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This study analyzed the luminance and color emmetropization response in chicks treated with the non-
selective parasympathetic antagonist atropine and the sympathetic b-receptor blocker timolol.
Chicks were binocularly exposed (8 h/day) for 4 days to one of three illumination conditions: 2 Hz sinu-

soidal luminance flicker, 2 Hz sinusoidal blue/yellow color flicker, or steady light (mean 680 lux).
Atropine experiments involved monocular daily injections of either 20 ll of atropine (18 nmol) or
20 ll of phosphate-buffered saline. Timolol experiments involved monocular daily applications of 2 drops
of 0.5% timolol or 2 drops of distilled H2O. Changes in the experimental eye were compared with those in
the fellow eye after correction for the effects of saline/water treatments.
Atropine caused a reduction in axial length with both luminance flicker (�0.078 ± 0.021 mm) and color

flicker (�0.054 ± 0.017 mm), and a reduction in vitreous chamber depth with luminance flicker
(�0.095 ± 0.023 mm), evoking a hyperopic shift in refraction (3.40 ± 1.77 D). Timolol produced an
increase in axial length with luminance flicker (0.045 ± 0.030 mm) and a myopic shift in refraction
(�4.07 ± 0.92 D), while color flicker caused a significant decrease in axial length (�0.046 ± 0.017 mm)
that was associated with choroidal thinning (�0.046 ± 0.015 mm).
The opposing effects on growth and refraction seen with atropine and timolol suggest a balancing

mechanism between the parasympathetic and b-receptor mediated sympathetic system through stimu-
lation of the retina with luminance and color contrast.
� 2016 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The increasing occurrence of myopia in the population presents
an important public health issue because of an association with
elevated risk of ocular diseases including cataract, glaucoma, reti-
nal detachment, and blindness (Saw, Gazzard, Shih-Yen, & Chua,
2005). In humans, the environmental effect of time spent outdoors
has been implicated in a reduction in myopia development (Dirani
et al., 2009; Guggenheim et al., 2012; Jones et al., 2007; Jones-
Jordan et al., 2012; Onal et al., 2007; Parssinen & Lyyra, 1993;
Rose, Morgan, Ip, et al., 2008; Rose, Morgan, Smith, et al., 2008;
Wu, Tsai, Hu, & Yang, 2010), and recent work has helped to clarify
the protective effects of factors such as high light levels (chicks:
Ashby, Ohlendorf, and Schaeffel (2009), Backhouse, Collins, and
Phillips (2013), Cohen, Belkin, Yehezkel, Avni, and Polat (2008)
and Cohen, Belkin, Yehezkel, Solomon, and Polat (2011); monkeys:
Smith, Hung, and Huang (2012)) and spatial and temporal changes
in the retinal image (Rucker, 2013; Rucker, Britton, Spatcher, &
Hanowsky, 2015; Rucker & Wallman, 2008, 2009; Rucker &
Wallman, 2012) that may be involved. In the meantime, promising
pharmacological interventions (e.g., atropine) can slow the devel-
opment of myopia progression (Chia et al., 2014, 2015, 2012;
Bedrossian, 1971; Lee et al., 2006; Li et al., 2014; Morgan, Ohno-
Matsui, & Saw, 2012; Walline, 2016; Wu, Yang, & Fang, 2011),
although the effects of these treatments under different environ-
mental conditions have not been studied.

1.1. Color and luminance contrast affect emmetropization

As a result of dispersion, short-wavelength light has a shorter
focal length than long-wavelength light, producing an effect called
longitudinal chromatic aberration. The differences in focus of the
different wavelengths produce changes in color of the retinal
image with defocus (Rucker & Wallman, 2012), which in turn is
reflected in changes in the stimulation of the retinal cones and
the retinotectal color and luminance pathways (review: Rucker
(2013)). A theoretical analysis of the change in the retinal image
with defocus has indicated that with myopic defocus, the retina
would experience changes in luminance contrast, whereas with
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hyperopic defocus the retina would also experience changes in
color contrast (Rucker & Wallman, 2009). In the laboratory, flicker-
ing light of fixed frequency and waveform can be used to simulate
the changes in luminance and color contrast of the retinal image
that occur with changes in focus and changes in fixation in the nat-
ural environment. Rucker and Wallman (2012) tested their
hypothesis by exposing chicks to 2 Hz, high contrast, sinusoidal
changes in either luminance or color contrast for 3 days and found
hyperopic shifts (2.01 D) with changes in luminance contrast and
myopic shifts with changes in color contrast. Rucker et al. (2015)
determined that the reduction in eye length was most pronounced
with exposure to high temporal frequencies (5–10 Hz), confirming
earlier research (Gottlieb & Wallman, 1987; Schwahn & Schaeffel,
1997), and that the more myopically defocused blue component
of the light source provided protection against increases in eye
growth at low temporal frequencies with luminance flicker. These
results have confirmed that the eye utilizes signals arising from
temporally-sensitive changes in luminance and color contrast to
determine the emmetropization response.
1.2. Parasympathetic and sympathetic control of color and luminance
pathways

