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Abstract

Let G = (V , E) be a graph. A set S ⊆ V is a total restrained dominating set if every vertex is adjacent to a vertex in S and
every vertex of V − S is adjacent to a vertex in V − S. A set S ⊆ V is a restrained dominating set if every vertex in V − S is
adjacent to a vertex in S and to a vertex in V − S. The total restrained domination number of G (restrained domination number of
G, respectively), denoted by �tr(G) (�r(G), respectively), is the smallest cardinality of a total restrained dominating set (restrained
dominating set, respectively) of G. We bound the sum of the total restrained domination numbers of a graph and its complement,
and provide characterizations of the extremal graphs achieving these bounds. It is known (see [G.S. Domke, J.H. Hattingh, S.T.
Hedetniemi, R.C. Laskar, L.R. Markus, Restrained domination in graphs, Discrete Math. 203 (1999) 61–69.]) that if G is a graph of
order n�2 such that both G and G are not isomorphic to P3, then 4��r(G) + �r(G)�n + 2. We also provide characterizations of
the extremal graphs G of order n achieving these bounds.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we follow the notation of [1]. Specifically, let G= (V , E) be a graph with vertex set V and edge set E.
A set S ⊆ V is a dominating set, denoted DS, of G if every vertex not in S is adjacent to a vertex in S. The domination
number of G, denoted by �(G), is the minimum cardinality of a dominating set. The concept of domination in graphs,
with its many variations, is now well studied in graph theory. The recent book of Chartrand and Lesniak [1] includes a
chapter on domination. A thorough study of domination appears in [6,7].

In this paper, we continue the study of two variations of the domination theme, namely that of restrained domination
[4,3,5,8] and total restrained domination [2,11].

A set S ⊆ V is a total restrained dominating set, denoted TRDS, if every vertex is adjacent to a vertex in S and
every vertex in V − S is also adjacent to a vertex in V − S. Every graph without isolated vertices has a total restrained
dominating set, since S = V is such a set. The total restrained domination number of G, denoted by �tr(G), is the
minimum cardinality of a TRDS of G.
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A set S ⊆ V is a restrained dominating set, denoted RDS, if every vertex in V − S is adjacent to a vertex in S and
a vertex in V − S. Every graph has a restrained dominating set, since S = V is such a set. The restrained domination
number of G, denoted by �r(G), is the minimum cardinality of a RDS of G. If u, v are vertices of G, then the distance
between u and v will be denoted by d(u, v).

Nordhaus and Gaddum present best possible bounds on the sum of the chromatic number of a graph and its com-
plement in [10]. The corresponding result for the domination number is presented by Jaeger and Payan in [9]: If G is a
graph of order n�2, then �(G)+�(G)�n+1. A best possible bound on the sum of the restrained domination numbers
of a graph and its complement is obtained in [3]:

Theorem 1. If G is a graph of order n�2 such that both G and G are not isomorphic to P3, then 4��r(G)+ �r(G)�
n + 2.

A best possible bound on the sum of the total restrained domination numbers of a graph and its complement is
obtained in [2]:

Theorem 2. If G is a graph of order n�2 such that neither G nor G contains isolated vertices or has diameter two,
then �tr(G) + �tr(G)�n + 4.

Let K be the graph obtained from K3 by matching the vertices of K2 to distinct vertices of K3. Note that K is self-
complementary, K nor K contains isolated vertices or has diameter two, while �tr(K)+�tr(K)=2×5=10 > n(K)+4.
Thus, Theorem 2 is incorrect.

We will show, in Section 2, that if G is a graph of order n�2 such that neither G nor G contains isolated vertices
or is isomorphic to K, then 4��tr(G) + �tr(G)�n + 4. Moreover, we will characterize the graphs G of order n for
which �tr(G) + �tr(G) = n + 4 and also characterize those graphs G for which �tr(G) + �tr(G) = 4. In Section 3, we
characterize the graphs G of order n for which �r(G) + �r(G) = n + 2 as well as those graphs G for which �r(G) +
�r(G) = 4.

2. Total restrained domination

In this section, we provide bounds on the sum of the total restrained domination numbers of a graph and its comple-
ment, and provide characterizations of the extremal graphs achieving these bounds.

Let n�5 be an integer and suppose {x, y, u, v} and X are disjoint sets of vertices such that |X| = n − 4. Let L be
the family of graphs G of order n where V (G) = {x, y, u, v} ∪ X and with the following properties:

(P1) x and y are non-adjacent, while u and v are adjacent;
(P2) each vertex in {x, y} ∪ X is adjacent to some vertex of {u, v};
(P3) each vertex in {u, v} ∪ X is non-adjacent to some vertex of {x, y};
(P4) each vertex in {x, y} ∪ X is adjacent to some vertex of {x, y} ∪ X;
(P5) each vertex in {u, v} ∪ X is non-adjacent to some vertex of {u, v} ∪ X.

