Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs

Johannes H. Hattingh ${ }^{\text {a }}$, Elizabeth Jonck ${ }^{\text {b }}$, Ernst J. Joubert ${ }^{\text {b }}$, Andrew R. Plummer ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, University Plaza, Georgia State University, Atlanta, GA 30303, USA
${ }^{\mathrm{b}}$ Department of Mathematics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa

Received 4 February 2006; received in revised form 16 February 2007; accepted 27 March 2007
Available online 4 April 2007

Abstract

Let $G=(V, E)$ be a graph. A set $S \subseteq V$ is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex of $V-S$ is adjacent to a vertex in $V-S$. A set $S \subseteq V$ is a restrained dominating set if every vertex in $V-S$ is adjacent to a vertex in S and to a vertex in $V-S$. The total restrained domination number of G (restrained domination number of G, respectively), denoted by $\gamma_{\mathrm{tr}}(G)\left(\gamma_{\mathrm{r}}(G)\right.$, respectively), is the smallest cardinality of a total restrained dominating set (restrained dominating set, respectively) of G. We bound the sum of the total restrained domination numbers of a graph and its complement, and provide characterizations of the extremal graphs achieving these bounds. It is known (see [G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar, L.R. Markus, Restrained domination in graphs, Discrete Math. 203 (1999) 61-69.]) that if G is a graph of order $n \geqslant 2$ such that both G and \bar{G} are not isomorphic to P_{3}, then $4 \leqslant \gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n+2$. We also provide characterizations of the extremal graphs G of order n achieving these bounds.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Restrained; Total; Domination; Nordhaus-Gaddum

1. Introduction

In this paper, we follow the notation of [1]. Specifically, let $G=(V, E)$ be a graph with vertex set V and edge set E. A set $S \subseteq V$ is a dominating set, denoted DS, of G if every vertex not in S is adjacent to a vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set. The concept of domination in graphs, with its many variations, is now well studied in graph theory. The recent book of Chartrand and Lesniak [1] includes a chapter on domination. A thorough study of domination appears in [6,7].
In this paper, we continue the study of two variations of the domination theme, namely that of restrained domination [4,3,5,8] and total restrained domination [2,11].
A set $S \subseteq V$ is a total restrained dominating set, denoted TRDS, if every vertex is adjacent to a vertex in S and every vertex in $V-S$ is also adjacent to a vertex in $V-S$. Every graph without isolated vertices has a total restrained dominating set, since $S=V$ is such a set. The total restrained domination number of G, denoted by $\gamma_{\mathrm{tr}}(G)$, is the minimum cardinality of a TRDS of G.

[^0]A set $S \subseteq V$ is a restrained dominating set, denoted RDS, if every vertex in $V-S$ is adjacent to a vertex in S and a vertex in $V-S$. Every graph has a restrained dominating set, since $S=V$ is such a set. The restrained domination number of G, denoted by $\gamma_{\mathrm{r}}(G)$, is the minimum cardinality of a RDS of G. If u, v are vertices of G, then the distance between u and v will be denoted by $d(u, v)$.

Nordhaus and Gaddum present best possible bounds on the sum of the chromatic number of a graph and its complement in [10]. The corresponding result for the domination number is presented by Jaeger and Payan in [9]: If G is a graph of order $n \geqslant 2$, then $\gamma(G)+\gamma(\bar{G}) \leqslant n+1$. A best possible bound on the sum of the restrained domination numbers of a graph and its complement is obtained in [3]:

Theorem 1. If G is a graph of order $n \geqslant 2$ such that both G and \bar{G} are not isomorphic to P_{3}, then $4 \leqslant \gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant$ $n+2$.

A best possible bound on the sum of the total restrained domination numbers of a graph and its complement is obtained in [2]:

Theorem 2. If G is a graph of order $n \geqslant 2$ such that neither G nor \bar{G} contains isolated vertices or has diameter two, then $\gamma_{\text {tr }}(G)+\gamma_{\text {tr }}(\bar{G}) \leqslant n+4$.

Let K be the graph obtained from K_{3} by matching the vertices of \bar{K}_{2} to distinct vertices of K_{3}. Note that K is selfcomplementary, K nor \bar{K} contains isolated vertices or has diameter two, while $\gamma_{\text {tr }}(K)+\gamma_{\text {tr }}(\bar{K})=2 \times 5=10>n(K)+4$. Thus, Theorem 2 is incorrect.

We will show, in Section 2, that if G is a graph of order $n \geqslant 2$ such that neither G nor \bar{G} contains isolated vertices or is isomorphic to K, then $4 \leqslant \gamma_{\text {tr }}(G)+\gamma_{\text {tr }}(\bar{G}) \leqslant n+4$. Moreover, we will characterize the graphs G of order n for which $\left.\gamma_{\mathrm{tr}}(G)+\gamma_{\mathrm{tr}} \bar{G}\right)=n+4$ and also characterize those graphs G for which $\gamma_{\mathrm{tr}}(G)+\gamma_{\mathrm{tr}}(\bar{G})=4$. In Section 3, we characterize the graphs G of order n for which $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G})=n+2$ as well as those graphs G for which $\gamma_{\mathrm{r}}(G)+$ $\gamma_{\mathrm{r}}(\bar{G})=4$.

2. Total restrained domination

In this section, we provide bounds on the sum of the total restrained domination numbers of a graph and its complement, and provide characterizations of the extremal graphs achieving these bounds.

Let $n \geqslant 5$ be an integer and suppose $\{x, y, u, v\}$ and X are disjoint sets of vertices such that $|X|=n-4$. Let \mathscr{L} be the family of graphs G of order n where $V(G)=\{x, y, u, v\} \cup X$ and with the following properties:
(P1) x and y are non-adjacent, while u and v are adjacent;
(P2) each vertex in $\{x, y\} \cup X$ is adjacent to some vertex of $\{u, v\}$;
(P3) each vertex in $\{u, v\} \cup X$ is non-adjacent to some vertex of $\{x, y\}$;
(P4) each vertex in $\{x, y\} \cup X$ is adjacent to some vertex of $\{x, y\} \cup X$;
(P5) each vertex in $\{u, v\} \cup X$ is non-adjacent to some vertex of $\{u, v\} \cup X$.

Theorem 3. If G is a graph of order $n \geqslant 2$ such that neither G nor \bar{G} contains isolated vertices, then $\gamma_{\operatorname{tr}}(G)+\gamma_{\operatorname{tr}}(\bar{G})=4$ if and only if $G \in \mathscr{L}$.

Proof. Suppose G is a graph such that neither G nor \bar{G} contains isolated vertices, and suppose $\gamma_{\mathrm{tr}}(G)+\gamma_{\mathrm{tr}}(\bar{G})=4$. Then $\gamma_{\mathrm{tr}}(G)=\gamma_{\mathrm{tr}}(\bar{G})=2$. Let $S=\{u, v\}\left(S^{\prime}=\{x, y\}\right.$, respectively) be a TRDS of G (\bar{G}, respectively). Then x is non-adjacent to y, while u is adjacent to v, and Property (P1) holds. Clearly, $S \neq S^{\prime}$. Suppose $u=x$ with $v \neq y$. Since $\{u, v\}$ is a DS of G and y is non-adjacent to $x=u$, the vertex y must be adjacent to v. But then v is not dominated by S^{\prime} in \bar{G}, which is a contradiction. Thus, $S \cap S^{\prime}=\emptyset$. Let $X=V(G)-\{x, y, u, v\}$. Then $|X|=n-4$, and since $S\left(S^{\prime}\right.$, respectively) is a TRDS of G (\bar{G}, respectively), Properties (P2)-(P5) hold for G. Thus, $G \in \mathscr{L}$. The converse clearly holds as $\{u, v\}(\{x, y\}$, respectively) is a TRDS of $G(\bar{G}$, respectively $)$.

