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[Y. Yang, On the existence of directed rings and algebras with
negative squares, J. Algebra 295 (2006) 452–457].
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1. Introduction

Let K be a commutative field with characteristic 0. We study the question whether K carries a
directed partial order. Partial orders on K correspond to positive cones, i.e., to subsets K + ⊂ K such
that K + ∩ (−K +) = {0}, K + + K + ⊆ K + and K + · K + ⊆ K + . The corresponding order relation is given
by: x � y if and only if y − x ∈ K + . It satisfies the monotonicity laws ∀x, y, z: x � y ⇒ x + z �
y + z and ∀x, y, z: x � y & 0 � z ⇒ x · z � y · z. The partial order is total if K + ∪ (−K +) = K and
directed if K + − K + = K . Lattice orders of fields are another class of partial orders that have received
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a considerable amount of attention. Every total order is a lattice order, and every lattice order is
directed.

A field is said to be real if it carries a total order. Birkhoff and Pierce [2, p. 68], raised the question
of whether the field C of complex numbers can be lattice ordered. More broadly, one can ask for the
class of fields that carry some lattice order. Every real field is contained in this class since total orders
are lattice orders. In [6, p. 186, Lemma 7 and p. 189, Theorem 8], it is shown that non-real algebraic
number fields (finite or infinite over the field of rational numbers Q) do not allow a lattice order. But
otherwise the problem remains unsolved – it is not known whether there are any non-real fields that
have a lattice order. Birkhoff and Pierce noted that C cannot be made into a lattice-ordered algebra
over the totally ordered field R.

Directed partial orders are more general than lattice orders. Therefore it is conceivable that there
are non-real fields with a directed partial order. This is indeed the case, as has been shown in [7,
Corollary 2.3]. Given a real field F with a non-archimedean total order, Yang constructs a directed
partial order on the field F (i). He then asks whether the field of complex numbers has a directed
partial order [7, Question (2.4)]. Again, one may ask more broadly for the class of fields that can be
endowed with a directed partial order.

In this paper, we show that almost all fields of characteristic 0 carry a directed partial order. (The
only exceptions are the non-real algebraic number fields. For these we do not know the answer.)
Especially, the field C of complex numbers can be made into a non-archimedean directed field, which
answers the question in [7] whether C can be made into a directed field. (Note that DeMarr and
Steger [3], have shown that C cannot be made into a directed algebra over the reals.)

2. Directed partial orders on polynomial rings

Let K be a field with a directed partial order K + and suppose that K contains a subfield K0 such
that K +

0 = K0 ∩ K + is a non-archimedean total order. In this section we build on ideas in [7] to
construct directed partial orders on the univariate polynomial ring K [X].

The fields K0 ⊆ K are fixed in the entire section. The presence of the totally ordered subfield
implies that 1 ∈ K + . Suppose that x, y ∈ K + . We write x 
 y to indicate that n · x � y for all n in
the set N of natural numbers. Moreover, x ≡ y means that there are 1 � m, n ∈ N with x � m · y
and y � n · x. Note that these relations are defined only for positive elements – whenever we write
a relation x 
 y or x ≡ y then x, y ∈ K + . We record the following basic rules about the relations 

and ≡. The simple proofs are omitted.

Lemma 2.1.

(a) If 0 � t � x 
 y � z then t 
 z.
(b) If x 
 y and z 
 t then x + z 
 y + t.
(c) If 0 < z then x 
 y implies x · z 
 y · z.
(d) If x1, . . . , xk 
 y then x1 + · · · + xk 
 y.
(e) If x 
 k · y for some 1 � k ∈ N then x 
 y.
(f) If t ≡ x, x 
 y and y ≡ z then t 
 z.
(g) If t ∈ K , ±t � x, x 
 y, then y − t ≡ y.
(h) If 0 < z then x ≡ y implies x · z ≡ y · z.
(i) If x ≡ y and if 1 � k, l ∈ N then k · x ≡ l · y.
(j) If x ≡ y and 0 � t � x then x + t ≡ y.