Theorem 3. If G is a graph of order n�2 such that neither G nor G contains isolated vertices, then �tr(G)+�tr(G)=4
if and only if G ∈ L.

Proof. Suppose G is a graph such that neither G nor G contains isolated vertices, and suppose �tr(G) + �tr(G) = 4.
Then �tr(G) = �tr(G) = 2. Let S = {u, v} (S′ = {x, y}, respectively) be a TRDS of G (G, respectively). Then x is
non-adjacent to y, while u is adjacent to v, and Property (P1) holds. Clearly, S �= S′. Suppose u = x with v �= y. Since
{u, v} is a DS of G and y is non-adjacent to x = u, the vertex y must be adjacent to v. But then v is not dominated by
S′ in G, which is a contradiction. Thus, S ∩ S′ = ∅. Let X = V (G) − {x, y, u, v}. Then |X| = n − 4, and since S (S′,
respectively) is a TRDS of G (G, respectively), Properties (P2)–(P5) hold for G. Thus, G ∈ L. The converse clearly
holds as {u, v} ({x, y}, respectively) is a TRDS of G (G, respectively). �
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Let diam (G) denote the diameter of G, and let u, v be two vertices of G such that d(u, v) = diam(G). The set of
vertices at distance i from u, 0� i�diam(G), will be denoted by Vi , and the sets V0, . . . , Vdiam(G) will then be called
the level decomposition of G with respect to u.

Let U = {G|G is a graph of order n which can be obtained from a P4 with consecutive vertices labeled u, v1, v2, v

by joining vertices v1 and v2 to each vertex of Kn−4 where n�6}.

Theorem 4. Let G be a graph of order n�2 such that neither G nor G contains isolated vertices or is isomorphic to
K. Then �tr(G) + �tr(G)�n + 4. Moreover, �tr(G) + �tr(G) = n + 4 if and only if G ∈ U or G ∈ U or G�P4.

Proof. If G is disconnected, then �tr(G) = 2. Hence �tr(G) + �tr(G)�n + 2. Thus, without loss of generality, assume
both G and G are connected. Let u and v be vertices such that d(u, v) = diam(G) and let V0, . . . , Vdiam(G) be the level
decomposition of G with respect to u.

We consider the following cases:
Case 1: diam(G)�5.
We claim that {u, v} is a TRDS of G. The vertex u is non-adjacent to all vertices in Vi where 2� i�diam(G), while

the vertex v is non-adjacent to all vertices in Vi where 0� i�diam(G) − 2. Moreover, every vertex in V (G) − {u, v}
is non-adjacent to some vertex of V (G) − {u, v}. Thus, �tr(G) = 2, and so �tr(G) + �tr(G)�n + 2.

Case 2: diam(G) = 4.
Suppose u, v1, v2, v3, v is a diametrical path. If |V4|�2, then {u, v} is a TRDS of G, and the result follows.
Thus, V4 ={v}. Let V21 ={x ∈ V2| there exists a vertex in V1 ∪V2 ∪V3 that is not adjacent to x} and let V22 =V2 −V21.

The set {u, v} ∪ V22 is a TRDS of G. So we have that �tr(G)�2 + |V22|. If |V22|�1, then �tr(G) + �tr(G)�n + 3.
Hence |V22|�2. Let t ∈ V22 such that t �= v2. Suppose |V1 ∪V21 ∪V3|�4. Let s ∈ V1 ∪V21 ∪V3 −{v1, v2, v3}. Then

V1∪V21∪V3 ∪{u, v, t}−{s} is a TRDS of G and so �tr(G)+�tr(G)�n−(|V22|−1)−1+|V22|+2�n+2. Hence |V1|=1,
|V21|�1 and |V3| = 1. Therefore, V (G) − V22 is a TRDS of G and so �tr(G) + �tr(G)�n − |V22| + 2 + |V22|�n + 2.

Case 3: diam(G) = 3.
Let u, v1, v2, v be a diametrical path. Suppose t ∈ V3 − {v}. We define V21 = {x ∈ V2| there exists a vertex in

V1 ∪ V2 ∪ V3 − {t} that is not adjacent to x} and let V22 = V2 − V21. The set {u, t} ∪ V22 is a TRDS of G and
so �tr(G)�2 + |V22|. If |V22| = 1, then surely �tr(G) + �tr(G)�n + 3. Hence |V22|�2. The vertex t is adjacent
to some vertex s ∈ V2. If s ∈ V22, then the set {u, s} ∪ V1 ∪ V21 ∪ V3 − {v} is a TRDS of G. If s /∈ V22, then
the set {u, w} ∪ V1 ∪ V21 ∪ V3 − {v}is a TRDS of G, where w ∈ V22. In both cases, �tr(G)�n − |V22|, and so
�tr(G) + �tr(G)�n − |V22| + 2 + |V22| = n + 2.

