow x).$

(2) For any non-trivial variety V of MV-algebras, VL is a proper subvariety of V_{SMMV} .

Proof. We start from the following lemma:

Lemma 7.6. Let **A** be a local MV-algebra and M be its only maximal filter. Then for every $m \in M$, $\neg m \leq m$.

Proof. The claim follows from [4], where it is shown that if **A** is a non-trivial BL-algebra and $a, b \in Rad(\mathbf{A})$, then $a \leq \neg b$. \Box

We continue the proof of Theorem 7.5. In order to prove claim (1), it suffices to prove that an SMMV-algebra is subdirectly irreducible iff it satisfies (loc_{τ}). Now in every SMMV-algebra we have $\tau(\tau(x) \leftrightarrow x) = 1$, and hence $\tau(x) \leftrightarrow x \in F_{\tau}(A) \subseteq M$, where M denotes the unique maximal filter of **A**. Then Lemma 7.6 implies that every subdirectly irreducible local SMMV-algebra satisfies (loc_{τ}). Before proving the converse, we prove claim (2).

Let **A** be a non-trivial chain in \mathcal{V} . Then (loc_{τ}) is invalidated in $D(\mathbf{A})$, taking x = (1, 0). We have $\tau(x) = (1, 1), \tau(x) \leftrightarrow x = (1, 0)$, and

 $\neg(\tau(x) \leftrightarrow x) = (0, 1) \nleq (1, 0) = \neg(\tau(x) \leftrightarrow x).$

This settles the claim.

In order to prove the opposite direction of claim (1), note that every subdirectly irreducible SMMV-algebra is either of type \mathcal{I} (in which case it is local) or of type \mathcal{L} (in which case, once again it is local) or of type \mathcal{D} . In the last case the proof of (2) shows that it does not satisfy (loc_{τ}). Hence if a subdirectly irreducible SMMV-algebra satisfies (loc_{τ}) it is local. \Box

Another interesting problem in the study of the lattice of subvarieties of a variety is the investigation of covers of a given subvariety (if any). For instance, one may wonder what are the covers of \mathcal{BI} . We note that, for any variety defined by a finite set of equations (such as \mathcal{BI}), every variety which properly contains it it contains a cover of it. A partial answer to this question is provided by the following theorem:

Theorem 7.7. Let \mathcal{V} and \mathcal{W} be varieties of MV-algebras. If \mathcal{W} is a cover of \mathcal{V} , then \mathcal{WI} is a cover of \mathcal{VI} . Hence, if \mathcal{W} is generated either by S_n for some prime number p or by Chang's algebra C_1 , then \mathcal{WI} is a cover of \mathcal{BI} .

Proof. If $(\mathbf{A}, \tau) \in \mathcal{WI} \setminus \mathcal{VI}$, then since τ is forced to be the identity, we must have $\mathbf{A} \in \mathcal{W} \setminus \mathcal{V}$, and since \mathcal{W} is a cover of \mathcal{V} , the variety generated by $\{A\} \cup V$ is W, and hence the variety generated by $\{(A, \tau)\} \cup V \mathcal{I}$ is $W \mathcal{I}$, and the claim follows.

Remark 7.8. Varieties \mathcal{VI} , where \mathcal{V} is a cover of the Boolean variety \mathcal{B} , do not exhaust the covers of \mathcal{BI} . Another cover is \mathcal{B}_{SMMV} . Indeed, any subdirectly irreducible SMMV-algebra (**A**, τ) in $\mathcal{B}_{SMMV} \setminus \mathcal{BI}$ must have a Boolean reduct and cannot be of type \mathcal{I} or \mathcal{L} , otherwise τ would be identical. Hence, it must be of type \mathcal{D} and $D(\mathbf{S}_1)$ is a subalgebra of (\mathbf{A}, τ) . Therefore, (**A**, τ) generates the whole variety \mathcal{B}_{SMMV} .

Theorem 7.7 suggests the following problem:

Problem 2. Let \mathcal{V} be a variety of MV-algebras and let \mathcal{V}' be a cover of \mathcal{V} . Is it true that \mathcal{V}'_{SMMV} is a cover of \mathcal{V}_{SMMV} ? Or, equivalently, is $VD(\mathcal{V})$ a cover of $VD(\mathcal{V}')$?