The hypothesis that K0 is a non-archimedean totally ordered subfield is used in the following
way: Given an element z ∈ K + there is always an element u ∈ K + such that z 
 u. This is trivial if
z = 0. Otherwise, pick an element v ∈ K +

0 such that 1 
 v , multiply this inequality with z > 0, use
Lemma 2.1(c), and set u = v · z.

We construct subsets of the polynomial ring K [X] that will turn out to be directed partial orders,
see Theorem 2.3. Recall that the set K [X]+ = {∑k

i=0 ai · Xi | ∀i: 0 � ai} is a partial order for the ring
K [X].
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Construction 2.2. Suppose that σ ∈ K , 1 � σ . We define K [X]+σ to be the set of polynomials P =∑k
i=0 ai · Xi ∈ K [X]+ that satisfy the following condition:

• If 0 < a j , j � 1, then σ · a j 
 a j−1.

The definition implies that the sequence of coefficients of a polynomial P ∈ K [X]+σ decreases
strictly until it reaches the value 0 and stays 0 ever after.

There are many different choices for the parameter σ . Different values for σ may lead to the same
partial order. But in general different values yield different partial orders. So we have a large reservoir
of partial orders on the polynomial ring. If we need a partial order that has some special properties
then, varying the parameter σ , we have many partial orders from which we can try to pick a suitable
one. We shall apply this method in Section 3.

Sometimes we can avoid the consideration of special cases if we extend the sequence of coeffi-
cients of the polynomial P = ∑k

i=0 ai · Xi in both directions by setting ai = 0 for i < 0 and k < i.

Theorem 2.3. The set K [X]+σ is the positive cone of a directed partial order on the polynomial ring K [X], and
(K , K +) is a partially ordered subfield of (K [X], K [X]+σ ). In particular (K [X], K [X]+σ ) is a partially ordered
algebra over the partially ordered field (K , K +).

Proof. It follows immediately from K [X]+σ ⊆ K [X]+ that K [X]+σ ∩ (−K [X]+σ ) = {0} and that K + =
K ∩ K [X]+σ . Moreover, the construction shows that K [X]+σ + K [X]+σ ⊆ K [X]+σ and K + · K [X]+σ ⊆ K [X]+σ .
Thus, (K [X], K [X]+σ ) is a partially ordered vector space over the partially ordered field (K , K +).

Claim. K [X]+σ · K [X]+σ ⊆ K [X]+σ .

Proof. Suppose that P = ∑k
i=0 ai · Xi, Q = ∑l

j=0 b j · X j ∈ K [X]+σ . We want to show that P · Q ∈ K [X]+σ .
If P = 0 or Q = 0 then there is nothing to prove. So suppose that P · Q �= 0. We may assume that
ak �= 0 and bl �= 0 and that k � l. We write P · Q = ∑k+l

r=0 cr · Xr . From cr = ∑
i+ j=r ai ·b j it is clear that

cr � 0. It is only necessary to check the growth condition of Construction 2.2. There are three cases
to consider:

Case 1. l < r � k + l.

For each i = r − l, . . . ,k we know by hypothesis that σ · ai 
 ai−1. With Lemma 2.1(a), (b) and (c)
one concludes:

σ · cr =
k∑

i=r−l

σ · ai · br−i 

k∑

i=r−l

ai−1 · br−i + ak · br−1−k

=
k∑

i=r−1−l

ai · br−1−i = cr−1.

Case 2. k < r � l.

For each i = 0, . . . ,k we know by hypothesis that σ · br−i 
 br−i−1. Thus, Lemma 2.1(b) and (c)
implies

σ · cr =
k∑

i=0

ai · σ · br−i 

k∑

i=0

ai · br−i−1 = cr−1.
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Case 3. 1 � r � k.