Thus, V3 ={v}. Define V11 ={x ∈ V1| there exists a vertex in V1 ∪V2 that is not adjacent to x} and let V12 =V1 −V11.
Moreover, let V21 = {x ∈ V2| there exists a vertex in V1 ∪ V2 that is not adjacent to x} and let V22 = V2 − V21. Then
{u, v} ∪ V12 ∪ V22 is a TRDS of G, whence �tr(G)�2 + |V12| + |V22|.

Case 3.1: |V12| + |V22|�2.
Clearly �tr(G)+�tr(G)�n+4.We now investigate when, in this case, �tr(G)+�tr(G)=n+4.As �tr(G)+�tr(G)=n+4,

we must have that |V12| + |V22| = 2.
We first show that deg(u) = deg(v) = 1. Suppose, to the contrary, {v1, w} ⊆ N(u), and let t ∈ V12 ∪ V22 − {w}.

Then t is adjacent to every vertex of V1 ∪ V2, and so V (G) − {u, w} is a TRDS of G. It now follows that �tr(G) +
�tr(G)�n − 2 + 4 = n + 2, which is a contradiction. Thus, deg(u) = 1, and deg(v) = 1 follows similarly.

Hence V1 = V12 = {v1}, and the set V22 consists of exactly one vertex, say w. Suppose w �= v2. If |V2| = 2, then
G�K , which is not allowable. So, let w′ ∈ V2 − {v2, w}. Then w and w′ are adjacent, and V (G) − {w, w′} is a TRDS
of G. As before, we obtain a contradiction.

We conclude w=v2. If V21 =∅, then G�P4. If V21 �= ∅, then surely |V21|�2. If two vertices, say t and t ′, of V21 are
adjacent in G, then V (G) − {t, t ′} is a TRDS of G, and we obtain a contradiction as before. Thus, V21 is independent,
and so G ∈ U.

Case 3.2: |V12| + |V22|�3.
If we can show that G has a TRDS of size at most s := n − |V12| − |V22| + 1, then �tr(G) + �tr(G)�n − |V12| −

|V22| + 1 + 2 + |V12| + |V22| = n + 3.
First consider the case when v1 ∈ V11. Choose w = v2 if v2 ∈ V22, otherwise choose w ∈ V12 ∪ V22. In both

situations, {u, v, w} ∪ V11 ∪ V21 is a TRDS of G of size s. Thus, v1 /∈ V11. If v2 ∈ V21, then {u, v1, v} ∪ V11 ∪ V21 is a
TRDS of G of size s. Thus, v2 /∈ V21.
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We conclude that v1 ∈ V12, while v2 ∈ V22.
Suppose u is adjacent to a vertex w which is distinct from v1. If w ∈ V12, then {v1, v2, v} ∪ V11 ∪ V21 is a TRDS of

size s. If w ∈ V11, then {v1, v2, v} ∪ (V11 − {w}) ∪ V21 is a TRDS of size s − 1. Thus, deg(u) = 1, and deg(v) = 1
follows similarly.

Suppose V22 = {v2}. If V21 = ∅, then G�P4 and �tr(G) + �tr(G) = n + 4. If V21 �= ∅, then surely |V21|�2. If two
vertices, say t and t ′, of V21 are adjacent in G, then {u, v1, v2, v} ∪ (V21 − {t, t ′}) is a TRDS of G of size s − 1. Thus,
V21 is independent, G ∈ U and �tr(G) + �tr(G) = n + 4.

Thus, |V22|�2. If V21=∅, then V22 induces a clique. If |V22|=2, then G�K , which is not allowable. If |V22|�3, then
G ∈ U and �tr(G)+�tr(G)=n+4. Thus, V21 �= ∅, and so |V21|�2. Let {t, t ′} ⊆ V21. Then {u, v1, v2, v}∪(V21−{t, t ′})
is a TRDS of G of size s − 1.

Case 4: diam(G) = diam(G) = 2.
Note that �(G)�2 and �(G)�2, since otherwise G or G will have isolated vertices.
Case 4.1: �(G) = 2 or �(G) = 2.
Without loss of generality, assume �(G)=2 and suppose u is a vertex of minimum degree in G. Let N(u)={v, w}. Let

Nv,w={x ∈ V (G)−{u, v, w}|x is adjacent to both v and w}, let Nv,w={x ∈ V (G)−{u, v, w}|x is adjacent to v but not
to w}, and let Nw,v={x ∈ V (G)−{u, v, w}|x is adjacent to w but not to v}. Moreover, let N1={x ∈ Nu,v|N(x)={v, w}}
and let N2 = Nv,w − N1.

