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In this paper, we derive some monotonicity properties of generalized entropy 
functionals of various multivariate distributions. These include the distributions of 
random eigenvalues arising in many hypothesis testing 
analysis; the multivariate Liouville distributions; and 
distributions. 0 1991 Academic Press, Inc. 

1. 1NTRoDucT10~ 

problems in multivariate 
the noncentral Wishart 

Suppose that p is the probability density function of a continuous 
random vector (or matrix) X. Then the entropy of X, 

H(P) = - j” P(X) log P(X) dx (1.1) 

is well known to play an important role in probability and statistics. We 
refer to Karlin and Rinott [S, 63, Marshall and Olkin [9], Rao [12], and 
RCnyi [ 131 for applications of the entropy function (1.1) to probability and 
statistics. 

Rtnyi [ 133 and Karlin and Rinott [S, 63 have studied the generalized 
entropy functional 

H,(P)=&” lois J‘ C~(~11” dx > 
( > 

a > 0. (1.2) 
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Note that H,(p) + H(p) as CI -+ 1. In some instances, it is simpler to 
compute H,(p) and then recover H(p) by taking limits as a -+ 1. In 
treating H,(p), it is enough to study the properties of the functional 

G,(P) = j- Mx)l” dx. (1.3) 

Karlin and Rinott [S, 61 derived monotonicity properties of the functional 
G,(p) for a large class of univariate and multivariate density functions. 

In this paper we study monotonicity properties of G,(p) when X is a 
vector of eigenvalues of a multivariate beta matrix (Muirhead [lo]); and 
when X has a multivariate Liouville distribution (Gupta and Richards [3], 
Marshall and Olkin [9]). For these distributions, we evaluate the func- 
tional G,(p) and use the techniques of [S, 61 to determine its Schur- 
concavity and Schur-convexity properties. These results are given in 
Sections 2 and 3, respectively. 

When X is a central Wishart matrix, Karlin and Rinott [6] obtained the 
concavity properties of G,(p) in terms of the matrix C = E(X). This raises 
the question of whether similar results are valid for noncentral Wishart 
matrices. In general, this appears to be a difficult problem because the com- 
plicated nature of the noncentral Wishart density function (cf., Muirhead 
[lo]) prevents exact evaluation of the functional G,(p). In Section 4 we 
evaluate G,(p) in one case, and show that in this case G,(p) is Schur- 
concave in the eigenvalues of C. 

2. EICENVALUE DISTRIBUTIONS 

Suppose that the parameter 0 = (e,, 0,) E R:, and X= (X,, . . . . X,) is a 
vector of random eigenvalues with density function 

p(x; 8)=c,(8,, 82, y) i xj”‘-‘(l -x$+1 n Ix,-x,l2Y, (2.1) 
j=l 1 <i-cj<n 

where O<xi<x,< ... <x, < 1, y is a positive real constant, and 
c,,(8i, B,, y) is the normalizing constant. The functions (2.1) arise as the 
densities of eigenvalues of multivariate beta matrices (Muirhead [lo]), and 
in many hypothesis testing problems in multivariate analysis (Andersson, 
Brons, and Jensen Cl], Andersson and Perlman [2]). In these problems, 
the constant y is 4, 1, or 2, and the value of the normalizing constant is [ 1 ] 

c,(e,, e2, YJ=~! ii 
r(e,+e,+(2n-i-i)y)~(y+i) 

r(e, + (n - i)y) r(e, + (n - i)y) r(iy + i )’ (2.2) 
i=l 

Note that (2.1) remains a density function for all positive Oi, 8,, and y. 

683/39/l-14 
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Then by an integral formula of Selberg [14] (cf., Karlin and Studden [7, 
Chap. IV, Section 6]), (2.2) again gives the value of the normalizing 
constant c,(el, I!&, y). 

Now we can state our result concerning the monotonicity of the 
functional G,(p) for the density function (2.1). 

THEOREM 2.1. For the density function (2.1) the entropy functional 
G,(p) satisfies: 

(a) Zf 0 < a < 1 then G,(p) is Schur-concave in (0,) e2); 

(b) If a > 1 and tI,> 1 -cl-l - ny, j= 1,2, then G,(p) is Schur-convex 

in (e,, w 

In the course of proving Theorem 2.1, we will need the following result 
of Karlin and Rinott [6]. 

LEMMA 2.2 [6]. For 0 <a < 1, the function g,(x) = r(ax- a + l)/ 
[f(x)la is log-concaue in x > 0. If a > 1 then g,(x) is log-conuex ouer the 
domain x > (a - 1 )/a. 

Proof of Theorem 2.1. By (1.3), (2.2) and Selberg’s integral, we have 

G,(P) = 
cc,(e,, 6, Y w 

[n!]“-‘c,(ae,-cr+l,ae,-cc+l,ay)’ 
(2.3) 

Define 

then we can rewrite (2.3) as 

G,(P) = h,(w h,(b) k,(b + e,), 

where the explicit form of the function k, will not be required. 
If 0 < tl < 1 then, by Lemma 2.1, the function h, is log-concave in x > 0; 

and if a > 1 then h, is log-convex in x > 1 -cl-i - ny. Therefore 
h,(B,) h,(&), and in turn G,(p), is Schur-concave in (e,, &)E R: if 
0 <a < 1. Similarly, if a > 1 then G,(p) is Schur-convex in (e,, 0,) for 
8j>1-a-1-ny,j=1,2. 1 

Similar to Theorem 2.1 we can also obtain results on the Schur- 
concavity and Schur-convexity of entropy functionals for the distributions 
of eigenvalues of n x n. Wishart matrices W,(d, I,), i.e., with d degrees of 
freedom and expectation the identity matrix; as well as for the distributions 
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of eigenvalues of central F matrices. In the case of the Wishart matrix 
distribution, similar results were obtained by Karlin and Rinott [6]. 