The molecular pathways for these color and luminance signals
are unknown. One possibility is that these light signals activate
the parasympathetic and sympathetic nervous systems. The neuro-
transmitter acetylcholine (ACh) is released from parasympathetic
axon terminals that innervate the ciliary body, iris, smooth muscle
in the vasculature, but also from intrinsic interneurons in the
retina. There are two categories of acetylcholine receptors: nico-
tinic (ionotropic; nAChR) and muscarinic (metabotropic; mAChR),
which are coupled to heterotrimeric G-proteins (review:
Nathanson, 1987). Atropine, which has been proposed as a treat-
ment for myopia because of its effect in reducing eye growth, is
a non-selective antimuscarinic. In mammals, five muscarinic
receptor subtypes, M1 through M5, are present in the human eye
(review: Mitchelson, 2012). Of these receptor types, the M3 recep-
tor is the most predominant receptor type in human iris sphincter,
ciliary body (causing accommodation), retina and sclera (Collison,
Coleman, James, Carey, & Duncan, 2000; Gil, Krauss, Bogardus, &
WoldeMussie, 1997; Ishizaka et al., 1998; Matsumoto, Yorio,
DeSantis, & Pang, 1994; Pang, Matsumoto, Tamm, & DeSantis,
1994) with small amounts of M1, M4 and M5 in the iris sphincter
and ciliary body (also M2) Mitchelson, 2012. There are also reports
of mAChRs being expressed in the human RPE (Osborne,
FitzGibbon, & Schwartz, 1991) and lens (Williams, Duncan, Riach,
& Webb, 1993) with mainly M1 receptors in native human lens
epithelium (Collison et al., 2000) and acetylcholinesterase on the
lens surface (Michon & Kinoshita, 1968). Muscarinic receptors are
found throughout the retina on amacrine, bipolar, horizontal and
ganglion cells, though the only cholinergic cells in the adult retina
are the starburst amacrine cells (Fischer, McKinnon, Nathanson, &
Stell, 1998; McBrien, Jobling, Truong, Cottriall, & Gentle, 2009;
Strang, Renna, Amthor, & Keyser, 2010; Townes-Anderson &
Vogt, 1989; Yamada et al., 2003).

With regard to the chick animal model of myopia, four avian
mAChR subtypes have been characterized: cm2 (Tietje &
Nathanson, 1991), cm3 (Gadbut & Galper, 1994) cm4 (Tietje,
Goldman, & Nathanson, 1990) and cm5 (Creason, Tietje, &
Nathanson, 2000). Fischer et al. (1998) reported localization of
three of the different isoforms of mAChRs (cm2–cm4) subtypes
in the chick eye, in the retina, choroid, retina pigment epithelium
(RPE) and ciliary body. It is important to note that chicks differ
from mammals in that only nicotinic receptors are involved in
accommodation (McBrien, Moghaddam, New, & Williams, 1993)
and thus in chicks accommodation should not be affected by
atropine.

In the human eye, the sympathetic nervous system innervates
the ciliary muscle, ciliary epithelium, iris dilator muscle and
smooth muscle of the vasculature. Innervation occurs through
the action of the neurotransmitter noradrenaline on two sub-
classes of post-synaptic adrenergic receptor types: a- and b-
adrenoceptors (review: Chen, Schmid, & Brown, 2003). Timolol
maleate, which has been used as a clinical treatment for glaucoma
since the late 70s, is a non-selective b-adrenoceptor antagonist
(Airaksinen, Saari, Tiainen, & Jaanio, 1979). a-Adrenoceptors con-
sist of two subtypes a1 and a2, which can be further subdivided
into a2A, a2B and a2C subtypes (Regan & Cotecchia, 1992). Stim-
ulation of a-adrenoceptors can regulate contraction of the iris dila-
tor muscle (mydriasis) (van Alphen, 1976) and relaxation of the
ciliary body (Garner, Brown, Baker, & Colgan, 1983; Zetterstrom,
1988). b-Adrenoceptors consist of two subtypes, b-1 and b-2. b-1
receptors are mainly found in cardiac tissues, but they also make
up 10% of the receptors in human iris and ciliary body (Wax &
Molinoff, 1987). Most of the receptors in the ciliary body are of
the b-2 receptor subtype (Wax & Molinoff, 1987) and stimulation
causes muscle relaxation. In addition, b-2 receptors control secre-
tion from the non-pigmented ciliary epithelium, and blockade of
these receptors by timolol reduces aqueous production
(Zimmerman & Kaufman, 1977) and thus intraocular pressure
(IOP). Many studies have reported that IOP readings are higher in
human myopes than emmetropes (David, Zangwill, Tessler, &
Yassur, 1985; Jensen, 1992; Maurice & Mushin, 1966; Parssinen,
1990; Quinn, Berlin, Young, Ziylan, & Stone, 1995), although the
differences are small (2 mmHg) and not predictive of future myo-
pia development (Goss & Caffey, 1999).

It is well established in the accommodation literature that dual
excitatory parasympathetic and inhibitory sympathetic innerva-
tion to the ciliary muscle occurs (Toates, 1972; Tornqvist, 1967),
though sympathetic innervation is much weaker (<�2D) and
slower (maximal effect after 10–40 s) (Tornqvist, 1966). McBrien
and Millodot (1986) suggested that late-onset myopes, with a
reduced dioptric level of tonic accommodation, indicative of
decreased parasympathetic tone, have a related decrease in inhibi-
tory sympathetic tone. Furthermore, Gilmartin & Bullimore found
that sympathetic blockade increases the decay time for accommo-
dation after periods of extended near work (Gilmartin & Bullimore,
1987), particularly in late-onset myopes at high stimulus levels
(5D) (Gilmartin & Bullimore, 1991). The authors’ hypothesis that
late-onset myopia may result from a deficit of the sympathetic ner-
vous system has received considerable support (Chen et al., 2003;
Ciuffreda & Lee, 2002; Ciuffreda & Wallis, 1998; Culhane, Winn, &
Gilmartin, 1999).