Let diam (G) denote the diameter of G, and let u, v be two vertices of G such that $d(u, v)=\operatorname{diam}(G)$. The set of vertices at distance i from $u, 0 \leqslant i \leqslant \operatorname{diam}(G)$, will be denoted by V_{i}, and the sets $V_{0}, \ldots, V_{\text {diam }(G)}$ will then be called the level decomposition of G with respect to u.

Let $\mathscr{U}=\left\{G \mid G\right.$ is a graph of order n which can be obtained from a P_{4} with consecutive vertices labeled u, v_{1}, v_{2}, v by joining vertices v_{1} and v_{2} to each vertex of K_{n-4} where $\left.n \geqslant 6\right\}$.

Theorem 4. Let G be a graph of order $n \geqslant 2$ such that neither G nor \bar{G} contains isolated vertices or is isomorphic to K. Then $\gamma_{\operatorname{tr}}(G)+\gamma_{\mathrm{tr}}(\bar{G}) \leqslant n+4$. Moreover, $\gamma_{\operatorname{tr}}(G)+\gamma_{\operatorname{tr}}(\bar{G})=n+4$ if and only if $G \in \mathscr{U}$ or $\bar{G} \in \mathscr{U}$ or $G \cong P_{4}$.

Proof. If G is disconnected, then $\gamma_{\operatorname{tr}}(\bar{G})=2$. Hence $\gamma_{\operatorname{tr}}(G)+\gamma_{\mathrm{tr}}(\bar{G}) \leqslant n+2$. Thus, without loss of generality, assume both G and \bar{G} are connected. Let u and v be vertices such that $d(u, v)=\operatorname{diam}(G)$ and let $V_{0}, \ldots, V_{\text {diam }(G)}$ be the level decomposition of G with respect to u.

We consider the following cases:
Case 1: $\operatorname{diam}(G) \geqslant 5$.
We claim that $\{u, v\}$ is a TRDS of \bar{G}. The vertex u is non-adjacent to all vertices in V_{i} where $2 \leqslant i \leqslant \operatorname{diam}(G)$, while the vertex v is non-adjacent to all vertices in V_{i} where $0 \leqslant i \leqslant \operatorname{diam}(G)-2$. Moreover, every vertex in $V(G)-\{u, v\}$ is non-adjacent to some vertex of $V(G)-\{u, v\}$. Thus, $\gamma_{\mathrm{tr}}(\bar{G})=2$, and so $\gamma_{\mathrm{tr}}(G)+\gamma_{\mathrm{tr}}(\bar{G}) \leqslant n+2$.

Case 2: $\operatorname{diam}(G)=4$.
Suppose $u, v_{1}, v_{2}, v_{3}, v$ is a diametrical path. If $\left|V_{4}\right| \geqslant 2$, then $\{u, v\}$ is a TRDS of \bar{G}, and the result follows.
Thus, $V_{4}=\{v\}$. Let $V_{21}=\left\{x \in V_{2} \mid\right.$ there exists a vertex in $V_{1} \cup V_{2} \cup V_{3}$ that is not adjacent to $\left.x\right\}$ and let $V_{22}=V_{2}-V_{21}$. The set $\{u, v\} \cup V_{22}$ is a TRDS of \bar{G}. So we have that $\gamma_{\text {tr }}(\bar{G}) \leqslant 2+\left|V_{22}\right|$. If $\left|V_{22}\right| \leqslant 1$, then $\gamma_{\text {tr }}(G)+\gamma_{\text {tr }}(\bar{G}) \leqslant n+3$.

Hence $\left|V_{22}\right| \geqslant 2$. Let $t \in V_{22}$ such that $t \neq v_{2}$. Suppose $\left|V_{1} \cup V_{21} \cup V_{3}\right| \geqslant 4$. Let $s \in V_{1} \cup V_{21} \cup V_{3}-\left\{v_{1}, v_{2}, v_{3}\right\}$. Then $V_{1} \cup V_{21} \cup V_{3} \cup\{u, v, t\}-\{s\}$ is a TRDS of G and so $\gamma_{\text {tr }}(G)+\gamma_{\text {tr }}(\bar{G}) \leqslant n-\left(\left|V_{22}\right|-1\right)-1+\left|V_{22}\right|+2 \leqslant n+2$. Hence $\left|V_{1}\right|=1$, $\left|V_{21}\right| \leqslant 1$ and $\left|V_{3}\right|=1$. Therefore, $V(G)-V_{22}$ is a TRDS of G and so $\gamma_{\text {tr }}(G)+\gamma_{\text {tr }}(\bar{G}) \leqslant n-\left|V_{22}\right|+2+\left|V_{22}\right| \leqslant n+2$.

Case 3: $\operatorname{diam}(G)=3$.
Let u, v_{1}, v_{2}, v be a diametrical path. Suppose $t \in V_{3}-\{v\}$. We define $V_{21}=\left\{x \in V_{2} \mid\right.$ there exists a vertex in $V_{1} \cup V_{2} \cup V_{3}-\{t\}$ that is not adjacent to $\left.x\right\}$ and let $V_{22}=V_{2}-V_{21}$. The set $\{u, t\} \cup V_{22}$ is a TRDS of \bar{G} and so $\gamma_{\mathrm{tr}}(\bar{G}) \leqslant 2+\left|V_{22}\right|$. If $\left|V_{22}\right|=1$, then surely $\gamma_{\mathrm{tr}}(G)+\gamma_{\mathrm{tr}}(\bar{G}) \leqslant n+3$. Hence $\left|V_{22}\right| \geqslant 2$. The vertex t is adjacent to some vertex $s \in V_{2}$. If $s \in V_{22}$, then the set $\{u, s\} \cup V_{1} \cup V_{21} \cup V_{3}-\{v\}$ is a TRDS of G. If $s \notin V_{22}$, then the set $\{u, w\} \cup V_{1} \cup V_{21} \cup V_{3}-\{v\}$ is a TRDS of G, where $w \in V_{22}$. In both cases, $\gamma_{\text {tr }}(G) \leqslant n-\left|V_{22}\right|$, and so $\gamma_{\mathrm{tr}}(G)+\gamma_{\mathrm{tr}}(\bar{G}) \leqslant n-\left|V_{22}\right|+2+\left|V_{22}\right|=n+2$.

Thus, $V_{3}=\{v\}$. Define $V_{11}=\left\{x \in V_{1} \mid\right.$ there exists a vertex in $V_{1} \cup V_{2}$ that is not adjacent to $\left.x\right\}$ and let $V_{12}=V_{1}-V_{11}$. Moreover, let $V_{21}=\left\{x \in V_{2} \mid\right.$ there exists a vertex in $V_{1} \cup V_{2}$ that is not adjacent to $\left.x\right\}$ and let $V_{22}=V_{2}-V_{21}$. Then $\{u, v\} \cup V_{12} \cup V_{22}$ is a TRDS of \bar{G}, whence $\gamma_{\mathrm{tr}}(\bar{G}) \leqslant 2+\left|V_{12}\right|+\left|V_{22}\right|$.