3. MULTIVARIATE LIOUVILLE DISTRIBUTIONS 

Let the continuous random vector X= (Xi, X,, . . . . X,) have a multi- 
variate Liouville distribution [3, 91. Then the joint density function of X 
is of the form 

p(x;R)=C,(B)f( i Xj) fi xy, 
i= I i=l 

(3.1) 

where xi>O, i= 1, . . . . n; f: R, + R, is continuous and the parameter 
8 = (0,) t&, 1.1, 0,) E R”, . 

It may be shown [3, 91 that the normalizing constant c,(6) is given by 

(3.2) 

The analog of Theorem 2.1 for the Liouville distributions is the 
following. 

THEOREM 3.1. For the density function (3.1), the entropy functional 
G,(p) satisfies: 

(a) IfO<cc< 1 then G,(p) is Schur-concave in (O,, 8,, . . . . 0,); 

(b) If a> 1 and tI,> 1 - a-‘,j= 1, . . . . n, then G,(p) is Schur-convex in 
to,, 02, . . . . 0,). 

ProoJ The proof of this result is similar to that of Theorem 2.1. Let us 
adopt the notation 

for any function g: R, + R such that the integral (3.3) exists. Then 

I(/?; g) := ja tBg(t) dt 
0 

(3.3) 

applying (3.2), we obtain 

Gm(p)= 
Z(a~~=,Bi-na+n;f”)[~(~~=l Oi)]“ny=1 r(aOi-a+l) 

Z(cl,,ei-l;f)T(aC;=,Bi-nU+n)n?=, [r(Oi)]” ’ 

Letting 

h,(x) = T(ax - a + 1)/F(x), 
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then we can rewrite G,(p) as 

where the explicit form of the function k, is not needed. By Lemma 2.2, 
h,(x) is log-concave in x > 0 when 0 <a < 1; and h,(x) is log-convex in 
x>l-cr-’ when c1> 1. Then the statement of the theorem follows 
immediately. 1 

In the case when X has a Dirichlet or inverted Dirichlet distribution, 
Theorem 3.1 is due to Karlin and Rinott [6]. 

4. NONCENTRAL WISHART DISTRIBUTIONS 

Suppose that the 12 x n matrix X has a noncentral Wishart distribution, 
W,(d, 2, Q), with d degrees of freedom, Z= E(X), and noncentrality 
parameter 8. The density function, p, of X exists for d> n. Relative to 
Lebesgue measure on the space of positive definite n x IZ matrices, we have 
[lo, i 4421 

p(X) = c,(det C)“’ exp($ tr 52) exp( - 4 tr C-lx) 

x (det X)‘d-“- ‘)‘* J7i(n/2; iQZP’X), (4.1) 

where 0F, is a hypergeometric function of matrix argument [4, 101; and 
throughout this section, c, is generic notation for a constant depending 
only on n. 

As noted above, Karlin and Rinott [6] obtained the monotonicity 
properties of G,(p) in the central case (Sz =O). In the noncentral case, it 
appears to be difficult to evaluate G,(p) in general. Despite the formidable 
nature of the density (4.1), we will evaluate G,(p) when d= n + $. This 
leads to the following result. 

PROPOSITION 4.1. For d=n + k, the entropy functional G,(p) for the 
density (4.1) satisfies the following: 

(a) G,(p) is log-concave in C; 

(b) G,(p) is Schur-concaue in (A,, . . . . A,), the vector of eigenvalues 
OfZ 

(c) If 01, ..., o, are the eigenvalues of 0, then G,(p) is strictly 
increasing in each oi, i= 1, . . . . n; 

(d) G,(p) is strictly log-conoex in (CD,, . . . . 0,). 
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Proof To evaluate G,(p) when d=n + i, we need to evaluate the 
integral 

I (det Xl- ~exp( -tr C-‘X)[,F,(n/2; ~QC-‘X)]2 dX, (4.2) x,o 

where dX denotes Lebesgue measure on the space {A’> 0} of positive 
definite 12 x n matrices. By Herz’s generalization [4, Eq. (5.8)] of Weber’s 
second exponential integral, we see that (4.2) equals 

Therefore 

c, exp(i tr Q)(det .Z),j2 0F,(n/2; &O’). 

GI(p)=c, exp(tr Q)(det C)n+1’4 ,F,(n/2; &J2). (4.3) 

Since (det Z)n+ ‘I4 is log-concave in Z:, then (a) follows. Next, (b) follows 
by the equivalence of log-concavity in C and Schur-concavity in (Ai, . . . . II,) 
[6, Sections 7-81. 

To prove (c), it suffices to show that oFl(n/2; Q’) is strictly increasing 
in each oi. This result follows from the zonal polynomial expansion 
[lo, Section 7.31 

for the ,,F1 function. Here, the zonal polynomial C,(Q) is a homogeneous, 
symmetric polynomial in wi , . . . . w,. It is known (cf. [ll, p. 13341) that the 
zonal polynomials are strictly increasing in each oi; hence (c) follows. 

To prove (d) note that by (4.3), 

&. 1%’ ‘S(p) 
1 J 

&log,F, (n/Z&Q’)). (4.4) 
1 J 

By Khatri and Mardia [S, Eq. (2.1 I)], the right-hand side of (4.4) is a 
positive definite matrix. Then by Marshall and Olkin [9, p. 448, B.3.d], 
log G,(p) is strictly convex in (o,, . . . . 0,); hence (d) is proved. 1 
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