In this study, we analyzed the effect of the non-selective
parasympathetic antagonist atropine and the non-selective b-
adrenergic receptor blocker timolol on the parasympathetic and
sympathetic nervous systems’ emmetropization responses to color
and luminance flicker. We predicted that luminance and color
stimulation may preferentially stimulate one or other of the auto-
nomic nerve pathways, since exposure to high-frequency lumi-
nance flicker has been associated with a reduction in eye growth
similar to that found with atropine.
2. Methods

2.1. Subjects

Subjects were white leghorn chicks (Gallus gallus domesticus)
Cornell K strain (Cornell University, Ithaca, NY), hatched in an
incubator and raised in temperature-controlled brooders. Upon



Table 1
Number of chicks used in data analysis for each experimental condition.

Treatment LUM Color Steady

Atropine 8 9 8
Saline 8 15 8
Timolol 12 11 8
Water 6 7 7
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hatching, the chicks were housed in 12 h light/12 h dark cycles
under approximately 300 lux illumination fluorescent bulbs. Food
and water were supplied ad libitum. The experiments were
performed on chicks that were 5–7 days old at the start of
the experiment. Care and use of the animals conformed to the
Association for Research in Vision and Ophthalmology Resolution
for the Care and Use of Animal Research.

2.2. Illumination conditions

Three illumination conditions were used: luminance flicker
(LUM), blue/yellow color flicker (Color), or steady light (Steady),
maintaining the same mean RGB lighting components in each con-
dition. Chicks were free roaming in a 32 � 20 in. wire cage that was
illuminated with a computer-controlled, sinusoidally modulated
light source (mean 680 lux) using light-emitting diodes that con-
sisted of independently controlled red, green, and blue compo-
nents (Lamina Ceramics, Westhampton, NJ: Titan Light Engine;
peak wavelengths: 619 nm, 515 nm, 460 nm; beam spread of
45�). The illuminants were driven by an eight-channel, 12-bit
Access I/O, USB-DA12-8A digital-to-analog converter with
waveform-generator functionality connected to a BuckPuck driver
(LuxDrive: 3021 D-E-500) that provided a linear current output
over a range of 1.6–4.3 V. Light output was calibrated and a sinu-
soidal pattern was digitally generated using lookup tables and con-
firmed by measurement of illuminance (Newport Model 818-SL
serial number: 6915). Luminance flicker was produced with in-
phase sinusoidal modulation (2 Hz) of the red (615 nm, half-
bandwidth 20 nm), green (515 nm, half-bandwidth 35 nm), and
blue (465 nm, half-bandwidth 25 nm) light-emitting diodes. Blue/
yellow color flicker was created with counterphase modulation
of the red and green components with the blue component. Steady
light was produced by combining the red, green, and blue compo-
nents without modulation. The mean irradiances of the individual
components of the light source were set to 50 lW cm�2 for red,
green and blue, which is equivalent to 214 ‘‘chick lux” for red,
191 ‘‘chick lux” for green, and 64 ‘‘chick lux” for blue. Illuminance
was controlled with neutral density filters to maintain a mean illu-
minance equivalent to 680 human lux (Center Lightmeter 337).

2.3. Experimental groups and procedures (atropine and timolol
experiments)

Chicks were randomly assigned to each of the four experimental
groups (atropine, saline control, timolol, or distilled-water control)
under each illumination condition (LUM, Color, or Steady). The
number of chicks in each experimental condition is listed in Table 1.
One eye was randomly selected and treated, while the fellow eye
remained untreated and acted as a control for the illumination con-
dition. Chicks with even-numbered tags received injections/drops
in the right eye; chicks with odd-numbered tags were treated in
their left eye (chicks were tagged at random). Treated chicks were
randomly divided into the three lighting conditions.

In the atropine experiment, drug-injected chicks received 20 ll
of atropine (18 nmol), while the saline-injected control chicks
received 20 ll of phosphate-buffered saline in one eye. Injections
were administered around mid-morning under anesthesia (isoflu-
orane 1.5–2%) using a sterile Hamilton syringe with a sterile 30 G
needle that was inserted through the lid on the temporal side of
one eye (based on protocols by McBrien, Moghaddam, and
Reeder (1993), Schmid and Wildsoet (2004)).

In the timolol experiment, drug-treated chicks received two
drops of 0.5% timolol, while control chicks received twodrops of dis-
tilled H2O in one eye. The treatment was administered twice daily
(10 am and 4 pm) under anesthesia (isofluorane 1.5–2%) (as
described by Schmid, Abbott, Humphries, Pyne, and Wildsoet
(2000)).

2.4. Measurements

Chicks were exposed (both eyes) to their assigned illumination
condition for 4 days, 8 h/day (9 am to 5 pm). They were otherwise
kept in the dark in a sound- and light-proof chamber. Measure-
ments of the axial dimensions of the ocular components were per-
formed with A-scan ultrasonography using a 30 MHz transducer
sampled at 100 Hz and gain of 59 dB on Olympus NDT equipment
(Nickla, Wildsoet, & Wallman, 1998). Measurements were taken
prior to and immediately following the experimental period (after
4 days). Axial length was measured as the distance from the ante-
rior cornea to the posterior sclera. In the timolol experiment, pupil
reactions, accommodation fluctuations, and refraction were
observed with an infrared photorefractor (Schaeffel, Farkas, &
Howland, 1987), while in the atropine experiment, refractions
were measured with a modified Hartinger refractometer (Zeiss,
Jena, Germany). All measurements were carried out under anesthe-
sia (1.5% isofluorane in oxygen, 2 L/min oxygen flow rate). Mea-
surements of right and left eyes were randomized.