Case 3.1: $\left|V_{12}\right|+\left|V_{22}\right| \leqslant 2$.
Clearly $\gamma_{\mathrm{tr}}(G)+\gamma_{\mathrm{tr}}(\bar{G}) \leqslant n+4$. We now investigate when, in this case, $\gamma_{\mathrm{tr}}(G)+\gamma_{\mathrm{tr}}(\bar{G})=n+4$. As $\gamma_{\mathrm{tr}}(G)+\gamma_{\mathrm{tr}}(\bar{G})=n+4$, we must have that $\left|V_{12}\right|+\left|V_{22}\right|=2$.
We first show that $\operatorname{deg}(u)=\operatorname{deg}(v)=1$. Suppose, to the contrary, $\left\{v_{1}, w\right\} \subseteq N(u)$, and let $t \in V_{12} \cup V_{22}-\{w\}$. Then t is adjacent to every vertex of $V_{1} \cup V_{2}$, and so $V(G)-\{u, w\}$ is a TRDS of G. It now follows that $\gamma_{\text {tr }}(G)+$ $\gamma_{\mathrm{tr}}(\bar{G}) \leqslant n-2+4=n+2$, which is a contradiction. Thus, $\operatorname{deg}(u)=1$, and $\operatorname{deg}(v)=1$ follows similarly.
Hence $V_{1}=V_{12}=\left\{v_{1}\right\}$, and the set V_{22} consists of exactly one vertex, say w. Suppose $w \neq v_{2}$. If $\left|V_{2}\right|=2$, then $G \cong K$, which is not allowable. So, let $w^{\prime} \in V_{2}-\left\{v_{2}, w\right\}$. Then w and w^{\prime} are adjacent, and $V(G)-\left\{w, w^{\prime}\right\}$ is a TRDS of G. As before, we obtain a contradiction.

We conclude $w=v_{2}$. If $V_{21}=\emptyset$, then $G \cong P_{4}$. If $V_{21} \neq \emptyset$, then surely $\left|V_{21}\right| \geqslant 2$. If two vertices, say t and t^{\prime}, of V_{21} are adjacent in G, then $V(G)-\left\{t, t^{\prime}\right\}$ is a TRDS of G, and we obtain a contradiction as before. Thus, V_{21} is independent, and so $\bar{G} \in \mathscr{U}$.

Case 3.2: $\left|V_{12}\right|+\left|V_{22}\right| \geqslant 3$.
If we can show that G has a TRDS of size at most $s:=n-\left|V_{12}\right|-\left|V_{22}\right|+1$, then $\gamma_{\text {tr }}(G)+\gamma_{\text {tr }}(\bar{G}) \leqslant n-\left|V_{12}\right|-$ $\left|V_{22}\right|+1+2+\left|V_{12}\right|+\left|V_{22}\right|=n+3$.

First consider the case when $v_{1} \in V_{11}$. Choose $w=v_{2}$ if $v_{2} \in V_{22}$, otherwise choose $w \in V_{12} \cup V_{22}$. In both situations, $\{u, v, w\} \cup V_{11} \cup V_{21}$ is a TRDS of G of size s. Thus, $v_{1} \notin V_{11}$. If $v_{2} \in V_{21}$, then $\left\{u, v_{1}, v\right\} \cup V_{11} \cup V_{21}$ is a TRDS of G of size s. Thus, $v_{2} \notin V_{21}$.

We conclude that $v_{1} \in V_{12}$, while $v_{2} \in V_{22}$.
Suppose u is adjacent to a vertex w which is distinct from v_{1}. If $w \in V_{12}$, then $\left\{v_{1}, v_{2}, v\right\} \cup V_{11} \cup V_{21}$ is a TRDS of size s. If $w \in V_{11}$, then $\left\{v_{1}, v_{2}, v\right\} \cup\left(V_{11}-\{w\}\right) \cup V_{21}$ is a TRDS of size $s-1$. Thus, $\operatorname{deg}(u)=1$, and $\operatorname{deg}(v)=1$ follows similarly.

Suppose $V_{22}=\left\{v_{2}\right\}$. If $V_{21}=\emptyset$, then $G \cong P_{4}$ and $\gamma_{\text {tr }}(G)+\gamma_{\text {tr }}(\bar{G})=n+4$. If $V_{21} \neq \emptyset$, then surely $\left|V_{21}\right| \geqslant 2$. If two vertices, say t and t^{\prime}, of V_{21} are adjacent in G, then $\left\{u, v_{1}, v_{2}, v\right\} \cup\left(V_{21}-\left\{t, t^{\prime}\right\}\right)$ is a TRDS of G of size $s-1$. Thus, V_{21} is independent, $\bar{G} \in \mathscr{U}$ and $\gamma_{\text {tr }}(G)+\gamma_{\text {tr }}(\bar{G})=n+4$.

Thus, $\left|V_{22}\right| \geqslant 2$. If $V_{21}=\emptyset$, then V_{22} induces a clique. If $\left|V_{22}\right|=2$, then $G \cong K$, which is not allowable. If $\left|V_{22}\right| \geqslant 3$, then $G \in \mathscr{U}$ and $\gamma_{\text {tr }}(G)+\gamma_{\text {tr }}(\bar{G})=n+4$. Thus, $V_{21} \neq \emptyset$, and so $\left|V_{21}\right| \geqslant 2$. Let $\left\{t, t^{\prime}\right\} \subseteq V_{21}$. Then $\left\{u, v_{1}, v_{2}, v\right\} \cup\left(V_{21}-\left\{t, t^{\prime}\right\}\right)$ is a TRDS of G of size $s-1$.

Case 4: $\operatorname{diam}(G)=\operatorname{diam}(\bar{G})=2$.
Note that $\delta(G) \geqslant 2$ and $\delta(\bar{G}) \geqslant 2$, since otherwise G or \bar{G} will have isolated vertices.
Case 4.1: $\delta(G)=2$ or $\delta(\bar{G})=2$.
Without loss of generality, assume $\delta(G)=2$ and suppose u is a vertex of minimum degree in G. Let $N(u)=\{v, w\}$. Let $N_{v, w}=\{x \in V(G)-\{u, v, w\} \mid x$ is adjacent to both v and $w\}$, let $N_{v, \bar{w}}=\{x \in V(G)-\{u, v, w\} \mid x$ is adjacent to v but not to $w\}$, and let $N_{w, \bar{v}}=\{x \in V(G)-\{u, v, w\} \mid x$ is adjacent to w but not to $v\}$. Moreover, let $N_{1}=\left\{x \in N_{u, v} \mid N(x)=\{v, w\}\right\}$ and let $N_{2}=N_{v, w}-N_{1}$.
If $N_{1}=\emptyset$, then $\{u, v, w\}$ is a TRDS of G and so $\gamma_{\operatorname{tr}}(G)+\gamma_{\mathrm{tr}}(\bar{G}) \leqslant n+3$. Thus, $N_{1} \neq \emptyset$. If $N_{v, \bar{w}}=\emptyset\left(N_{w, \bar{v}}=\emptyset\right.$, respectively), then $\{u, w\}\left(\{u, v\}\right.$, respectively) is a TRDS of G, whence $\gamma_{\text {tr }}(G)+\gamma_{\mathrm{tr}}(\bar{G}) \leqslant n+2$. Thus, $N_{v, \bar{w}} \neq \emptyset$ and $N_{w, \bar{v}} \neq \emptyset$.