For each j = 0, . . . , r − 1 we know by hypothesis that σ ·b j+1 
 b j , and σ ·ar 
 ar−1. Now Lemma
2.1(b) and (c) yields

σ · cr =
∑

i+ j=r

σ · ai · b j =
∑

i+ j=r,1� j

ai · σ · b j + σ · ar · b0



∑

i+ j=r,1� j

ai · b j−1 + ar−1 · b0

� 2 ·
∑

i+ j=r−1

ai · b j = 2 · cr−1,

and we conclude that σ · cr 
 cr−1, using Lemma 2.1(a) and (e).

Claim. K [X]+σ is directed.

Proof. We show that for each P = ∑k
i=0 ai · Xi ∈ K [X] there is a polynomial Q ∈ K [X]+σ with

Q − P ∈ K [X]+σ . Since K + is a directed partial order there is an element b ∈ K such that
±a0,±a1, . . . ,±ak,1 � b. We define the coefficients of the polynomial Q recursively: To start with
we set ck = 2 · b. Suppose that ck, . . . , ck− j have been defined, j < k. Then one picks ck− j−1 such that

σ · ck− j 
 ck− j−1. We set Q = ∑k
i=0 ci · Xi .

It is immediately clear that Q ∈ K [X]+σ . It remains to show that Q − P ∈ K [X]+σ . First observe that
ci − ai � ck − b = b > 0 for each i. We must check the growth condition: Suppose that 1 � i � k. The
construction and Lemma 2.1(a) imply ±ai < 2 · b = ck � σ · ck 
 ck−1 � σ · ck−1 
 · · · 
 ci . It follows
(by Lemma 2.1(g)) that ci −ai ≡ ci if i < k. Moreover, 3 · ck � 2 · ck − 2 ·ak � ck implies ck −ak ≡ ck (by
Lemma 2.1(h) and (i)). We conclude that σ · (ci − ai) ≡ σ · ci 
 ci−1 ≡ ci−1 − ai−1 (by Lemma 2.1(g),
(h)), and the proof is finished. �
Proposition 2.4. For n ∈ N, let K [X]n be the vector space of polynomials with degree � n. Then K [X]n is a
convex and directed subspace of (K [X], K [X]+σ ). The partially ordered factor space K [X]n+1/K [X]n is isomor-
phic to (K , K +).

Proof. Suppose that 0 � Q � P with Q = ∑
i∈N

bi · Xi ∈ K [X] and P = ∑
i∈N

ai · Xi ∈ K [X]n . It follows
from K [X]+σ ⊆ K [X]+ that 0 � bi � ai for each i ∈ N, and convexity has been proved.

The partial order K [X]n ∩ K [X]+σ of K [X]n is directed, cf. the proof of Theorem 2.3.
We define a map γn+1 : K [X]n+1 → K by setting γn+1(

∑n+1
i=0 ai · Xi) = an+1. This is a homo-

morphism of vector spaces, and it induces an isomorphism γn+1 : K [X]n+1/K [X]n → K of vector
spaces. The image of the partial order K [X]n+1 ∩ K [X]+σ in K [X]n+1/K [X]n is a partial order since
K [X]n ⊆ K [X]n+1 is convex [4, p. 31]. The homomorphism γn+1 is clearly monotonic. In order to
show that the partially ordered vector spaces are isomorphic it suffices to prove that for each a ∈ K +
there is a polynomial P = ∑n+1

i=0 ai · Xi ∈ K [X]+σ with an+1 = a. Pick an element v ∈ K0, 1 
 v . The
polynomial with coefficients ai = (σ · v)n+1−i · a is suitable. �
Remark 2.5. Lattice orders are directed partial orders. Therefore one may ask whether the partial
order K [X]+σ is even a lattice order. We claim that this is not the case: For the proof we view the
polynomial ring as a vector space. Assume that the partial order is a lattice order. Then the convex
and directed subspaces K [X]n ⊂ K [X], n ∈ N, are l-ideals [1, Definition 2.3.4], hence are lattice-ordered
as well. If n = 0 then K [X]n = K , and this is a lattice-ordered vector space if and only if the field K
is lattice ordered. Now consider the case n = 1. Let the polynomial a0 + a1 · X be the supremum of 0
and X . Then 1 � a1 � σ · a1 
 a0. The polynomial 1