2.5. Data analysis

‘‘Treatment Effect”: Within each illumination condition, the
change during the course of the experiment in the fellow eye
(DN) was subtracted from the change in the treated eye (DX) in
both the drug and saline/water control conditions to provide a
measure of the Treatment Effect.

‘‘Drug Effect”: To separate the effect of administering the injec-
tion or drop from the effect of the drug itself, the mean Treatment
Effect in the saline/H2O treated eyes was then subtracted from that
of the drug-treated eyes. Means and standard errors were calcu-
lated from these values:

Drug Effect ¼ ½DrugðDX � DNÞ �Mean Saline=H2OðDX � DNÞ�
ð1Þ

Averaging of the saline/water control reduces variability in
these data sets, possibly incurring a Type I error. Therefore, the
Treatment Effect was compared by two-way analysis of variance
(ANOVA) in Data Desk (Data Description, Inc.; Version 6) before
correction for saline injection/H2O drop effects in order to confirm
the presence of a Treatment Effect.

The Drug Effect was compared to zero with student t-tests to
determine the effects of atropine and timolol on emmetropization,
within each of the lighting conditions. Differences in the Drug
Effect between drug or illumination conditions and their interac-
tions were examined with ANOVA. t-Tests were performed if the
F value was found to be significant.

3. Results

3.1. Effects of atropine

The effects of atropine injections and its saline control are seen
in Fig. 1. Results of the effect of saline injections alone are
described in Section 3.4, Fig. 1A and Table 4.



Fig. 1. (A) Treatment Effect of saline injections on ocular components over a four-day period. Saline-injected eyes demonstrated a myopic shift in refraction (Ref. Error)
despite a decrease in axial length (AL). There was no difference in the injection effect between illumination conditions. (B) Drug Effect on ocular components with atropine
over a four-day period. Eyes injected with atropine showed a significant reduction in axial length (AL) as well as vitreous chamber depth (Vit), resulting in small hyperopic
shifts. An increase in lens thickness (Lens), and reduction in anterior chamber depth (AC) was also seen with luminance flicker, while color flicker produced choroidal thinning
(Choroid), preventing a change in vitreous-chamber depth. (C) Diagrammatic representation of (B). Abbreviations as described in (A) and (B), N.S. = Non-Significant. *p < 0.05,
**p < 0.01, ***p < 0.001.
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3.1.1. Anterior eye – Treatment Effect
Atropine exerted one of its biggest effects on interocular lens

changes. Our data demonstrate that lens thickness was strongly
influenced by an interaction between the drug (atropine vs. saline)
and illumination condition [ANOVA: F = 3.56 (df = 2), p = 0.04]
(Fig. 1).

3.1.2. Anterior eye – Drug Effect
With LUM, chicks with atropine injections had significant thick-

ening of the lens in experimental eyes (0.140 ± 0.049 mm,
p = 0.02), which corresponded with a decrease in the anterior-
chamber depth (�0.063 ± 0.034 mm, p = 0.1). In contrast, blue/
yellow color flicker and steady light had a slight increase in
anterior-chamber length (Color: 0.057 ± 0.029 mm, p = 0.8; Steady:
0.051 ± 0.040 mm, p = 0.25) along with a decrease in lens thickness
(Color: �0.085 ± 0.049 mm, p = 0.11; Steady: �0.177 ± 0.076 mm,
p = 0.59) (Fig. 1B, C; Table 2).
3.1.3. Posterior eye – Treatment Effect
Atropine induced a hyperopic shift in refraction through a

reduction in eye growth when compared to saline [ANOVA:
F = 5.06 (df = 1), p = 0.03].

3.1.4. Posterior eye – Drug Effect
The Drug Effect in atropine-treated eyes exposed to LUM was

about three times more hyperopic (3.40 D) than that in eyes
exposed to color flicker (1.23 D) or steady light (0.85 D) (p < 0.05)
(Fig. 1B, C).

Refractive changes under LUM were associated with
changes in vitreous chamber depth and axial length, while
under Color only axial length changed. Atropine-injected eyes
under LUM conditions exhibited a significant decrease in
both the vitreous (�0.095 ± 0.023 mm, p = 0.005) and axial
length (�0.078 ± 0.021 mm, p = 0.007). Atropine-injected eyes
under color-flicker conditions also exhibited a decrease in



Table 2
Drug Effect on ocular components in atropine-injected chick eyes under luminance
flicker, color flicker, and steady light conditions. Significant values are indicated in
bold (p < 0.05). All units are expressed in either mm or D (for RE). p Values and
standard errors are shown. Abbreviations: AC = anterior chamber, Vit = vitreous,
AL = axial length, RE = refractive error.