The answer to these questions is no, in general. Here is a sample of counterexamples.

(1) Let \mathcal{V} be the variety of Boolean algebras and \mathcal{V}' be the variety generated by Chang's algebra. Then \mathcal{V}' is a cover of \mathcal{V} . However, there is an intermediate variety between V_{SMMV} and V'_{SMMV} , namely, the subvariety V''_{SMMV} of V'_{SMMV} axiomatized by the equation

(*)
$$\tau(x) \vee \tau(\neg x) = 1.$$

Indeed, clearly the equation (*) holds in any Boolean SMMV-algebra. Moreover, there is an algebra in V'_{SMMV} which satisfies (*) and its reduct is not a Boolean algebra, namely, Chang's algebra C_1 with τ defined by $\tau(x) = 0$ if $x \in Rad(C_1)$ and $\tau(x) = 1$ otherwise.

Finally, there is an algebra in V'_{SMMV} which does not satisfy (*), namely, the diagonalization, $D(\mathbf{C}_1)$, of Chang's algebra. Indeed, if $c \in Rad(\mathbf{C}_1) \setminus \{0\}$, then $\tau(c, c) = (c, c)$ and $\tau(\neg(c, c)) = (\neg c, \neg c)$. Hence, $\tau(c, c) \lor \tau(\neg(c, c)) = (\neg c, \neg c) < 1$. (2) Let $\mathcal{V} = \bigvee(\mathbf{S}_{i_1}, \dots, \mathbf{S}_{i_n})$ and $\mathcal{V}' = \bigvee(\mathbf{S}_{i_1}, \dots, \mathbf{S}_{i_n}, \mathbf{C}_1)$ for some integers $1 \le i_1 < \dots < i_n$. Then \mathcal{V}' is a cover variety (2) Let $\mathcal{V} = \mathcal{V}(\mathbf{S}_{i_1}, \dots, \mathbf{S}_{i_n})$ and $\mathcal{V} = \mathcal{V}(\mathbf{S}_{i_1}, \dots, \mathbf{S}_{i_n}, \mathbf{c}_1)$ for some integers $\tau = \tau_1$ of \mathcal{V}_n of \mathcal{V} . Define \mathcal{V}''_{SMMV} as the class of all $(\mathbf{A}, \tau) \in \mathcal{V}'$ such that $\tau(\mathbf{A}) \in \mathcal{V}$. Then $\mathcal{V}_{SMMV} \subseteq \mathcal{V}''_{SMMV} \subseteq \mathcal{V}'$. But if τ is as in (1), then $(\mathbf{C}_1, \tau) \in \mathcal{V}'_{SMMV} \setminus \mathcal{V}_{SMMV}$ and $D(\mathbf{C}_1) \in \mathcal{V}'_{SMMV} \setminus \mathcal{V}''_{SMMV}$. (3) Define on $\mathbf{C}_n \times \mathbf{C}_n$ a map $\tau_n(i, j) = (i, 0)$ for all $(i, j) \in \mathbf{C}_n$, then (\mathbf{C}_n, τ_n) is an SMMV-algebra.

Let $1 = i_1 < \cdots < i_n$ and $1 = j_1 < \cdots < j_k$ with $k \ge 2$ be finite sets of integers such that every j_s does not divide any j_t with $1 < j_s < j_t$ and fix an index $j_0 \in J := \{j_1, \ldots, j_k\}$ with $j_0 \ge 2$ such that $j_0 \in I := \{i_1, \ldots, i_k\}$.

Let $\mathcal{V}' = V(\{\mathbf{S}_i, \mathbf{C}_j : i \in I, j \in J\})$ and $\mathcal{V} = V(\{\mathbf{S}_i, \mathbf{C}_j : i \in I, j \in J \setminus \{j_0\}\})$. Set \mathcal{V}''_{SMMV} as the class of $(\mathbf{A}, \tau) \in \mathcal{V}'_{SMMV}$ such that $\tau(\mathbf{A}) \in \mathcal{V}$. Then $(\mathbf{C}_{j_0}, \tau_{j_0}) \in \mathcal{V}''_{SMMV} \setminus \mathcal{V}_{SMMV}$ and $D(\mathbf{C}_{j_0}) \in \mathcal{V}'_{SMMV} \setminus \mathcal{V}''_{SMMV}$.