2 · a0 + a1 · X is larger than both 0 and X , as well.
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It follows that a0 + a1 · X � 1
2 · a0 + a1 · X with respect to K [X]+σ . But this is clearly false, and we have

shown that none of the partially ordered vector space K [X]n , n > 0, is lattice ordered.

3. Convex ideals

We continue with the fields K0 ⊆ K of Section 2. It is our plan to produce finite algebraic ex-
tensions K ⊆ L with a directed partial order by forming factor rings K [X]/(P ), where P is some
monic irreducible polynomial. Let π : K [X] → K [X]/(P ) be the canonical homomorphism. Suppose
that K [X]+σ is one of the partial orders of Section 2 and that the ideal (P ) ⊂ K [X] is convex. Then
π(K [X]+σ ) is a partial order of K [X]/(P ) [4, p. 31], and the partial order is automatically directed.

We show that, given a monic polynomial P ∈ K [X] with positive degree, there is a parameter
σ ∈ K , 1 � σ such that the ideal (P ) is convex for the partial order K [X]+σ .

First we characterize the convex ideals:

Proposition 3.1. A proper ideal (P ) ⊂ K [X] is convex with respect to the partial order K [X]+σ if and only if it
is trivially ordered, i.e., (P ) ∩ K [X]+σ = {0}.

Proof. One direction of the equivalence is obvious since trivially ordered ideals are always convex.
Conversely, suppose that the proper ideal (P ) is convex and is not trivially ordered. The assumption
implies that P �= 0, hence deg(P ) > 0. There is some polynomial Q such that Q · P ∈ K [X]+σ , Q · P �= 0.
Let c be the leading coefficient of Q · P . It follows immediately from the definition of K [X]+σ that 0 <

c � Q · P . Convexity yields c ∈ (P ), which shows that the ideal (P ) is not proper, a contradiction. �
The following theorem is the main result of this section. We shall use it to show that every proper

ideal of K [X] is convex for K [X]+σ if the parameter σ is chosen appropriately.

Theorem 3.2. Suppose that P = ∑k
i=0 ai · Xi ∈ K [X], ak = 1 and 1 � k and that σ � ±a0, . . . ,±ak−1,1. If

Q · P + R ∈ K [X]+σ with deg(R) � k − 1 then Q , R ∈ K [X]+σ , and deg(R) = k − 1 if Q �= 0.

Proof. We point out that the condition σ � ak−1 implies that P /∈ K [X]+σ ∪ (−K [X]+σ ).
The claim is trivial if Q = 0. Therefore we suppose now that Q �= 0. One writes Q = ∑l

j=0 b j · X j

with bl �= 0, Q · P = ∑k+l
r=0 cr · Xr and R = ∑k−1

i=0 di · Xi . First one shows (using downward induction)
that the coefficients of Q satisfy the condition of Construction 2.2:

To start with, note that bl = ak · bl = ck+l > 0, hence bl ≡ ck+l . If deg(Q ) = l = 0, then we have
shown Q ∈ K [X]+σ . If l � 1, then

0 < σ · bl = σ · ck+l 
 ck+l−1 = bl−1 + ak−1 · bl � bl−1 + σ · bl,

which implies that σ · bl 
 bl−1 and bl−1 ≡ ck+l−1 (using Lemma 2.1(d), (g)).
Now suppose that the coefficients bl, . . . ,bl− j (with j < l and l � 1) are positive and satisfy the

growth requirements and that bl ≡ ck+l, . . . ,bl− j ≡ ck+l− j . We show that bl− j−1 is positive, σ · bl− j 

bl− j−1 and bl− j−1 ≡ ck+l− j−1.