The set $\{u, v, w\} \cup N_{1}$ is a TRDS of G. Let $Y=V(G)-\{u\}-N_{1}$. Since all vertices in $N_{v, \bar{w}}$ dominate all vertices in $N_{1} \cup\{u\}$ in \bar{G}, and since $N_{1} \cup\{u\}$ is a clique in \bar{G}, we have that Y is a RDS of \bar{G}. If Y is total, we have that $\gamma_{\mathrm{tr}}(G)+\gamma_{\mathrm{tr}}(\bar{G}) \leqslant 3+\left|N_{1}\right|+n-1-\left|N_{1}\right|=n+2$ and we are done.
Assume, therefore, that Y is not total. As w (v, respectively) is non-adjacent to every vertex of $N(v, \bar{w})(N(w, \bar{v})$, respectively), the set $N_{2} \neq \emptyset$, since otherwise Y is a TRDS of \bar{G}. Moreover, Y will also be a TRDS of \bar{G} if every vertex of N_{2} is non-adjacent to some vertex of Y. Hence, there exists a vertex $y \in N_{2}$ which is adjacent to every vertex of $Y-\{y\}$.

The set $\{v, y\}$ is a TDS of G. If $\{v, y\}$ is also a RDS, we have that $\gamma_{\text {tr }}(G)+\gamma_{\text {tr }}(\bar{G}) \leqslant n+2$. The set $\{w, y\}$ is also a TDS of G and if it is a RDS, we are done. Thus, there exist vertices $v^{\prime} \in N_{v, \bar{w}}$ and $w^{\prime} \in N_{w, \bar{v}}$ such that $N\left(v^{\prime}\right)=\{v, y\}$ and $N\left(w^{\prime}\right)=\{w, y\}$.

We now show that $Z=\left\{u, v^{\prime}, w^{\prime}\right\}$ is a TRDS of \bar{G}. We show first that Z is a TDS of \bar{G}. The vertex v^{\prime} dominates w in \bar{G}, the vertex w^{\prime} dominates v in \bar{G}, while the vertex u dominates $V(G)-\left\{u, v, w, v^{\prime}, w^{\prime}\right\}$ in \bar{G}. Moreover, the vertex u dominates $\left\{v^{\prime}, w^{\prime}\right\}$ in \bar{G}.

Suppose, to the contrary, that Z is not a RDS of \bar{G}. Hence, there exists a vertex $z \notin Z$ such that z is adjacent to every vertex of $V(G)-Z-\{z\}$ in G. As $\operatorname{deg}(\bar{G}) \geqslant 2$, the vertex z is adjacent in \bar{G} to at least two vertices of Z. We consider the following cases:

Case 4.1.1: The vertex z is adjacent in \bar{G} to u and at least one of the vertices v^{\prime} and w^{\prime}.
Without loss of generality assume that z is adjacent in \bar{G} to the vertex v^{\prime}. As z is non-adjacent to u in G, it follows that $z \notin\{v, w\}$. As z is adjacent to both of the vertices v and w in G, we have $z \in N_{1} \cup N_{2}$. If $z \in N_{1}$, then it is not adjacent to y in G, which contradicts the fact that z is adjacent to every vertex of $V(G)-Z-\{z\}$. If $z \in N_{2}$, then since $N_{1} \neq \emptyset$, there exists a vertex $z^{\prime} \in N_{1}$ such that z is not adjacent to z^{\prime} in G, which is again a contradiction.

Case 4.1.2: The vertex z is adjacent in \bar{G} to v^{\prime} and w^{\prime}, but not to u.
In this case, $z \in\{v, w\}$. Without loss of generality, assume $z=v$. Then v is adjacent in \bar{G} to both v^{\prime} and w^{\prime}, which is a contradiction.

Therefore, the set $Z=\left\{u, v^{\prime}, w^{\prime}\right\}$ is a TRDS of \bar{G} and so $\gamma_{\mathrm{tr}}(G)+\gamma_{\mathrm{tr}}(\bar{G}) \leqslant n+3$.
Case 4.2: $\delta(G) \geqslant 3$ and $\delta(\bar{G}) \geqslant 3$.
Let u be a vertex of minimum degree in G. Suppose $N(u)=\left\{u_{1}, \ldots, u_{\delta}\right\}$ where $\delta=\delta(G)$.
Suppose the sets $N[u]$ and $N[u]-\left\{u_{i}\right\}$ for $i \in\{1, \ldots, \delta\}$ are not total restrained dominating sets of G. Let $N_{1}=\{x \in V(G)-N[u] \mid N(x)=N(u)\}$ and let $N_{2}=V(G)-N[u]-N_{1}$. As $N[u]$ is a TDS of G, but not a RDS of G, the set $N_{1} \neq \emptyset$. If $N_{2}=\emptyset$, then $\left\{u, u_{1}\right\}$ is a TRDS of G, whence $\gamma_{\text {tr }}(G)+\gamma_{\text {tr }}(\bar{G}) \leqslant 2+n$. Thus, $N_{2} \neq \emptyset$.

Suppose $N[u]-\left\{u_{i}\right\}$ is a DS for some $i \in\{1, \ldots, \delta\}$. If a vertex $x \in N_{2}$ is adjacent to vertices in $N(u)-\left\{u_{i}\right\}$ only, then $\operatorname{deg}(x) \leqslant \delta-1$, which is impossible. Thus, $N[x]-\left\{u_{i}\right\}$ is a TRDS of G, which is contrary to our assumption. Hence, for each $i \in\{1, \ldots, \delta\}$, there exists $u_{i}^{\prime} \in N_{2}$ such that $N\left(u_{i}^{\prime}\right) \cap N(u)=\left\{u_{i}\right\}$.
We claim that $X=\left\{u, u_{1}^{\prime}, u_{2}^{\prime}\right\}$ is a TRDS of \bar{G}. The vertex u_{1}^{\prime} dominates all vertices in $N(u)-\left\{u_{1}\right\}$ in \bar{G}. Similarly, u_{2}^{\prime} dominates all vertices in $N(u)-\left\{u_{2}\right\}$ in \bar{G}. The vertex u dominates all vertices in $V(G)-N[u]$ in \bar{G}, and so X is a TDS. Suppose X is not a RDS of \bar{G}. Thus, there exists a vertex $x \notin X$ such that x is adjacent in G to each of the vertices in $V(G)-X-\{x\}$. As $\delta(\bar{G}) \geqslant 3$, the vertex x is not adjacent to each of the vertices in X. Hence, $x \in N_{1} \cup N_{2}$. If $x \in N_{1}$, then since $\left|N_{2}\right| \geqslant \delta \geqslant 3$, there exists a vertex $x^{\prime} \in N_{2}-\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\} \subset V(G)-X-\{x\}$ such that x is not adjacent to x^{\prime} in G, which is a contradiction. Similarly, if $x \in N_{2}-\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\}$, then, since $N_{1} \neq \emptyset$, there exists a vertex $x^{\prime} \in N_{1} \subset V(G)-X-\{x\}$ such that x is not adjacent to x^{\prime} in G, which is a contradiction. Hence X is a TRDS of \bar{G} and so $\gamma_{\text {tr }}(G)+\gamma_{\text {tr }}(\bar{G}) \leqslant n+3$.