Atropine

AC Lens Vit Choroid AL RE

LUM �0.063 0.140 �0.095 �0.034 �0.078 3.40
±0.034 ±0.049 ±0.023 ±0.016 ±0.021 ±1.77
p = 0.1 p = 0.02 p = 0.005 p = 0.067 p = 0.007 p = 0.20

Color 0.057 �0.085 0.026 �0.048 �0.054 1.23
±0.029 ±0.049 ±0.039 ±0.019 ±0.017 ±0.71
p = 0.8 p = 0.11 p = 0.53 p = 0.03 p = 0.13 p = 0.12

Steady 0.051 �0.177 0.029 0.029 �0.059 0.85
±0.040 ±0.076 ±0.072 ±0.017 ±0.039 ±1.14
p = 0.25 p = 0.59 p = 0.77 p = 0.20 p = 0.16 p = 0.48

Fig. 2. (A) Treatment Effect of distilled water drops on ocular components over a four-d
thinning produced an unexplained increase in vitreous chamber depth. There was no diff
components with timolol over a four-day period. Timolol-injected eyes exposed to lumi
Color flicker and steady light caused a reduction in axial length that was compensated for
Abbreviations as in Fig. 1.
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eye growth (�0.054 ± 0.017 mm, p = 0.13), but there were no
vitreal or refraction changes, partially because of choroidal
compensation (Fig. 1B, C; Table 2). Exposure to color flicker
in atropine-injected eyes produced a marked thinning in
choroidal thickness [ANOVA: F = 4.85 (df = 2), p = 0.02]. With
color flicker, choroids thinned by �0.048 ± 0.019 mm
(p = 0.03), slightly more than with LUM (�0.034 ± 0.016 mm,
p = 0.067) and steady light (0.029 ± 0.017 mm, p = 0.20)
(Table 2).
3.2. Effects of timolol

The effects of timolol and distilled water drops are seen in Fig. 2.
Results of the effect of water drops alone are described in
Section 3.5, Fig. 2A and Table 5.
ay period. In steady light, a small increase in axial length combined with choroidal
erence in the drop effect between illumination conditions. (B) Drug Effect on ocular
nance flicker produced an increase in axial length and a myopic shift in refraction.
by choroidal thinning in the color condition. (C) Diagrammatic representation of (B).



Table 4
Interocular changes in ocular components (DX–DN) in saline-injected chick eyes
under luminance flicker, color flicker, and steady light conditions. Significant values
are indicated in bold (p < 0.05). Units and abbreviations as in Table 2.

Saline

AC Lens Vit Choroid AL RE

LUM �0.034 �0.046 �0.019 0.015 �0.060 �2.68
±0.075 ±0.087 ±0.041 ±0.016 ±0.038 ±0.89
p = 0.67 p = 0.61 p = 0.67 p = 0.40 p = 0.15 p = 0.02

Color �0.045 �0.012 �0.069 0.003 �0.125 �1.46
±0.024 ±0.040 ±0.019 ±0.018 ±0.027 ±0.87
p = 0.132 p = 0.742 p = 0.002 p = 0.75 p = 0.000 p = 0.56

Steady �0.038 0.016 �0.047 �0.029 �0.107 1.12
±0.027 ±0.041 ±0.029 ±0.029 ±0.061 ±1.71
p = 0.17 p = 0.69 p = 0.13 p = 0.32 p = 0.10 p = 0.51

Table 5
Interocular changes in ocular components (DX–DN) in distilled water-treated chick
eyes under luminance flicker, color flicker, and steady light conditions. Significant
values are indicated in bold (p < 0.05). Units and abbreviations as in Table 2.

Distilled
water

AC Lens Vit Choroid AL RE

LUM �0.008 �0.041 �0.024 0.010 �0.046 2.57
±0.041 ±0.055 ±0.037 ±0.019 ±0.034 ±1.77
p = 0.86 p = 0.49 p = 0.54 p = 0.60 p = 0.24 p = 0.21

Color �0.050 0.059 �0.034 0.032 0.003 �0.33
±0.061 ±0.076 ±0.046 ±0.015 ±0.026 ±2.49
p = 0.443 p = 0.47 p = 0.50 p = 0.08 p = 0.91 p = 0.90

Steady 0.020 �0.047 0.051 �0.019 �0.004 �1.23
±0.053 ±0.068 ±0.027 ±0.037 ±0.061 ±1.93
p = 0.39 p = 0.47 p = 0.045 p = 0.77 p = 0.24 p = 0.30

Table 3
Drug Effect on ocular components in timolol-injected chick eyes under luminance
flicker, color flicker, and steady light conditions. Significant values are indicated in
bold (p < 0.05). Units and abbreviations as in Table 2.

Timolol

AC Lens Vit Choroid AL RE

LUM 0.030 0.006 0.045 �0.014 0.045 �4.07
±0.031 ±0.036 ±0.031 ±0.020 ±0.030 ±0.92
p = 0.35 p = 0.88 p = 0.18 p = 0.48 p = 0.17 p = 0.001

Color 0.009 �0.053 0.041 �0.046 �0.046 �0.57
±0.041 ±0.059 ±0.035 ±0.015 ±0.017 ±0.84
p = 0.83 p = 0.39 p = 0.27 p = 0.01 p = 0.02 p = 0.51

Steady 0.043 �0.055 �0.036 0.000 �0.047 �0.94
±0.037 ±0.040 ±0.018 ±0.017 ±0.014 ±1.03
p = 0.28 p = 0.18 p = 0.07 p = 0.98 p = 0.01 p = 0.39
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3.2.1. Anterior eye – Treatment Effect
Timolol demonstrated no significant Treatment Effect of the

drug or illumination condition on lens thickness nor anterior
chamber [ANOVA: F = 0.93 (df = 2) and 0.35 (df = 1); p = 0.55 and
0.40, respectively] nor any significant interactions [F = 0.004
(df = 2), p = 0.99] (Fig. 2).

3.2.2. Anterior eye – Drug Effect
With timolol treatment, there was no significant change of the

anterior segment of the eye for any of the illumination conditions.
Anterior chamber depth increased slightly with LUM
(0.030 ± 0.031 mm, p = 0.35) and steady light (0.043 ± 0.037 mm,
p = 0.28), but no change occurred with color flicker
(0.009 ± 0.041 mm, p = 0.83) (Table 3).