(4) Let $\mathcal{V}' = \mathcal{V}(\mathbf{S}_{i_1}, \dots, \mathbf{S}_{i_n})$, where $1 = i_1 < \dots < i_n$, $n \ge 2$ and every i_s does not divide any i_t with $1 < i_s < i_t$. Let $i_0 \in \{i_2, \dots, i_n\}$ be fixed and let $\mathcal{V} = \mathcal{V}(\mathbf{S}_i : i \in \{i_1, \dots, i_n\} \setminus i_0)$. Then \mathcal{V} is a cover of \mathcal{V} . Let \mathcal{V}'' be the variety generated by \mathcal{V}_{SMMV} and $(\mathbf{S}_{i_0}, \mathrm{Id}_{S_{i_0}})$. Then $\mathcal{V}_{SMMV} \subset \mathcal{V}'' \subset \mathcal{V}'_{SMVV}$ because $(\mathbf{S}_{i_0}, \mathrm{Id}_{S_{i_0}}) \in \mathcal{V}'' \setminus \mathcal{V}_{SMMV}$ and $D(\mathbf{S}_{i_0}) \in \mathcal{V}''_{SMMV} \setminus \mathcal{V}''$. (5) Let $\mathcal{V}' = \mathcal{V}(\mathbf{C}_{j_1}, \dots, S_{j_k})$, where $1 = i_1 < \dots < i_k$, $k \ge 2$ and every j_s does not divide any j_t with $1 < j_s < j_t$. Let

 $j_0 \in \{j_2, \ldots, j_n\}$ be fixed and let $\mathcal{V} = V(\mathbf{C}_j : j \in \{j_1, \ldots, j_k\} \setminus j_0)$. Let \mathcal{V}'' be the variety generated by \mathcal{V}_{SMMV} and (\mathbf{S}_{i_0}, τ) . Then $\mathcal{V}_{SMMV} \subset \mathcal{V}'' \subset \mathcal{V}'_{SMVV}$ because $(\mathbf{C}_{j_0}, \mathrm{Id}_{C_{j_0}}) \in \mathcal{V}'' \setminus \mathcal{V}_{SMMV}$ and $D(\mathbf{C}_{j_0}) \in \mathcal{V}'_{SMMV} \setminus \mathcal{V}'$.

The above examples offer several interesting methods for obtaining intermediate varieties. But the fact that if $\mathcal W$ is an MV-cover of \mathcal{V} , then \mathcal{W}_{SMMV} need not be a cover of \mathcal{V}_{SMMV} can be strengthened:

Theorem 7.9. If W properly contains V, then the join, $V_{SMMV} \vee WI$, of V_{SMMV} and WI, is a proper extension of V_{SMMV} and a proper subvariety of W_{SMMV} . Hence, W_{SMMV} can never be a cover of V_{SMMV} .

Proof. Inclusions are clear. Moreover, if $\mathbf{A} \in \mathcal{W} \setminus \mathcal{V}$, then $(\mathbf{A}, \mathrm{Id}_{\mathbf{A}}) \in (\mathcal{WI} \vee \mathcal{V}_{\mathrm{SMMV}}) \setminus \mathcal{V}_{\mathrm{SMMV}}$, and hence the first inclusion is proper. In order to prove that also the inclusion ($WI \vee V_{SMMV}$) $\subseteq W_{SMMV}$, consider an MV-identity $\eta(x) = 1$ which axiomatizes \mathcal{V} over \mathcal{W} , and set

$$(\epsilon_V) \qquad \qquad \eta(x) \lor (\tau(y) \leftrightarrow y) = 1.$$

Clearly, (ϵ_V) holds both in \mathcal{V}_{SMMV} and in \mathcal{WI} , and hence it holds in $\mathcal{V}_{SMMV} \vee \mathcal{WI}$. Now take a subdirectly irreducible MV-algebra $\mathbf{A} \in \mathcal{W} \setminus \mathcal{V}$. Then $D(\mathbf{A}) \in \mathcal{W}_{SMMV}$, but it is readily seen that (ϵ_V) is not valid in $D(\mathbf{A})$, and also the inclusion $(\mathcal{V}_{SMMV} \lor \mathcal{WI}) \subseteq \mathcal{W}_{SMMV}$ is proper. \Box

It follows that Problem 2 should be replaced by the following:

Problem 3. Suppose that \mathcal{W} is an MV-cover of \mathcal{V} . Is it true that $\mathcal{WI} \vee \mathcal{V}_{SMMV}$ is a cover of \mathcal{V}_{SMMV} ?