We may therefore assume that $N_{G}[u]$ or $N_{G}[u]-\left\{u_{i}\right\}$ is a TRDS of G for some $i \in\{1, \ldots, \delta\}$. Similarly, if v is a minimum degree vertex in \bar{G} and $N_{\bar{G}}(v)=\left\{v_{1}, \ldots, v_{\delta(\bar{G})}\right\}$, we assume that $N_{\bar{G}}[v]$ or $N_{\bar{G}}[v]-\left\{v_{j}\right\}$ is a TRDS of \bar{G} for some $j \in\{1, \ldots, \delta(\bar{G})\}$. Hence $\gamma_{\text {tr }}(G)+\gamma_{\text {tr }}(\bar{G}) \leqslant \delta(G)+1+\delta(\bar{G})+1=\delta(G)+1+n-\Delta(G)-1+1=n+$ $\delta(G)-\Delta(G)+1 \leqslant n+1$.

Clearly, if $G \in \mathscr{U}$ or $\bar{G} \in \mathscr{U}$ or $G \cong P_{4}$, then $\gamma_{\text {tr }}(G)+\gamma_{\text {tr }}(\bar{G})=n+4$.

3. Restrained domination

In this section, we provide bounds on the sum of the restrained domination numbers of a graph and its complement, and provide characterizations of the extremal graphs achieving these bounds.

Let \mathscr{H} be the family of graphs G of order n where G or \bar{G} is one of the following four types:
Type 1: $V(G)=\{x, y, z\} \cup X$. Moreover:
(P1.1) x is adjacent to each vertex of $\{y, z\} \cup X$;
(P1.2) each vertex of $\{y, z\} \cup X$ is adjacent to some vertex of $\{y, z\} \cup X$;
(P1.3) each vertex of X is non-adjacent to some vertex of $\{y, z\}$ and non-adjacent to some vertex in X.
Type 2: $V(G)=\{x, y\} \cup X$. Moreover:
(P2.1) each vertex of X is adjacent to exactly one vertex of $\{x, y\}$ and also non-adjacent to exactly one vertex of $\{x, y\}$; (P2.2) each vertex of X is non-adjacent to some vertex of X;
(P2.3) each vertex of X is adjacent to some vertex of X.
Type 3: $V(G)=\{u, v, y\} \cup X$. Moreover:
(P3.1) each vertex of $X \cup\{y\}$ is adjacent to some vertex of $\{u, v\}$;
(P3.2) each vertex of $X \cup\{u\}$ is non-adjacent to some vertex of $\{v, y\}$;
(P3.3) each vertex of $X \cup\{y\}$ is adjacent to some vertex of $X \cup\{y\}$;
(P3.4) each vertex of $X \cup\{u\}$ is non-adjacent to some vertex of $X \cup\{u\}$.
Type 4: $V(G)=\{x, y, u, v\} \cup X$. Moreover:
(P4.1) each vertex in $\{x, y\} \cup X$ is adjacent to some vertex of $\{u, v\}$;
(P4.2) each vertex in $\{u, v\} \cup X$ is non-adjacent to some vertex of $\{x, y\}$;
(P4.3) each vertex in $\{x, y\} \cup X$ is adjacent to some vertex of $\{x, y\} \cup X$;
(P4.4) each vertex in $\{u, v\} \cup X$ is non-adjacent to some vertex of $\{u, v\} \cup X$.
Theorem 5. If G be a graph of order $n \geqslant 2$, then $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G})=4$ if and only if G or $\bar{G} \in \mathscr{H}$.
Proof. Suppose G is a graph such that $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G})=4$. Then $\gamma_{\mathrm{r}}(G)=1$ and $\gamma_{\mathrm{r}}(\bar{G})=3$ or $\gamma_{\mathrm{r}}(\bar{G})=1$ and $\gamma_{\mathrm{r}}(G)=3$ or $\gamma_{\mathrm{r}}(G)=\gamma_{\mathrm{r}}(\bar{G})=2$.

Case 1: $\gamma_{\mathrm{r}}(G)=1$ and $\gamma_{\mathrm{r}}(\bar{G})=3$ or $\gamma_{\mathrm{r}}(\bar{G})=1$ and $\gamma_{\mathrm{r}}(G)=3$.
Suppose $\gamma_{\mathrm{r}}(G)=1$ and $\gamma_{\mathrm{r}}(\bar{G})=3$. Let $\{x\}$ be a RDS of G. Then x is adjacent to every other vertex of G, and so x is isolated in \bar{G} and is therefore in every RDS of $\bar{G}-$ let $\{x, y, z\}$ be a RDS of \bar{G}. Let $X=V(G)-\{x, y, z\}$. It now follows that Properties (P1.1)-(P1.3) hold for G. Thus, G is a graph of Type 1.

If $\gamma_{\mathrm{r}}(\bar{G})=1$ and $\gamma_{\mathrm{r}}(G)=3$, then \bar{G} is also of Type 1 .
Case 2: $\gamma_{\mathrm{r}}(G)=2$ and $\gamma_{\mathrm{r}}(\bar{G})=2$.
Let $\{u, v\}(\{x, y\}$, respectively) be a RDS of $G(\bar{G}$, respectively). Let $X=V(G)-\{u, v, x, y\}$.
Case 2.1: Suppose $u=x$ and $v=y$.
If some vertex $w \in X$ is adjacent to both u and v, then w is not dominated by $\{u, v\}$ in \bar{G}, which is a contradiction. As $\{u, v\}$ is a DS of G, each vertex $w \in X$ is adjacent to at least one vertex in $\{u, v\}$. Thus, G satisfies Property (P2.1). Moreover, Properties (P2.2) and (P2.3) hold for G. Thus, G is a graph of Type 2.

Case 2.2: Suppose $u \neq y$ and $x=v$.
Clearly, in this case G is a graph of Type 3.
Case 2.3: $\{u, v\} \cap\{x, y\}=\emptyset$.
It is easy to see, that (P4.1)-(P4.4) hold, so G is a graph of Type 4.
For the converse, suppose $G \in \mathscr{H}$. For a graph of Type 1 we have $\gamma_{\mathrm{r}}(G)=1$ and $\gamma_{\mathrm{r}}(\bar{G}) \leqslant 3$. For Types 2,3 or 4 we obtain $\gamma_{\mathrm{r}}(G) \leqslant 2$ and $\gamma_{\mathrm{r}}(\bar{G}) \leqslant 2$. Hence, in all cases $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant 4$. It is known (see [3]) that $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \geqslant 4$. Therefore, $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G})=4$.