3.2.3. Posterior eye – Treatment Effect
Timolol, when compared to water, caused an increase in axial

length that was dependent on the exposure to the LUM illumina-
tion condition [ANOVA: F = 4.08 (df = 2), p = 0.02].

3.2.4. Posterior eye – Drug Effect
While there was a myopic shift with LUM that was associated

with an increase in axial length, there was no refractive change
with Color since there was no change in vitreous chamber depth.
A significant myopic shift in refraction was observed with LUM
(�4.07 ± 0.92 D, p = 0.001), which coincided with an increase in
axial length (0.045 ± 0.030 mm, p = 0.17) (Fig. 2B, C; Table 3). In
contrast, color flicker and steady light caused no significant change
in refraction (Color: �0.57 ± 0.84 D, p = 0.51; Steady:
�0.94 ± 1.03 D, p = 0.39) despite a significant decrease in eye
growth (Color: �0.046 ± 0.017 mm, p = 0.02; Steady:
�0.047 ± 0.014 mm, p = 0.01). This lack of refractive change
occurred because the vitreous chamber depth remained constant
with choroidal thinning in the color-flicker condition (Vitreous:
0.041 ± 0.035 mm, p = 0.27) (Table 3).

3.3. Interactive effects of drugs and lighting

The Drug Effect on refraction (Rx), vitreous (Vit) and eye-length
(AL) changes revealed an interaction between the lighting and drug
conditions [ANOVA (df = 2): Rx: F = 4.71, p = 0.0133; AL: F = 3.33,
p = 0.04; Vit: F = 3.16, p = 0.0504] (Tables 2 and 3).

When chicks were exposed to LUM, timolol rendered the eyes
more myopic than atropine (difference: �7.47 D; p < 0.001), with
more growth (difference: 0.123 mm, p = 0.024) and a greater
increase in vitreous chamber depth (difference: 0.140 mm,
p = 0.04). Timolol-treated eyes grew much more with LUM than
with color flicker (difference: 0.91 mm; p = 0.02), making the
LUM-treated eyes more myopic (difference: �3.50 D, p = 0.045)
than Color-treated eyes.
Atropine-treated eyes showed more lens thickening with LUM
than color flicker [ANOVA: F = 6.82 (df = 2), p = 0.0024; difference:
0.225 mm, p = 0.046] or steady light (difference: 0.317 mm,
p = 0.027).

3.4. Saline injections (atropine experiment)

Saline injections produced a minimal effect on all ocular com-
ponents in all three illumination conditions. Neither refractive
nor axial changes were significantly different in any illumination
condition [Rx ANOVA: F = 2.48 (df = 2), p = 0.10; Axial ANOVA:
F = 0.74 (df = 2), p = 0.49] (Fig. 1A). Injected eyes exposed to the
LUM condition became more myopic compared with fellow eyes
(�2.68 ± 0.89 D) but without an increase in axial length. In Color
and Steady, the injected eye was smaller than the fellow eye, par-
ticularly in eyes exposed to color flicker (AL: �0.125 ± 0.027 mm;
Vit: �0.069 ± 0.019 mm). The relative myopic shift in LUM and
the relative decrease in eye size after exposure to color flicker
can be attributed to a combined injection and illumination effect
(Table 4).

3.5. Distilled water drops (timolol experiment)

Treatment with water drops also led to minimal effects on the
ocular components. Neither refractive nor axial changes were sig-
nificantly different in any illumination condition [Rx ANOVA:
F = 1.15 (df = 2), p = 0.35; Axial ANOVA: F = 2.3 (df = 2), p = 0.14]
(Fig. 2A). In steady-light conditions, the vitreous of the experimen-
tal eye was longer than that of the control eye (0.051 ± 0.027 mm),
probably as a result of the small increase in axial length combined
with choroidal thinning. No injection was given in this experiment,
and there is no obvious explanation why greater-than-normal vit-



Fig. 3. Comparison of the results to the initial hypothesis. Atropine caused a reduction in eye growth with both luminance and color flicker, suggesting that parasympathetic
stimulation increases eye growth and is independent of the environmental stimulus. Timolol caused an increase in eye growth with luminance flicker but a decrease with
color flicker, suggesting that the effect of sympathetic stimulation on eye growth is dependent on the environmental stimulus.
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reous chamber depth was observed without flicker in the steady-
light condition (Fig. 2A, Table 5).

3.6. Correlation between choroid and axial length, and refractive error
and axial length

No significant correlation was found between the change in
choroidal thickness and the change in axial length for LUM and
color flicker in the atropine (LUM: r2 = 0.04, p = 0.64; Color:
r2 = 0.21, p = 0.21) and timolol (LUM r2 = 0.33, p = 0.051; Color:
r2 = 0.075, p = 0.41) experiments. Furthermore, there was no signif-
icant correlation between the change in refractive error and the
change in axial length for luminance and color flicker in the atro-
pine (LUM: r2 = 0.02, p = 0.49; Color: r2 = 0.1, p = 0.29) and timolol
(LUM r2 = 0.08, p = 0.65; Color: r2 = 0.16, p = 0.34) experiments.
4. Discussion