According to Komori, [5, Theorem 8.4.4], the lattice of subvarieties of the variety of MV-algebras is countable. Now we investigate the number of varieties of SMMV-algebras, and we prove that there are uncountably many of them. Let $[0, 1]^*$ be an ultrapower of the MV-algebra on [0, 1], and let us fix a positive infinitesimal $\varepsilon \in [0, 1]^*$. For every set X of prime numbers, we denote by $\mathbf{A}(X)$ the subalgebra of $[0, 1]^*$ generated by ε and by the set of all rational numbers $\frac{n}{m}$ with $0 \le n \le m$, and m > 0 such that:

(1) either n = 0 or gcd(n, m) = 1;

(2) for all $p \in X$, p does not divide m.

Note that for all $x \in A(X)$, the standard part of x is a rational number $\frac{n}{m}$ satisfying (1) and (2). Indeed the set of rational numbers satisfying (1) and (2) is closed under all MV-operations.

On $\mathbf{A}(X)$ we define $\tau(x)$ to be the standard part of x. Note that τ is an idempotent homomorphism from $\mathbf{A}(X)$ into itself, and hence $(\mathbf{A}(X), \tau)$ is a linearly ordered SMMV-algebra.

Lemma 7.10. If X and Y are distinct sets of primes, then A(X) and A(Y) generate different varieties.

Proof. Without loss of generality, we may assume that there is a prime *p* such that $p \in X \setminus Y$. Consider the equations: $(a_p) (p-1)x \leftrightarrow \neg x = 1$

 $(\mathbf{b}_p) \tau((p-1)x) \leftrightarrow \tau(\neg x) = 1$

 $(c_p)(\tau((p-1)x) \leftrightarrow \tau(\neg x))^2 \le ((p-1)x \leftrightarrow \neg x).$

The following claims are easy to prove, recalling that $\frac{1}{n} \in A(Y) \setminus A(X)$:

Claim 1. Eq. (a_p) has no solution in $(\mathbf{A}(X), \tau)$, and its only solution in $(\mathbf{A}(Y), \tau)$ is $\frac{1}{n}$.

Claim 2. Eq. (b_p) has no solution in $(\mathbf{A}(X), \tau)$, and its solutions in $(\mathbf{A}(Y), \tau)$ are precisely those real numbers in A(Y) whose standard part is $\frac{1}{p}$.

Claim 3. In both $(\mathbf{A}(X), \tau)$ and $(\mathbf{A}(Y), \tau)$, for every $x, \tau((p-1)x) \leftrightarrow \tau(\neg x)$ is the standard part of $(p-1)x \leftrightarrow \neg x$.

Now consider the equation (c_p) .

Claim 4. Eq. (c_p) is valid in $(\mathbf{A}(X), \tau)$ and it is not valid in $(\mathbf{A}(Y), \tau)$.

Proof of Claim 4. Let $x \in A(X)$, let $\alpha = \tau((p-1)x) \Leftrightarrow \tau(\neg x)$ and $\beta = (p-1)x \Leftrightarrow \neg x$. By Claims 2 and 3, α is a real number strictly less than 1, and differs from β by an infinitesimal. Hence, α^2 is either 0 or a real strictly smaller than α , and hence it is smaller than β . It follows that (c_p) holds in $(\mathbf{A}(X), \tau)$.