As before, the sets $V_{0}, \ldots, V_{\text {diam }(G)}$ will denote the level decomposition of G with respect to u.
Let $\mathscr{B}=\left\{P_{3}, \bar{P}_{3}\right\}$, and let $\mathscr{G}=\{G \mid G$ or \bar{G} is a galaxy of non-trivial stars $\}$.
Let $\mathscr{\mathscr { S }}=\left\{G \mid G\right.$ or $\bar{G} \cong K_{1} \cup S$ where S is a star and $\left.|S| \geqslant 3\right\}$.
Lastly, let $\mathscr{E}=\mathscr{G} \cup \mathscr{S}$.
Lemma 6. If $G \in \mathscr{E}-\mathscr{B}$, then $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G})=n+2$.
Proof. Suppose $G \in \mathscr{G}$ has order n and, without loss of generality, suppose G is a galaxy of non-trivial stars $S_{1}, S_{2}, \ldots, S_{k}$, for $k \geqslant 2$. Then $\gamma_{\mathrm{r}}(G)=n$. Let $s \in V\left(S_{1}\right)$ and $t \in V\left(S_{2}\right)$. Since S_{i} is non-trivial for $i \in\{1, \ldots, k\}$, it follows that $R=\{s, t\}$ is a RDS of \bar{G}. Suppose $\{v\}$ is a RDS of \bar{G}. Then $\operatorname{deg}_{G}(v)=0$, which is a contradiction. Hence $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G})=n+2$. Now, suppose $k=1$. That is, G is a non-trivial star S such that $S \neq P_{3}$. The result follows immediately if $|S|=2$. Thus we may assume $|S| \geqslant 4$. Then $\gamma_{\mathrm{r}}(G)=n$. Let s be the center of S and let $t \in N_{G}(s)$. Notice that $\langle V(G)-\{s\}\rangle \cong K_{n-1}$ in \bar{G}. Thus $R=\{s, t\}$ is a RDS of \bar{G}. Suppose $\{v\}$ is a RDS of \bar{G}. Then $\operatorname{deg}_{G}(v)=0$, which is a contradiction.

Suppose $G \in \mathscr{S}$ and, without loss of generality, let $G=K_{1} \cup S$ where S is a star and $|S| \geqslant 3$. Then $\gamma_{\mathrm{r}}(G)=n$. Let s be the center of S and let $\langle u\rangle$ be the second component of G. Then $R=\{s, u\}$ is a RDS of \bar{G}. Suppose $\{v\}$ is a RDS of \bar{G}. Then $\operatorname{deg}_{G}(v)=0$, and $v=u$, which is a contradiction as $\{u\}$ is not a RDS of \bar{G}. Hence $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G})=n+2$.

Theorem 7. Let $G=(V, E)$ be a graph of order $n \geqslant 2$ such that $G \notin \mathscr{B}$. Then $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n+2$. Moreover, $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G})=n+2$ if and only if $G \in \mathscr{E}$.

Proof. Let $G=(V, E)$ be a graph of order n such that $G \notin \mathscr{B}$. Notice that either G or \bar{G} must be connected. Without loss of generality, suppose \bar{G} is connected. Note that G may also be connected. Let G be comprised of the components $G_{1}, G_{2}, \ldots, G_{\ell}$ with ℓ possibly equal to one. Without loss of generality, let G_{1} be a component of G with longest diameter.

Claim 1. If G_{1} contains a path $u v_{1} v_{2} v$ and $\ell \geqslant 3$, then $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n$.
Proof. Let $u v_{1} v_{2} v$ be a path in G_{1}. Notice that $V(G)-\left\{v_{1}, v_{2}\right\}$ is a RDS of G. Hence $\gamma_{\mathrm{r}}(G) \leqslant n-2$. Let $x \in V\left(G_{1}\right)$ and $w \in V\left(G_{2}\right)$. Since $\ell \geqslant 3$ it follows that $\{x, w\}$ is a RDS of \bar{G} and $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n-2+2=n$.

Claim 2. If $\ell \geqslant 3$ and there exists $i \in\{1, \ldots, \ell\}$ such that $G_{i} \cong K_{1}$, then $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n+1$.
Proof. Trivial.

By Claim 1, for cases in which $\operatorname{diam}\left(G_{1}\right) \geqslant 3$, we may immediately assume that $\ell \leqslant 2$. Note that for the following two cases $V\left(G_{2}\right)$ may or may not be empty.

Suppose $\operatorname{diam}\left(G_{1}\right) \geqslant 5$. Let $u v_{1} v_{2} \ldots v_{\operatorname{diam}\left(G_{1}\right)}$ be a diametrical path in G_{1}. Notice that $V(G)-\left\{v_{1}, v_{2}\right\}$ is a RDS of G. Hence $\gamma_{\mathrm{r}}(G) \leqslant n-2$. Moreover, notice that $R^{\prime}=\left\{u, v_{5}\right\}$ is a RDS of \bar{G}, as R^{\prime} is clearly a dominating set of \bar{G}, $v_{1} \in V(\bar{G})-R^{\prime}$ is adjacent to $V_{3} \cup V_{4} \cup \ldots \cup V_{\text {diam }(G)}$, and $v_{4} \in V(\bar{G})-R^{\prime}$ is adjacent to $V_{1} \cup V_{2} \cup V\left(G_{2}\right)$. Hence $\gamma_{\mathrm{r}}(\bar{G}) \leqslant 2$ and we have that $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n-2+2=n$.

Now, suppose $\operatorname{diam}\left(G_{1}\right)=4$. Let $u v_{1} v_{2} v_{3} v_{4}$ be a diametrical path in G_{1}. Notice that $V(G)-\left\{v_{1}, v_{2}\right\}$ is a RDS of G. Hence $\gamma_{\mathrm{r}}(G) \leqslant n-2$. Suppose $\left|V_{4}\right| \geqslant 2$. Then there exists a vertex $t \in V_{4}-\left\{v_{4}\right\}$. Notice that $R^{\prime}=\left\{u, v_{4}\right\}$ is a RDS of \bar{G}, as R^{\prime} is clearly a dominating set of $\bar{G}, v_{1} \in V(\bar{G})-R^{\prime}$ is adjacent to $V_{3} \cup V_{4}$, and $t \in V(\bar{G})-R^{\prime}$ is adjacent to $V_{1} \cup V_{2} \cup V\left(G_{2}\right)$. Hence $\gamma_{\mathrm{r}}(\bar{G}) \leqslant 2$ and we have that $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n-2+2=n$.

Thus we may assume that $\left|V_{4}\right|=1$. Let $V_{21}=\left\{x \in V_{2} \mid\right.$ there exists $y \in V_{1} \cup V_{2} \cup V_{3}$ such that $\left.x y \notin E\left(G_{1}\right)\right\}$ and let $V_{22}=V_{2}-V_{21}$. Consider $R^{\prime}=\left\{u, v_{4}\right\} \cup V_{22}$. Notice that R^{\prime} is a dominating set of $\bar{G}, v_{1} \in V(\bar{G})-R^{\prime}$ is adjacent to V_{3}, and $v_{3} \in V(\bar{G})-R^{\prime}$ is adjacent to $V_{1} \cup V\left(G_{2}\right)$. If $V_{21}=\emptyset$,then $V_{2}=V_{22} \subseteq R^{\prime}$ and R^{\prime} is a RDS of \bar{G}. If $V_{21} \neq \emptyset$, then by definition,for each $x \in V_{21}$ there exists a $y \in V_{1} \cup V_{21} \cup V_{3}$ such that $x y \notin E\left(G_{1}\right)$. Hence R^{\prime} is a RDS of \bar{G}. In either case we have that $\gamma_{\mathrm{r}}(\bar{G}) \leqslant 2+\left|V_{22}\right|$.