If N1 = ∅, then {u, v, w} is a TRDS of G and so �tr(G) + �tr(G)�n + 3. Thus, N1 �= ∅. If Nv,w = ∅ (Nw,v = ∅,
respectively), then {u, w} ({u, v}, respectively) is a TRDS of G, whence �tr(G) + �tr(G)�n + 2. Thus, Nv,w �= ∅ and
Nw,v �= ∅.

The set {u, v, w} ∪ N1 is a TRDS of G. Let Y = V (G) − {u} − N1. Since all vertices in Nv,w dominate all vertices
in N1 ∪ {u} in G, and since N1 ∪ {u} is a clique in G, we have that Y is a RDS of G. If Y is total, we have that
�tr(G) + �tr(G)�3 + |N1| + n − 1 − |N1| = n + 2 and we are done.

Assume, therefore, that Y is not total. As w (v, respectively) is non-adjacent to every vertex of N(v, w) (N(w, v),
respectively), the set N2 �= ∅, since otherwise Y is a TRDS of G. Moreover, Y will also be a TRDS of G if every vertex
of N2 is non-adjacent to some vertex of Y. Hence, there exists a vertex y ∈ N2 which is adjacent to every vertex of
Y − {y}.

The set {v, y} is a TDS of G. If {v, y} is also a RDS, we have that �tr(G) + �tr(G)�n + 2. The set {w, y} is also a
TDS of G and if it is a RDS, we are done. Thus, there exist vertices v′ ∈ Nv,w and w′ ∈ Nw,v such that N(v′) = {v, y}
and N(w′) = {w, y}.

We now show that Z = {u, v′, w′} is a TRDS of G. We show first that Z is a TDS of G. The vertex v′ dominates w in
G, the vertex w′ dominates v in G, while the vertex u dominates V (G) − {u, v, w, v′, w′} in G. Moreover, the vertex
u dominates {v′, w′} in G.

Suppose, to the contrary, that Z is not a RDS of G. Hence, there exists a vertex z /∈ Z such that z is adjacent to every
vertex of V (G) − Z − {z} in G. As deg(G)�2, the vertex z is adjacent in G to at least two vertices of Z. We consider
the following cases:

Case 4.1.1: The vertex z is adjacent in G to u and at least one of the vertices v′ and w′.
Without loss of generality assume that z is adjacent in G to the vertex v′. As z is non-adjacent to u in G, it follows

that z /∈ {v, w}. As z is adjacent to both of the vertices v and w in G, we have z ∈ N1 ∪ N2. If z ∈ N1, then
it is not adjacent to y in G, which contradicts the fact that z is adjacent to every vertex of V (G) − Z − {z}. If
z ∈ N2, then since N1 �= ∅, there exists a vertex z′ ∈ N1 such that z is not adjacent to z′ in G, which is again a
contradiction.

Case 4.1.2: The vertex z is adjacent in G to v′ and w′, but not to u.
In this case, z ∈ {v, w}. Without loss of generality, assume z = v. Then v is adjacent in G to both v′ and w′, which

is a contradiction.
Therefore, the set Z = {u, v′, w′} is a TRDS of G and so �tr(G) + �tr(G)�n + 3.
Case 4.2: �(G)�3 and �(G)�3.
Let u be a vertex of minimum degree in G. Suppose N(u) = {u1, . . . , u�} where � = �(G).
Suppose the sets N [u] and N [u] − {ui} for i ∈ {1, . . . , �} are not total restrained dominating sets of G. Let

N1 = {x ∈ V (G) − N [u]|N(x) = N(u)} and let N2 = V (G) − N [u] − N1. As N [u] is a TDS of G, but not
a RDS of G, the set N1 �= ∅. If N2 = ∅, then {u, u1} is a TRDS of G, whence �tr(G) + �tr(G)�2 + n. Thus,
N2 �= ∅.



1084 J.H. Hattingh et al. / Discrete Mathematics 308 (2008) 1080–1087

Suppose N [u] − {ui} is a DS for some i ∈ {1, . . . , �}. If a vertex x ∈ N2 is adjacent to vertices in N(u) − {ui} only,
then deg(x)�� − 1, which is impossible. Thus, N [x] − {ui} is a TRDS of G, which is contrary to our assumption.
Hence, for each i ∈ {1, . . . , �}, there exists u′

i ∈ N2 such that N(u′
i ) ∩ N(u) = {ui}.