Now we prove that equation (c_p) is not valid in $(\mathbf{A}(Y), \tau)$. Let $x = \frac{1}{p} + \varepsilon$. Then $x \in A(Y)$. Moreover, by Claim 2, $\tau((p-1)x) \leftrightarrow \tau(\neg x) = (\tau((p-1)x) \leftrightarrow \tau(\neg x))^2 = 1$, and by Claim 1,

$$(p-1)x \leftrightarrow \neg x = (\frac{1}{p} - (p-1)\varepsilon) + (1 - \frac{1}{p} - \varepsilon) = 1 - p\varepsilon < 1.$$

Thus, Eq. (c_p) is not valid in A(Y). This concludes the proof of Claim 4, and hence of Lemma 7.10. \Box

We can say more:

Theorem 7.11. Let MV denote the variety of all MV-algebras. Then there are uncountably many varieties between MVI and MVR.

Proof. Consider, for every set *X* of prime numbers, the variety $\mathcal{V}(X)$ axiomatized by (lin_{τ}) and by all equations (c_p) with $p \in X$. Clearly, $\mathbf{A}(X) \in \mathcal{V}(X)$ for every set *X* of primes. By Lemma 7.10, different sets of primes originate different varieties, and hence there is a continuum of varieties of the form $\mathcal{V}(X)$. Moreover, both equations (lin_{τ}) and (c_p) hold in all SMMV-algebras of type \mathcal{I} , and hence $\mathcal{MVI} \subseteq \mathcal{V}(X)$ for any set *X* of primes. Finally, since (lin_{τ}) is an axiom of every $\mathcal{V}(X)$, we have $\mathcal{V}(X) \subseteq \mathcal{MVR}$. \Box

Corollary 7.12. There are varieties of representable SMMV-algebras which are not recursively axiomatizable, and hence not finitely axiomatizable.

Acknowledgements

The authors are indebted to the referees for their careful reading and suggestions.

References

- [1] W. Blok, D. Pigozzi, Algebraizable logics, Mem. Amer. Math. Soc. 396 (77) (1989).
- [2] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York, 1981.
- [3] C.C. Chang, A new proof of the completeness of Łukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1989) 74-80.
- [4] R. Cignoli, A. Torrens, Free algebras in varieties of BL-algebras with a Boolean retract, Algebra Universalis 48 (2002) 55-79.
- [5] R. Cignoli, I. D'Ottaviano, D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer Academic Publishers, Dordrecht, 2000.
- [6] A. Di Nola, Representation and reticulation by quotients of MV-algebras, Ricerche Mat. 40 (1991) 291-297.
- [7] A. Di Nola, A. Dvurečenskij, State-morphism MV-algebras, Ann. Pure Appl. Logic 161 (2009) 161–173.
- [8] A. Di Nola, A. Dvurečenskij, A. Lettieri, On varieties of MV-algebras with internal states, Internat. J. Approx. Reason. 51 (2010) 680–694.
- [9] A. Di Nola, A. Dvurečenskij, A. Lettieri, Erratum "State-morphism MV-algebras", Ann. Pure Appl. Logic 161 (2009) 161–173. Ann. Pure Appl. Logic 161 (2010) 1605–1607.
- [10] A. Dvurečenskij, Subdirectly irreducible state-morphism BL-algebras, Arch. Math. Logic 50 (2011) 145-160, doi:10.1007/s00153-010-0206-7.
- [11] T. Flaminio, F. Montagna, MV-algebras with internal states and probabilistic fuzzy logics, Internat. J. Approx. Reason. 50 (2009) 138–152.
- [12] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.
- [13] J.Y. Halpern, Reasoning about Uncertaintity, MIT Press, 2003.
- [14] T. Kroupa, Every state on a semisimple MV algebra is integral, Fuzzy Sets and Systems 157 (2006) 2771-2787.
- [15] T. Kroupa, Representation and extension of states on MV-algebras, Arch. Math. Logic 45 (2006) 381–392.
- [16] J. Kühr, D. Mundici, De Finetti theorem and Borel states in [0, 1]-valued algebraic logic, Internat. J. Approx. Reason. 46 (2007) 605–616.
- [17] D. Mundici, Interpretations of AF C*-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986) 15–63.
- [18] D. Mundici, Averaging the truth value in Łukasiewicz logic, Studia Logica 55 (1995) 113-127.
- [19] D. Mundici, Bookmaking over infinite-valued events, Internat. J. Approx. Reason. 46 (2006) 223-240.
- [20] G. Panti, Invariant measures in free MV-algebras, Comm. Algebra 36 (2008) 2849–2861.