If $\left|V_{22}\right| \leqslant 1$, then $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n-2+2+\left|V_{22}\right| \leqslant n+1$. Thus we may assume that $\left|V_{22}\right| \geqslant 2$. Hence there exists a vertex $t \in V_{22}-\left\{v_{2}\right\}$. Then $R=\left\{u, v_{4}, t\right\} \cup V\left(G_{2}\right)$ is a RDS of G, as R clearly dominates G, and a vertex $w \in V_{22}-\{t\}$ is adjacent to every vertex of $V(G)-R$. Thus, $\gamma_{\mathrm{r}}(G) \leqslant 3+\left|V\left(G_{2}\right)\right|$ and so $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant 3+\left|V\left(G_{2}\right)\right|+2+\left|V_{22}\right|=1+$ $\left(4+\left|V_{22}\right|+\left|V\left(G_{2}\right)\right|\right)=1+\left(\left|\left\{u, v_{1}, v_{3}, v_{4}\right\}\right|+\left|V_{22}\right|+\left|V\left(G_{2}\right)\right|\right)=1+\left|\left\{u, v_{1}, v_{3}, v_{4}\right\} \cup V_{22} \cup V\left(G_{2}\right)\right| \leqslant 1+|V(G)|=1+n$.

Now, suppose $\operatorname{diam}\left(G_{1}\right)=3$. Let $u v_{1} v_{2} v_{3}$ be a diametrical path in G_{1}. Notice that $V(G)-\left\{v_{1}, v_{2}\right\}$ is a RDS of G. Suppose that $V\left(G_{2}\right) \neq \emptyset$. If $V\left(G_{2}\right)=\{v\}$, then $\{v\}$ is a RDS of \bar{G}, whence $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n-2+1=$ $n-1$. Thus we may assume that $\left|V\left(G_{2}\right)\right| \geqslant 2$. Let $v \in V\left(G_{2}\right)$. Then $\{u, v\}$ is a RDS of \bar{G} and so $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant$ $n-2+2=n$.

Thus $V\left(G_{2}\right)=\emptyset$ and both $G_{1}=G$ and \bar{G} are connected. Suppose $\left|V_{3}\right| \geqslant 2$ and let $t \in V_{3}-\left\{v_{3}\right\}$. Let $V_{21}=\left\{x \in V_{2} \mid\right.$ there exists $y \in\left(V_{1} \cup V_{2} \cup V_{3}\right)-\{t\}$ such that $\left.x y \notin E(G)\right\}$ and let $V_{22}=V_{2}-V_{21}$. Consider $R^{\prime}=\{u, t\} \cup V_{22}$. By reasoning similar to that in the case for $\operatorname{diam}\left(G_{1}\right)=4, R^{\prime}$ is a RDS of \bar{G} and $\gamma_{\mathrm{r}}(\bar{G}) \leqslant 2+\left|V_{22}\right|$. If $\left|V_{22}\right| \leqslant 1$, then $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n-2+2+\left|V_{22}\right| \leqslant n+1$.

Thus we may assume that $\left|V_{22}\right| \geqslant 2$. Hence there exists a vertex $z \in V_{22}-\left\{v_{2}\right\}$. Consider $R=\{u, t, z\}$. By reasoning similar to that in the case for $\operatorname{diam}\left(G_{1}\right)=4, R$ is a RDS of G and so $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant 3+2+\left|V_{22}\right|=1+\left(4+\left|V_{22}\right|\right)=$ $1+\left(\left|\left\{u, v_{1}, v_{3}, t\right\}\right|+\left|V_{22}\right|\right)=1+\left|\left\{u, v_{1}, v_{3}, t\right\} \cup V_{22}\right| \leqslant 1+|V(G)|=1+n$.

So we may assume that $\left|V_{3}\right|=1$. Let $V_{11}=\left\{x \in V_{1} \mid\right.$ there exists $y \in V_{1} \cup V_{2}$ such that $\left.x y \notin E(G)\right\}$ and let $V_{12}=V_{1}-V_{11}$. Also, let $V_{21}=\left\{x \in V_{2} \mid\right.$ there exists $y \in V_{1} \cup V_{2}$ such that $\left.x y \notin E(G)\right\}$ and let $V_{22}=V_{2}-V_{21}$. Then $\left\{u, v_{3}\right\} \cup V_{12} \cup V_{22}$ is a RDS of \bar{G} and $\gamma_{\mathrm{r}}(\bar{G}) \leqslant 2+\left|V_{12}\right|+\left|V_{22}\right|$.

If $\left|V_{12}\right|+\left|V_{22}\right| \leqslant 1$, then $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n-2+2+\left|V_{12}\right|+\left|V_{22}\right| \leqslant n+1$.
So we may assume that $\left|V_{12}\right|+\left|V_{22}\right| \geqslant 2$. Since $v_{1} v_{3} u v_{2}$ is a path in \bar{G}, it follows that $V(\bar{G})-\left\{v_{3}, u\right\}$ is a RDS of \bar{G}, whence $\gamma_{\mathrm{r}}(\bar{G}) \leqslant n-2$.

Now, suppose $\left|V_{12}\right| \geqslant 2$ and let $z \in V_{12}-\left\{v_{1}\right\}$. Then $\left\{z, v_{3}\right\}$ is a RDS of G, and so $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant 2+n-2=n$. Thus $\left|V_{12}\right| \leqslant 1$.

Suppose $V_{12}=\{z\}$. Then $\left\{u, v_{3}, z\right\}$ is a RDS of G except when $G=P_{4}$, in which case $\left\{u, v_{3}\right\}$ is a RDS of G. In both cases $\gamma_{\mathrm{r}}(G) \leqslant 3$. Hence, $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant 3+n-2=n+1$.
Thus $V_{12}=\emptyset$ and so $\left|V_{22}\right| \geqslant 2$. Let $z \in V_{22}-\left\{v_{2}\right\}$. Then $\left\{u, v_{3}, z\right\}$ is a RDS of G. Therefore, $\gamma_{\mathrm{r}}(G) \leqslant 3$. Hence, $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant 3+n-2=n+1$.

Thus we may assume $\operatorname{diam}\left(G_{1}\right) \leqslant 2$, and by a similar argument, $\operatorname{diam}(\bar{G}) \leqslant 2$.
As $n \geqslant 2$, $\operatorname{diam}(\bar{G}) \geqslant 1$. Suppose $\operatorname{diam}(\bar{G})=1$. Then $\bar{G} \cong K_{i}$ for some $i \geqslant 2$. If $i \geqslant 3$, then $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n+1$. Thus, $\bar{G} \cong K_{2}$, and so $G \in \mathscr{G}$ and $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G})=n+2$.