We claim that X = {u, u′
1, u

′
2} is a TRDS of G. The vertex u′

1 dominates all vertices in N(u) − {u1} in G. Similarly,
u′

2 dominates all vertices in N(u) − {u2} in G. The vertex u dominates all vertices in V (G) − N [u] in G, and so X
is a TDS. Suppose X is not a RDS of G. Thus, there exists a vertex x /∈ X such that x is adjacent in G to each of the
vertices in V (G) − X − {x}. As �(G)�3, the vertex x is not adjacent to each of the vertices in X. Hence, x ∈ N1 ∪ N2.
If x ∈ N1, then since |N2|���3, there exists a vertex x′ ∈ N2 − {u′

1, u
′
2} ⊂ V (G) − X − {x} such that x is not

adjacent to x′ in G, which is a contradiction. Similarly, if x ∈ N2 − {u′
1, u

′
2}, then, since N1 �= ∅, there exists a vertex

x′ ∈ N1 ⊂ V (G) − X − {x} such that x is not adjacent to x′ in G, which is a contradiction. Hence X is a TRDS of G

and so �tr(G) + �tr(G)�n + 3.
We may therefore assume that NG[u] or NG[u] − {ui} is a TRDS of G for some i ∈ {1, . . . , �}. Similarly, if v is a

minimum degree vertex in G and NG(v) = {v1, . . . , v�(G)}, we assume that NG[v] or NG[v] − {vj } is a TRDS of G

for some j ∈ {1, . . . , �(G)}. Hence �tr(G) + �tr(G)��(G) + 1 + �(G) + 1 = �(G) + 1 + n − �(G) − 1 + 1 = n +
�(G) − �(G) + 1�n + 1.

Clearly, if G ∈ U or G ∈ U or G�P4, then �tr(G) + �tr(G) = n + 4. �

3. Restrained domination

In this section, we provide bounds on the sum of the restrained domination numbers of a graph and its complement,
and provide characterizations of the extremal graphs achieving these bounds.

Let H be the family of graphs G of order n where G or G is one of the following four types:
Type 1: V (G) = {x, y, z} ∪ X. Moreover:

(P1.1) x is adjacent to each vertex of {y, z} ∪ X;
(P1.2) each vertex of {y, z} ∪ X is adjacent to some vertex of {y, z} ∪ X;
(P1.3) each vertex of X is non-adjacent to some vertex of {y, z} and non-adjacent to some vertex in X.

Type 2: V (G) = {x, y} ∪ X. Moreover:

(P2.1) each vertex of X is adjacent to exactly one vertex of {x, y} and also non-adjacent to exactly one vertex of {x, y};
(P2.2) each vertex of X is non-adjacent to some vertex of X;
(P2.3) each vertex of X is adjacent to some vertex of X.

Type 3: V (G) = {u, v, y} ∪ X. Moreover:

(P3.1) each vertex of X ∪ {y} is adjacent to some vertex of {u, v};
(P3.2) each vertex of X ∪ {u} is non-adjacent to some vertex of {v, y};
(P3.3) each vertex of X ∪ {y} is adjacent to some vertex of X ∪ {y};
(P3.4) each vertex of X ∪ {u} is non-adjacent to some vertex of X ∪ {u}.

Type 4: V (G) = {x, y, u, v} ∪ X. Moreover:

(P4.1) each vertex in {x, y} ∪ X is adjacent to some vertex of {u, v};
(P4.2) each vertex in {u, v} ∪ X is non-adjacent to some vertex of {x, y};
(P4.3) each vertex in {x, y} ∪ X is adjacent to some vertex of {x, y} ∪ X;
(P4.4) each vertex in {u, v} ∪ X is non-adjacent to some vertex of {u, v} ∪ X.

Theorem 5. If G be a graph of order n�2, then �r(G) + �r(G) = 4 if and only if G or G ∈ H.

Proof. Suppose G is a graph such that �r(G) + �r(G) = 4. Then �r(G) = 1 and �r(G) = 3 or �r(G) = 1 and �r(G) = 3
or �r(G) = �r(G) = 2.
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Case 1: �r(G) = 1 and �r(G) = 3 or �r(G) = 1 and �r(G) = 3.
Suppose �r(G) = 1 and �r(G) = 3. Let {x} be a RDS of G. Then x is adjacent to every other vertex of G, and so x

is isolated in G and is therefore in every RDS of G—let {x, y, z} be a RDS of G. Let X = V (G) − {x, y, z}. It now
follows that Properties (P1.1)–(P1.3) hold for G. Thus, G is a graph of Type 1.

If �r(G) = 1 and �r(G) = 3, then G is also of Type 1.
Case 2: �r(G) = 2 and �r(G) = 2.
Let {u, v} ({x, y}, respectively) be a RDS of G (G, respectively). Let X = V (G) − {u, v, x, y}.
Case 2.1: Suppose u = x and v = y.
If some vertex w ∈ X is adjacent to both u and v, then w is not dominated by {u, v} in G, which is a contradiction.

As {u, v} is a DS of G, each vertex w ∈ X is adjacent to at least one vertex in {u, v}. Thus, G satisfies Property (P2.1).
Moreover, Properties (P2.2) and (P2.3) hold for G. Thus, G is a graph of Type 2.