Suppose that 1 � s � j + 1 � l. Since ±ak−s � σ it follows that ±ak−s · bl− j−1+s � σ · bl− j−1+s .
The induction assumption implies that σ · bl− j−1+s ≡ σ · ck+l− j−1+s (by Lemma 2.1(h)). Using
Lemma 2.1(a), it follows from the growth condition for bl, . . . ,bl− j that σ · bl 
 σ · bl−1 
 · · · 

σ ·bl− j ≡ σ · ck+l− j 
 ck+l− j−1. (For the last ‘
’, note that k + l − j − 1 � k, hence ck+l− j and ck+l− j−1
are coefficients of Q · P + R .) One concludes that bl− j−1 = ck+l− j−1 − ak−1 · bl− j − · · · − ak− j−1 · bl � 0,
and it follows from Lemma 2.1(g) and from the inequality

±ak−1 · bl− j ± · · · ± ak− j−1 · bl � σ · (bl− j + · · · + bl) 
 ck+l− j−1
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that bl− j−1 ≡ ck+l− j−1. Together with σ · bl− j ≡ σ · ck+l− j 
 ck+l− j−1 this implies σ · bl− j 
 bl− j−1,
and the growth condition is satisfied, see Lemma 2.1(f). Thus, Q ∈ K [X]+σ .

The coefficients c0, . . . , ck satisfy the following inequalities: If r � k then

±cr = ±(ar · b0 + · · · + a0 · br) � σ · b0 + · · · + σ · br � 2 · σ · b0 ≡ σ · ck.

(Note that we have shown b0 ≡ ck , and use Lemma 2.1(d), (h).) Using induction again it is shown that
the coefficients of R satisfy the requirements of Construction 2.2: It follows from σ · ck 
 ck−1 + dk−1
and ck−1 � 2 · σ · b0 ≡ σ · ck that dk−1 ≡ ck−1 + dk−1 (by Lemma 2.1(g)). In particular, one sees that
0 < σ · ck 
 dk−1, and deg(R) = k − 1. If k = 1, the proof is finished. Now suppose that k � 2. Then
σ · (ck−1 + dk−1) 
 ck−2 + dk−2 � 2 · σ · b0 + dk−2 yields 0 < σ · dk−1 
 dk−2 and dk−2 ≡ ck−2 + dk−2.
For the induction we assume that dk−1, . . . ,dk− j (with j < k and k � 2) are positive and satisfy the
growth condition and that dk−s ≡ ck−s + dk−s for s = 1, . . . , j. Now Lemma 2.1(h) yields σ · dk− j ≡
σ · (ck− j + dk− j) 
 ck− j−1 + dk− j−1. The inequalities

±ck− j−1 � 2 · σ · b0 ≡ σ · ck 
 ck−1 + dk−1 
 · · · 
 ck− j−1 + dk− j−1

imply that dk− j−1 � 0, dk− j−1 ≡ ck− j−1 + dk− j−1 (by Lemma 2.1(g)) and σ · dk− j 
 dk− j−1 (by
Lemma 2.1(f)). �
Corollary 3.3. Suppose that P = ∑k

i=0 ai · Xi ∈ K [X], ak = 1 and 1 � k. Pick an element σ � ±a0, . . . ,

±ak−1,1. Then the ideal (P ) ⊂ K [X] is trivially ordered, hence convex, with respect to K [X]+σ .

Proof. We assume by way of contradiction that there is a polynomial Q ∈ K [X], Q �= 0, such that
Q · P ∈ K [X]+σ . We set R = 0 and apply Theorem 3.2 with the polynomial Q · P = Q · P + R and arrive
at the contradiction deg(R) = k − 1 � 0. �

The next result is extremely helpful for the intuitive understanding of the partial order of a factor
ring K [X]/(P ), where (P ) is convex with respect to K [X]+σ .