Thus, $\operatorname{diam}(\bar{G})=2$.
Suppose $\operatorname{diam}\left(G_{1}\right)=0$. Then $G \cong n K_{1}$ and $\bar{G} \cong K_{n}$, which is a contradiction as $\operatorname{diam}(\bar{G})=2$.
Suppose $\operatorname{diam}\left(G_{1}\right)=1$. Then $G_{1} \cong K_{i}$ where $2 \leqslant i \leqslant n$. Since we assumed that \bar{G} is connected, $\ell \neq 1$. Suppose $\ell=2$. If $G_{2} \cong K_{1}$, then $i \neq 2$, as $G \notin \mathscr{B}$. Thus $i \geqslant 3$, so $G \in \mathscr{G}$ and $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G})=n+2$. Thus $G_{2} \cong K_{j}$ where $2 \leqslant j \leqslant n-i$. If $i=j=2$, then $G \in \mathscr{G}$ and we are done. Without loss of generality, suppose $i \geqslant 3$. Let $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$ and let $z \in V\left(G_{2}\right)$. Since $i \geqslant 3, V(G)-\left\{v_{2}, v_{3}\right\}$ is a RDS of G and $\left\{v_{1}, z\right\}$ is a RDS of \bar{G}. Hence $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n-2+2=n$. Thus $\ell \geqslant 3$. By Claim 2, $G_{k} \nsubseteq K_{1}$ for all $k \in\{1, \ldots, \ell\}$. Suppose $G_{k} \cong K_{2}$ for all k. Then $G \in \mathscr{G}$ and we are done. Thus,
by relabeling if necessary, we may assume that $G_{1} \cong K_{i}$ for $i \geqslant 3$. Let $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$ and let $z \in V\left(G_{2}\right)$. Since $i \geqslant 3, V(G)-\left\{v_{2}, v_{3}\right\}$ is a RDS of G and $\left\{v_{1}, z\right\}$ is a RDS of \bar{G}. Hence $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n-2+2=n$.

Thus we may assume $\operatorname{diam}\left(G_{1}\right)=2$. Suppose $\ell \geqslant 3$. By Claim 2, $G_{k} \neq K_{1}$ for all $k \in\{1, \ldots, \ell\}$. If G is a galaxy of non-trivial stars, then $G \in \mathscr{G}$, and we are done. Thus at least one component, say G_{1}, contains a cycle containing an edge $v_{1} v_{2}$, say. Let $z \in V\left(G_{2}\right)$. Then $V(G)-\left\{v_{1}, v_{2}\right\}$ is a RDS of G, while $\left\{v_{1}, z\right\}$ is a RDS of \bar{G}, whence $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n-2+2=n$.

Suppose $\ell=2$ and first suppose $G_{2} \not \approx K_{1}$. If G_{1} and G_{2} are stars, then $G \in \mathscr{G}$ and we are done. Thus at least one component contains a cycle containing the edge $v_{1} v_{2}$. Let z be an arbitrary vertex in the other component of G. Then $V(G)-\left\{v_{1}, v_{2}\right\}$ is a RDS of G, while $\left\{v_{1}, z\right\}$ is a RDS of \bar{G}, whence $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n-2+2=n$.

So we may assume that $G_{2} \cong K_{1}$. Let $V\left(G_{2}\right)=\{z\}$. If $\Delta\left(G_{1}\right) \leqslant n-3$, then $\{z\}$ is a RDS of \bar{G} and so $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n+1$. Thus $\Delta\left(G_{1}\right)=n-2$, and there exists a vertex $u \in V\left(G_{1}\right)$ such that $\operatorname{deg}(u)=n-2$. Let L be the set of leaves in G_{1} and let $X=N(u)-L$. If $L=\emptyset$, then $\{u, z\}$ is a RDS of G. Since $\operatorname{diam}\left(G_{1}\right)=2$, there exist non-adjacent vertices $x, y \in V\left(G_{1}\right)$. Then $V(\bar{G})-\{x, y\}$ is a RDS of \bar{G} and $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n-2+2=n$. Thus $L \neq \emptyset$. Let $v \in L$ and consider $\{u, v\}$. Since $\operatorname{diam}\left(G_{1}\right)=2$, it follows that $\operatorname{deg}(u) \geqslant 2$. Thus $\{u, v\}$ is a RDS of \bar{G}. Suppose $X \neq \emptyset$ and let $s \in X$. Since $s \notin L, s$ is adjacent to a vertex $t \in N(v)$. Hence $t \notin L$, so $t \in X$ and thus $|X| \geqslant 2$. Moreover, $V(G)-X$ is a RDS of G, and so $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n-2+2=n$. Thus $X=\emptyset$ and so G_{1} is a non-trivial star of order $n-1 \geqslant 3$. Therefore $G \in \mathscr{S}$ and we are done.

Thus $G \cong G_{1}$, and $\operatorname{diam}(G)=\operatorname{diam}(\bar{G})=2$. Let $u v_{1} v_{2}$ be a diametrical path in G. If v_{2} is a leaf of G, then every vertex $v \in V_{1}-\left\{v_{1}\right\}$ is adjacent to v_{1}, whence $\operatorname{deg}\left(v_{1}\right)=n-1$, which is a contradiction as \bar{G} is connected. Moreover, if some vertex $v \in V_{1}$ is a leaf, then $\operatorname{diam}(G) \geqslant d\left(v, v_{2}\right)=3$, which is a contradiction. Lastly, if u is a leaf, then v_{1} is adjacent to every vertex of V_{2}, whence $\operatorname{deg}\left(v_{1}\right)=n-1$, which is a contradiction. Thus we may assume that $\delta(G) \geqslant 2$. A similar argument shows that $\delta(\bar{G}) \geqslant 2$. Let \mathscr{F} be the collection of graphs described in [5]. It is known (see [5]) that if $G \notin \mathscr{F}$ is a connected graph with order $n \geqslant 3$ and $\delta(G) \geqslant 2$, then $\gamma_{\mathrm{r}}(G) \leqslant(n-1) / 2$. It follows immediately that $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n-1$, provided that $G, \bar{G} \notin \mathscr{F}$. Without loss of generality, suppose $G \in \mathscr{F}$. It is easily verified that $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n+1$ and we are done.

Finally, recounting the argument, we have that $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G}) \leqslant n+1$ in all cases, save when $G \in \mathscr{E}$. Hence, if $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G})=n+2$ it follows that $G \in \mathscr{E}$. This observation together with Lemma 6 implies that $\gamma_{\mathrm{r}}(G)+\gamma_{\mathrm{r}}(\bar{G})=n+2$ if and only if $G \in \mathscr{E}$.

References

[1] G. Chartrand, L. Lesniak, Graphs \& Digraphs, third ed., Chapman \& Hall, London, 1996.
[2] X.G. Chen, D.X. Ma, L. Sun, On total restrained domination in graphs, Czechoslovak Math. J. 55 (1) (2005) 165-173.
[3] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar, L.R. Markus, Restrained domination in graphs, Discrete Math. 203 (1999) 61-69.
[4] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, L.R. Markus, Restrained domination in trees, Discrete Math. 211 (2000) 1-9.
[5] G.S. Domke, J.H. Hattingh, M.A. Henning, L.R. Markus, Restrained domination in graphs with minimum degree two, J. Combin. Math. Combin. Comput. 35 (2000) 239-254.
[6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1997.
[7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1997.
[8] M.A. Henning, Graphs with large restrained domination number, Discrete Math. 197/198 (1999) 415-429.
[9] F. Jaeger, C. Payan, Relations du type Nordhaus-Gaddum pour le nombre d' absorption d' un graphe simple, C. R. Acad. Sci. Ser. A 274 (1972) 728-730.
[10] E.A. Nordhaus, J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177.
[11] B. Zelinka, Remarks on restrained and total restrained domination in graphs, Czechoslovak Math. J. 55 (130) (2005) 165-173.

[^0]: E-mail address: jhhattingh@gsu.edu (J.H. Hattingh).