Case 2.2: Suppose u �= y and x = v.
Clearly, in this case G is a graph of Type 3.
Case 2.3: {u, v} ∩ {x, y} = ∅.
It is easy to see, that (P4.1)–(P4.4) hold, so G is a graph of Type 4.
For the converse, suppose G ∈ H. For a graph of Type 1 we have �r(G) = 1 and �r(G)�3. For Types 2, 3 or 4 we

obtain �r(G)�2 and �r(G)�2. Hence, in all cases �r(G) + �r(G)�4. It is known (see [3]) that �r(G) + �r(G)�4.
Therefore, �r(G) + �r(G) = 4. �

As before, the sets V0, . . . , Vdiam(G) will denote the level decomposition of G with respect to u.
Let B = {P3, P 3}, and let G = {G|G or G is a galaxy of non-trivial stars}.
Let S = {G|G or G�K1 ∪ S where S is a star and |S|�3}.
Lastly, let E = G ∪ S.

Lemma 6. If G ∈ E − B, then �r(G) + �r(G) = n + 2.

Proof. Suppose G ∈ G has order n and, without loss of generality, suppose G is a galaxy of non-trivial stars
S1, S2, . . . , Sk , for k�2. Then �r(G) = n. Let s ∈ V (S1) and t ∈ V (S2). Since Si is non-trivial for i ∈ {1, . . . , k}, it
follows that R = {s, t} is a RDS of G. Suppose {v} is a RDS of G. Then degG(v) = 0, which is a contradiction. Hence
�r(G) + �r(G) = n + 2. Now, suppose k = 1. That is, G is a non-trivial star S such that S �= P3. The result follows
immediately if |S|=2. Thus we may assume |S|�4. Then �r(G)=n. Let s be the center of S and let t ∈ NG(s). Notice
that 〈V (G) − {s}〉�Kn−1in G. Thus R = {s, t} is a RDS of G. Suppose {v} is a RDS of G. Then degG(v) = 0, which
is a contradiction.

Suppose G ∈ S and, without loss of generality, let G = K1 ∪ S where S is a star and |S|�3. Then �r(G) = n. Let s
be the center of S and let 〈u〉 be the second component of G. Then R = {s, u} is a RDS of G. Suppose {v} is a RDS of
G. Then degG(v)= 0, and v =u, which is a contradiction as {u} is not a RDS of G. Hence �r(G)+ �r(G)=n+ 2. �

Theorem 7. Let G = (V , E) be a graph of order n�2 such that G /∈B. Then �r(G) + �r(G)�n + 2. Moreover,
�r(G) + �r(G) = n + 2 if and only if G ∈ E.

Proof. Let G = (V , E) be a graph of order n such that G /∈B. Notice that either G or G must be connected. Without
loss of generality, suppose G is connected. Note that G may also be connected. Let G be comprised of the components
G1, G2, . . . , G� with � possibly equal to one. Without loss of generality, let G1 be a component of G with longest
diameter. �

Claim 1. If G1 contains a path uv1v2v and ��3, then �r(G) + �r(G)�n.

Proof. Let uv1v2v be a path in G1. Notice that V (G) − {v1, v2} is a RDS of G. Hence �r(G)�n − 2. Let x ∈ V (G1)

and w ∈ V (G2). Since ��3 it follows that {x, w} is a RDS of G and �r(G) + �r(G)�n − 2 + 2 = n. �

Claim 2. If ��3 and there exists i ∈ {1, . . . , �} such that Gi�K1, then �r(G) + �r(G)�n + 1.

Proof. Trivial. �
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By Claim 1, for cases in which diam(G1)�3, we may immediately assume that ��2. Note that for the following
two cases V (G2) may or may not be empty.

Suppose diam(G1)�5. Let uv1v2 . . . vdiam(G1) be a diametrical path in G1. Notice that V (G) − {v1, v2} is a RDS
of G. Hence �r(G)�n − 2. Moreover, notice that R′ = {u, v5} is a RDS of G, as R′ is clearly a dominating set of G,
v1 ∈ V (G) − R′ is adjacent to V3 ∪ V4 ∪ . . . ∪ Vdiam(G), and v4 ∈ V (G) − R′ is adjacent to V1 ∪ V2 ∪ V (G2). Hence
�r(G)�2 and we have that �r(G) + �r(G)�n − 2 + 2 = n.

Now, suppose diam(G1) = 4. Let uv1v2v3v4 be a diametrical path in G1. Notice that V (G) − {v1, v2} is a RDS of
G. Hence �r(G)�n − 2. Suppose |V4|�2. Then there exists a vertex t ∈ V4 − {v4}. Notice that R′ = {u, v4} is a RDS
of G, as R′ is clearly a dominating set of G, v1 ∈ V (G) − R′ is adjacent to V3 ∪ V4, and t ∈ V (G) − R′ is adjacent to
V1 ∪ V2 ∪ V (G2). Hence �r(G)�2 and we have that �r(G) + �r(G)�n − 2 + 2 = n.