Corollary 3.4. Suppose that P = ∑k
i=0 ai · Xi ∈ K [X], ak = 1 and 1 � k, and that σ � ±a0, . . . ,±ak−1,1. Let

π : K [X] → K [X]/(P ) be the canonical homomorphism onto the factor ring. We define πk−1 : K [X]k−1 →
K [X]/(P ) to be the restriction of π . Then πk−1 is an isomorphism of partially ordered vector spaces (with
respect to the partial orders K [X]k−1 ∩ K [X]+σ and π(K [X]+σ )).

Proof. Obviously, the map πk−1 is an isomorphism of vector spaces and is order preserving. We must
show that, given an element F + (P ) ∈ π(K [X]+σ ), there is an element R ∈ K [X]k−1 ∩ K [X]+σ with
R + (P ) = F + (P ): We may assume that F ∈ K [X]+σ . Using polynomial division we write F = Q · P + R
with R ∈ K [X]k−1. Now Theorem 3.2 shows that R ∈ K [X]+σ , and the proof is finished. �
4. Fields with a directed partial order

In this section we show that most fields of characteristic 0 carry a directed partial order. The main
tool is Corollary 3.3.

Theorem 4.1. Let K0 ⊆ K be fields as in Section 2. If K ⊆ L is an algebraic extension then there is a directed
partial order L+ on L such that L+ ∩ K = K + .

Proof. First we deal with finite extensions. Suppose that [L : K ] < ∞. Since the characteristic of the
fields is 0 one can identify L with a factor ring of K [X] modulo some monic irreducible polynomial P .
We apply Corollary 3.3 to determine a directed partial order K [X]+σ on the polynomial ring such that
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(P ) ∩ K [X]+σ = {0}. Then the canonical map π : K [X] → L = K [X]/(P ) maps K [X]+σ onto a directed
partial order L+ of L. This partial order clearly restricts to the partial order K + of K .

Now let K ⊆ L be an arbitrary algebraic extension. By Zorn’s Lemma there is a field M , K ⊆ M ⊆ L,
that is maximal with the property that there is a directed partial order M+ on M with M+ ∩ K = K + .
If M = L then the proof is finished. If not, then any element a ∈ L \ M yields a proper algebraic
extension of M that is contained in L. By the case of finite extensions there is a directed partial order
M(a)+ on M(a) that extends M+ . This contradicts the maximality of M , and the proof is finished. �
Corollary 4.2. If L is any field that has transcendence degree at least 1 over Q then L carries a directed partial
order.

Proof. Let T ⊆ L be a transcendence basis over Q. The purely transcendental extension Q(T ) of Q

carries numerous non-archimedean total orders [5, p. 11, Satz 4 and p. 79, Satz 1]. By Theorem 4.1
any one of these can be extended to a directed partial order on the algebraic extension L of Q(T ). �

We have shown that there are many non-real fields that have a directed partial order. Especially,
the field of complex numbers can be made into a non-archimedean directed field, which answers the
open question in [7] whether C can be made into a directed field.

It is an obvious question whether any of the directed partial orders we have constructed is even
a lattice order. However, this is not the case. Again, let K be a directed partially ordered field as
in Section 2, let P ∈ K [X] be a monic irreducible polynomial, deg(P ) = k � 2, and let 1 � σ ∈ K
be a parameter as in Corollary 3.4. Then the partially ordered vector spaces (K [X]k−1, K [X]k−1 ∩
K [X]+σ ) and (K [X]/(P ),π(K [X]+σ )) are canonically isomorphic. The partial order K [X]k−1 ∩ K [X]+σ is
not a lattice order, see Remark 2.5. Note that [8, Remark 2.4] shows that the directed partial orders
constructed in [7] are not lattices by means of segments.

Our results do not apply to non-real algebraic number fields since they do not contain non-
archimedean totally ordered subfields. It remains an open question whether non-real algebraic num-
ber fields carry a directed partial order.
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