4.1. Summary of results

The experiments support our hypothesis that color and lumi-
nance changes in visual stimulation influence the activity of the
parasympathetic and sympathetic nervous systems and affect
emmetropization. Earlier experiments in untreated chicks showed
that exposure to luminance flicker simulates myopic defocus and
causes a reduction in eye length and hyperopia, while exposure to
color flicker simulates hyperopic defocus causing an increase in
eye growth and a myopic shift in refraction. In this experiment,
inhibition of the parasympathetic nervous system with atropine
resulted in further growth inhibition with both luminance and
blue/yellow color flicker (Fig. 3). In contrast, timolol reversed the
findings in untreated chicks, causing an increase in eye growthwith
luminance flicker and a reduction in eye growth with color flicker.
These results suggest that with exposure to luminance contrast
(myopic defocus) growth activity depends on the relative innerva-
tion of the parasympathetic and sympathetic nervous systems. On
the other hand, with exposure to color contrast (hyperopic defocus)
an increase in eye growth occurs through stimulation of the sympa-
thetic nervous system and parasympathetic nervous system.

4.2. Atropine-induced changes

Current results agree with those of previous experiments in that
they link atropine’s anti-myopia effects with a reduction in axial
length. Studies have investigated the role of non-selective
parasympathetic antagonists atropine (Luft, Ming, & Stell, 2003;
McBrien et al., 1993; Raviola & Wiesel, 1985; Schmid & Wildsoet,
2004; Schwahn, Kaymak, & Schaeffel, 2000; Stone, Lin, & Laties,
1991; Young, 1965) and oxyphenonium (Luft et al., 2003). In addi-
tion, studies have investigated pirenzepine (an M1 receptor antag-
onist that corresponds to cm2 and cm4 in chicks (Ellis & Seidenberg,
2000)) (Cottriall & McBrien, 1996; Leech, Cottriall, & McBrien,
1995; Luft et al., 2003; Stone et al., 1991), and himbacine and
MT3 (M4 receptor antagonists: Cottriall, Truong, & McBrien,
2001; McBrien, Arumugam, Gentle, Chow, & Sahebjada, 2011), in
effective reduction of form deprivation induced experimental myo-
pia. Parasympathetic antagonists are also effective in reducing neg-
ative lens induced myopia (atropine: Diether, Schaeffel, Lambrou,
Fritsch, & Trendelenburg, 2007; atropine, pirenzepine, but not
MT3: Nickla, Zhu, & Wallman, 2013) in chicks.

It has been suggested that atropine acts in the retina by stimu-
lating retinal dopamine release via its actions on dopaminergic
amacrine cells (Schwahn et al., 2000). Retinal involvement is sug-
gested through evidence that the highly selective muscarinic
antagonist MT3 (M4 receptor antagonist) and MT7 (M1 receptor
antagonist) can still inhibit myopia development even at concen-
trations close to their receptor affinity constants (Arumugam &
McBrien, 2012). Dopamine has been associated with myopia devel-
opment since the ratio of retinal dopamine to DOPAC levels
changes with form deprivation (Schaeffel, Bartmann, Hagel, &
Zrenner, 1995), and eye growth is reduced in form deprivation
myopia with dopaminergic agonists (Cohen, Peleg, Belkin, Polat,
& Solomon, 2012; Iuvone, Tigges, Stone, Lambert, & Laties, 1991;
Rohrer, Spira, & Stell, 1993; Schmid & Wildsoet, 2004; Stone, Lin,
Laties, & Iuvone, 1989). Form deprivation myopia is also reduced
with exposure to 10 Hz stroboscopic flicker (Rohrer, Iuvone, &
Stell, 1995; Schwahn & Schaeffel, 1997), causing upregulation of
the expression of the c-fos gene in the retina. This gene promotes
expression of tyrosine hydroxylase, the rate-limiting enzyme for
dopamine synthesis. Nevertheless, it is important to note that atro-
pine still inhibits form deprivation in retinas in which most of the
NChAT+ (choline acetyltransferase-positive: acetylcholine-
synthesizing) amacrine cells have been ablated (Fischer, Miethke,
Morgan, & Stell, 1998) suggesting a non-retinal pathway, possibly
through action on the M1 receptors in the sclera (Lind, Chew,
Marzani, & Wallman, 1998; Luft et al., 2003), occurring as a result
of the high concentrations used (Gallego et al., 2012; Lind et al.,
1998). The effect is not thought to occur through an accommoda-
tive mechanism (McBrien et al., 1993).
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In the current experiment, atropine-injected eyes showed a sig-
nificant increase in lens thickness under luminance conditions
compared with fellow eyes, as well as a decrease in anterior cham-
ber depth. Lens thickening has also been observed in a previous
experiment with atropine, in binocularly open chick eyes
(McBrien et al., 1993). Although lens thinning was found in early
biometric measures in a human atropine study at 4 months, this
was followed by lens thickening at subsequent time points
(Kumaran, Htoon, Tan, & Chia, 2015). Lens thickening causes light
rays to converge in front of the retina, bringing the image into
focus for a smaller eye, but also potentially creating a myopic defo-
cus that may slow eye growth and produce hyperopia. On the other
hand, activation of muscarinic M1 receptors present in the mam-
malian lens causes the release of intracellular [Ca2+] ions and a
calcium-induced blockade of lens K+ channels (Williams et al.,
1993). It remains to be determined whether lens thickening pre-
ceded the changes in axial length, whether they occurred in
response to the relaxation of the lens zonules in a smaller eye, or
if they occurred through changes in osmotic pressure of the lens,
or as a result of cell proliferation.