Thus we may assume that |V4| = 1. Let V21 = {x ∈ V2| there exists y ∈ V1 ∪ V2 ∪ V3 such that xy /∈ E(G1)} and let
V22 = V2 − V21. Consider R′ = {u, v4} ∪ V22. Notice that R′ is a dominating set of G,v1 ∈ V (G) − R′ is adjacent to
V3,and v3 ∈ V (G)−R′ is adjacent to V1 ∪V (G2). If V21 =∅,then V2 =V22 ⊆ R′ and R′ is a RDS of G. If V21 �= ∅,then
by definition,for each x ∈ V21 there exists a y ∈ V1 ∪V21 ∪V3 such that xy /∈ E(G1). Hence R′ is a RDS ofG. In either
case we have that �r(G)�2 + |V22|.

If |V22|�1, then �r(G)+ �r(G)�n−2 +2 +|V22|�n+1. Thus we may assume that |V22|�2. Hence there exists a
vertex t ∈ V22−{v2}. Then R={u, v4, t}∪V (G2) is a RDS of G, as R clearly dominates G, and a vertex w ∈ V22−{t} is
adjacent to every vertex of V (G)−R. Thus, �r(G)�3+|V (G2)| and so �r(G)+�r(G)�3+|V (G2)|+2+|V22|=1+
(4+|V22|+|V (G2)|)=1+(|{u, v1, v3, v4}|+|V22|+|V (G2)|)=1+|{u, v1, v3, v4}∪V22∪V (G2)|�1+|V (G)|=1+n.

Now, suppose diam(G1) = 3. Let uv1v2v3 be a diametrical path in G1. Notice that V (G) − {v1, v2} is a RDS
of G. Suppose that V (G2) �= ∅. If V (G2) = {v}, then {v} is a RDS of G, whence �r(G) + �r(G)�n − 2 + 1 =
n − 1. Thus we may assume that |V (G2)|�2. Let v ∈ V (G2). Then {u, v} is a RDS of G and so �r(G) + �r(G)�
n − 2 + 2 = n.

Thus V (G2)=∅ and both G1 =G and G are connected. Suppose |V3|�2 and let t ∈ V3 −{v3}. Let V21 ={x ∈ V2|
there exists y ∈ (V1 ∪ V2 ∪ V3) − {t} such that xy /∈ E(G)} and let V22 = V2 − V21. Consider R′ = {u, t} ∪ V22. By
reasoning similar to that in the case for diam(G1) = 4, R′ is a RDS of G and �r(G)�2 + |V22|. If |V22|�1, then
�r(G) + �r(G)�n − 2 + 2 + |V22|�n + 1.

Thus we may assume that |V22|�2. Hence there exists a vertex z ∈ V22 −{v2}. Consider R ={u, t, z}. By reasoning
similar to that in the case for diam(G1) = 4, R is a RDS of G and so �r(G) + �r(G)�3 + 2 + |V22| = 1 + (4 + |V22|) =
1 + (|{u, v1, v3, t}| + |V22|) = 1 + |{u, v1, v3, t} ∪ V22|�1 + |V (G)| = 1 + n.

So we may assume that |V3| = 1. Let V11 = {x ∈ V1| there exists y ∈ V1 ∪ V2 such that xy /∈ E(G)} and let
V12 = V1 − V11. Also, let V21 = {x ∈ V2| there exists y ∈ V1 ∪ V2 such that xy /∈ E(G)} and let V22 = V2 − V21. Then
{u, v3} ∪ V12 ∪ V22 is a RDS of G and �r(G)�2 + |V12| + |V22|.

If |V12| + |V22|�1, then �r(G) + �r(G)�n − 2 + 2 + |V12| + |V22|�n + 1.
So we may assume that |V12| + |V22|�2. Since v1v3uv2 is a path in G, it follows that V (G) − {v3, u} is a RDS of

G, whence �r(G)�n − 2.
Now, suppose |V12|�2 and let z ∈ V12 − {v1}. Then {z, v3} is a RDS of G, and so �r(G) + �r(G)�2 + n − 2 = n.

Thus |V12|�1.
Suppose V12 = {z}. Then {u, v3, z} is a RDS of G except when G = P4, in which case {u, v3} is a RDS of G. In both

cases �r(G)�3. Hence, �r(G) + �r(G)�3 + n − 2 = n + 1.
Thus V12 = ∅ and so |V22|�2. Let z ∈ V22 − {v2}. Then {u, v3, z} is a RDS of G. Therefore, �r(G)�3. Hence,

�r(G) + �r(G)�3 + n − 2 = n + 1.
Thus we may assume diam(G1)�2, and by a similar argument, diam(G)�2.
As n�2, diam(G)�1. Suppose diam(G) = 1. Then G�Ki for some i�2. If i�3, then �r(G) + �r(G)�n + 1.

Thus, G�K2, and so G ∈ G and �r(G) + �r(G) = n + 2.
Thus, diam(G) = 2.
Suppose diam(G1) = 0. Then G�nK1 and G�Kn, which is a contradiction as diam(G) = 2.
Suppose diam(G1)=1. Then G1�Ki where 2� i�n. Since we assumed that G is connected, � �= 1. Suppose �=2.

If G2�K1, then i �= 2, as G /∈B. Thus i�3, so G ∈ G and �r(G)+ �r(G)=n+ 2. Thus G2�Kj where 2�j �n− i.
If i =j =2, then G ∈ G and we are done. Without loss of generality, suppose i�3. Let V (G1)={v1, v2, . . . , vi} and let
z ∈ V (G2). Since i�3, V (G)−{v2, v3} is a RDS of G and {v1, z} is a RDS of G. Hence �r(G)+�r(G)�n−2+2=n.
Thus ��3. By Claim 2, Gk�K1 for all k ∈ {1, . . . , �}. Suppose Gk�K2 for all k. Then G ∈ G and we are done. Thus,
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by relabeling if necessary, we may assume that G1�Ki for i�3. Let V (G1) = {v1, v2, . . . , vi} and let z ∈ V (G2).
Since i�3, V (G) − {v2, v3} is a RDS of G and {v1, z} is a RDS of G. Hence �r(G) + �r(G)�n − 2 + 2 = n.

Thus we may assume diam(G1) = 2. Suppose ��3. By Claim 2, Gk�K1 for all k ∈ {1, . . . , �}. If G is a galaxy
of non-trivial stars, then G ∈ G, and we are done. Thus at least one component, say G1, contains a cycle containing
an edge v1v2, say. Let z ∈ V (G2). Then V (G) − {v1, v2} is a RDS of G, while {v1, z} is a RDS of G, whence
�r(G) + �r(G)�n − 2 + 2 = n.

Suppose � = 2 and first suppose G2�K1. If G1 and G2 are stars, then G ∈ G and we are done. Thus at least one
component contains a cycle containing the edge v1v2. Let z be an arbitrary vertex in the other component of G. Then
V (G) − {v1, v2} is a RDS of G, while {v1, z} is a RDS of G, whence �r(G) + �r(G)�n − 2 + 2 = n.

So we may assume thatG2�K1. LetV (G2)={z}. If�(G1)�n−3, then {z} is a RDS ofG and so �r(G)+�r(G)�n+1.
Thus �(G1) = n − 2, and there exists a vertex u ∈ V (G1) such that deg(u) = n − 2. Let L be the set of leaves in G1
and let X = N(u) − L. If L = ∅, then {u, z} is a RDS of G. Since diam(G1) = 2, there exist non-adjacent vertices
x, y ∈ V (G1). Then V (G) − {x, y} is a RDS of G and �r(G) + �r(G)�n − 2 + 2 = n. Thus L �= ∅. Let v ∈ L and
consider {u, v}. Since diam(G1) = 2, it follows that deg(u)�2. Thus {u, v} is a RDS of G. Suppose X �= ∅ and let
s ∈ X. Since s /∈ L, s is adjacent to a vertex t ∈ N(v). Hence t /∈ L, so t ∈ X and thus |X|�2. Moreover, V (G) − X

is a RDS of G, and so �r(G) + �r(G)�n − 2 + 2 = n. Thus X = ∅ and so G1 is a non-trivial star of order n − 1�3.
Therefore G ∈ S and we are done.

Thus G�G1, and diam(G) = diam(G) = 2. Let uv1v2 be a diametrical path in G. If v2 is a leaf of G, then every
vertex v ∈ V1 − {v1} is adjacent to v1, whence deg(v1) = n − 1, which is a contradiction as G is connected. Moreover,
if some vertex v ∈ V1 is a leaf, then diam(G)�d(v, v2) = 3, which is a contradiction. Lastly, if u is a leaf, then v1 is
adjacent to every vertex of V2, whence deg(v1) = n − 1, which is a contradiction. Thus we may assume that �(G)�2.
A similar argument shows that �(G)�2. Let F be the collection of graphs described in [5]. It is known (see [5]) that
if G /∈F is a connected graph with order n�3 and �(G)�2, then �r(G)�(n − 1)/2. It follows immediately that
�r(G) + �r(G)�n − 1, provided that G, G /∈F. Without loss of generality, suppose G ∈ F. It is easily verified that
�r(G) + �r(G)�n + 1 and we are done.

Finally, recounting the argument, we have that �r(G) + �r(G)�n + 1 in all cases, save when G ∈ E. Hence, if
�r(G)+�r(G)=n+2 it follows that G ∈ E. This observation together with Lemma 6 implies that �r(G)+�r(G)=n+2
if and only if G ∈ E. �
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