4.3. Timolol-induced changes

The most remarkable result from this experiment was that
timolol produced an increase in eye length when the eyes were
exposed to luminance flicker, an opposite effect to atropine, and
a decrease in eye length when eyes were exposed to color flicker.
One possible explanation is that luminance flicker stimulates the
sympathetic nervous system and induces the release of dopamine
from dopaminergic amacrine cells (Rohrer et al., 1995), an effect
that is blocked by timolol. In support of this hypothesis, it was
shown that similar reductions in eye growth and refraction were
seen with luminance flicker in both atropine-injected and
apomorphine-injected eyes (Chuang & Rucker, 2013; Schmid &
Wildsoet, 2004). A correlation for the action of a b-adrenergic
blocker on dopamine release is seen in the role of dopamine in cog-
nitive flexibility; propanolol (a b-adrenergic blocker) improves
cognitive flexibility under stress (Zabelina, Colzato, Beeman, &
Hommel, 2016). On the other hand, when the eye is exposed to
color flicker or steady light, timolol application reduced eye
growth. These results suggest that timolol is causing a small
decrease in eye growth potentially through an IOP-reducing
mechanism.

It has been suggested that increased intraocular pressure could
lead to myopia if the scleral walls of such eyes were equal to or
more susceptible than emmetropic eyes to stretch under the influ-
ence of IOP increase. Therefore, it follows that IOP-lowering drugs,
such as timolol, should reduce or prevent eye enlargement and
thus myopia development and/or progression. However, signifi-
cant IOP reductions have been shown to have little effect on the
development of form deprivation or lens-induced myopia in chicks
(Schmid et al., 2000). The reduction in eye growth seen in this
experiment in the color and steady-light conditions may be appar-
ent because of the smaller eye. A form deprived eye is grossly over
extended and the tissues are likely to be less susceptible to con-
traction under the influence of small IOP reductions.

4.4. Choroidal changes with atropine and timolol

In this study choroidal thinning was found with exposure to
color flicker, with both drug types, but not with exposure to steady
light or luminance flicker. Two general theories exist regarding the
mechanisms behind the defocus-induced choroidal changes. One
possibility is that signaling proceeds with paracrine molecule mes-
sengers (Morgan, 2003; Rymer & Wildsoet, 2005; Wallman &
Winawer, 2004) such as nitric oxide via the parasympathetic
system and noradrenaline via the sympathetic system (Fischer,
McGuire, Schaeffel, & Stell, 1999; Fischer & Stell, 1999; Fujikado
et al., 1997; Nickla & Wildsoet, 2004; Nickla, Wilken, Lytle, Yom,
& Mertz, 2006), causing vasodilation and vasoconstriction, respec-
tively. A second possibility is that light-stimulus-driven changes in
the ionic (potassium, sodium, chloride, and calcium) environment
alter the distribution of ions across the retina, choroid, and sclera.
The movement of these ions directly controls the rate and direction
of transretinal fluid flow through changes in osmotic pressure and
thus choroidal thickness (Crewther, Liang, Junghans, & Crewther,
2006; Crewther, Murphy, & Crewther, 2008; Goodyear, Crewther,
& Junghans, 2009; Goodyear et al., 2008). In support of the first
theory relating to vascular changes, Lovasik, Kergoat, and
Wajszilber (2005) found that blue flicker, which stimulated rod
activity, led to an attenuated sub-foveal choroidal blood flow via
vasoconstriction of choroidal blood vessels. In support of the latter,
Liang, Crewther, Crewther, and Junghans (2004) demonstrated a
significant difference in relative concentrations of Na+ and Cl� ions
in the outer retina, retinal pigment epithelium, and choroid
between form-deprived myopic eyes and fellow non-deprived
eyes. It remains unclear whether one or both mechanisms are
involved in the choroidal thinning observed in this experiment
with color flicker.

With respect to timolol, b2-adrenergic receptors have been
identified in choroidal and retinal blood vessels (Grajewski,
Ferrari-Dileo, Feuer, & Anderson, 1991) and blockade of these
receptors can cause vasodilation (Van Buskirk, Bacon, &
Fahrenbach, 1990). Past studies have shown that b-adrenergic
blockers such as betaxolol and levobunolol exert vasodilatory
effects on retinal vessels and increase pulsatile ocular blood flow
in ocular hypertensive patients (Krakau, 1992; Langham, 1987;
Morsman, Bosem, Lusky, & Weinreb, 1995; Silver, Farrell,
Langham, O’Brien, & Schilder, 1989). In regard to timolol, however,
findings are inconsistent. Although some researchers noted
increases in retinal vein diameter (Schwartz, Takamoto, & Lavin,
1995), most studies have found that timolol treatment causes a
decrease in retinal vessel diameter (vasoconstriction) Martin &
Rabineau, 1989; Yoshida et al., 1991 as well as a reduction in chor-
oidal blood flow (Schwartz et al., 1995) that we would expect to
lead to choroidal thinning.

4.5. Clinical relevance

Clinically, the results of these experiments present evidence
that the effects of atropine on refraction can be enhanced by
changes in visual stimulation with luminance contrast, induced
with myopic defocus and fixation changes, potentially increasing
the protective effect of atropine alone on myopia development.
However, because luminance contrast also enhances axial length
with timolol, the results suggest that an imbalance of autonomic
stimulation may increase the risk of myopia, as previously sug-
gested (Charman, 1982; Gilmartin & Bullimore, 1987; McBrien &
Millodot, 1986). On the other hand, protective effects of timolol
on refraction can be enhanced by exposure to changes in color con-
trast or steady light, possibly through a reduction in IOP.
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