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ABSTRACT 

Explicit expressions for solutions of boundary-value problems and Cauchy prob- 
lems related to the operator differential equation Xcn) + A,_ ,X("- ') + . . . + A,X = 
0 are given in terns of solutions of the algebraic operator equation X” + A, ,X"- ’ 
+ . . . + A, = 0. A method for solving this algebraic equation is studied. 

1. INTRODUCTION 

The purpose of this paper is to show that in an analogous way to the 
scalar case, explicit expressions of solutions for operator differential Cauchy 
and boundary-value problems can be given in terms of solutions of algebraic 
operator ones. It is well known that the solutions of a scalar differential 
equation of the type 

x(“)(t)+a,_,X(n-l)(t)+ a.* +a,x(t) =O, (1.1) 

where ai for 0 < i < n - 1 are complex numbers, are given in terms of 
solutions of the characteristic algebraic equation 

An + a ,_,A"-'+ ... +a,=O. (1.2) 

For the scalar case, the equation (1.2) is always solvable, but this does not 
occur for the operator case. For instance, if A, is an operator without square 
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roots, then the equation X2 - A, = 0 is not solvable. In this paper H will 
denote a complex separable Hilbert space, and L(H) the algebra of all 
bounded linear operators on H with the operator norm. If B, lies in L(H) for 
0 < i < m - 1, the existence of solutions of the algebraic operator equation 

T”+B,_,T”-‘+ ... +B,=O (1.3) 

is related to the existence of a linear factorization of the polynomial operator 
P(X)=X”+B,_,A”-‘+ ... + B,; in fact, 2 is a solution of (1.3) if and 
only if, XI - 2 is a right divisor of P(A), i.e. P(X) = P1( X)(hZ - Z), for some 
polynomial operator of degree m - 1. The problem of the linear factorization 
of a polynomial operator has been studied by several authors. The finite- 
dimensional case has been studied in [12], [23], [25], and the infinitedimen- 
sional case in [28]. The existence of solutions of the operator equation (1.3) is 
closely related to the companion operator 

c= ; ; j I 0 0 0 0 0 I 0 0 I . ... . . . . . 0 0 i 
-B, -B, -B, ... -B,_, 

In [12] it is proved that P(X) admits a linear factorization of the type 
P(X) = (AZ - Z,)(XZ - Z,) * . . (AZ - Z,), if the operator C is diagonable 
and H is finite-dimensional. 

We are interested in finding explicit expressions for solutions of 
boundary-value problems and Cauchy problems for the operator differential 
equation 

Xc”) + Bm_lX(“-l) + . . . + B,, = 0 0.4) 

in terms of solutions of the equation (1.3). 
This paper can be regarded as a continuation of the sequence [15], [17], 

[18], and [19]. In Section 2 we develop a method for solving the algebraic 
operator equation (1.3) by reduction of the degree of the equation. This 
reduction is based on the application of annihilating analytic functions of 
operators. If H is finite-dimensional, it is well known that any operator on H 
is annihilated by a polynomial. For the infinite-dimensional case this does not 
occur, and an operator with this property is called an algebraic operator. 
Examples and properties of algebraic operators can be found in [20]. The 
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existence of annihilating analytic functions of operators has been successfully 
applied for the last years in the context of the invariant subspace problem [ 1, 
2, 301. In [13], P. R. Halmos proved that an operator which is annihilated by 
an entire function is algebraic. If D denotes the open unit disc in the 
complex plane and H” denotes the algebra of all bounded analytic functions 
on D under the supremum norm, one has the Sz.-Nagy-Foias functional 
ca.lculus [26], and for the operators T in the class C,, there is a nonzero 
function f in H” such that f(T) = 0. 

In analogous way to the scalar case, in Section 3 explicit expressions of 
solutions for Cauchy problems and boundary-value problems related to the 
equation (1.4) are given. Operator differential equations with constant coeffi- 
cient operators are important in the theory of damped oscillatory systems and 
vibrational systems [12, 16, 211. F or the infinite-dimensional case, these 
equations occur in denumerable Markov chains [21]. Infinite-dimensional 
systems of differential equations have been studied with several different 
techniques in [7], [8], [14], etc. 

If T is an operator in L(H), we represent by UJ T) its approximate point 
spectrum, defined as the set of all complex numbers X such that XI - T is 
not bounded below, and we represent by a,(T) its approximate defect 
spectrum, defined as the set of all complex numbers X such that XI - T is 
not onto [20, p. 421. If Bii lies in L(H) for 1 Q i, j < m, and B = (Bij) is the 
associated operator matrix in L(Hm), we consider the following norm in 

L(Hm): llBll = maxi, j~J~n=111Bijl13 under which this space is a Banach 
space. 

2. ON THE ALGEBRAIC OPERATOR EQUATION T”’ + I$,_ lTmp ’ 
+ ... +B,=O 

The first result of this section is a theorem which permit us to reduce the 
degree of the algebraic operator equation (1.3) by application of annihilating 
analytic operator functions of operators. We recall that finite-dimensional 
operators and infinite-dimensional algebraic operators are annihilated by 
polynomials, and for the classes pointed out in the introduction, their 
operators are annihilated by different classes of analytic functions. Results of 
this section can be regarded as a nontrivial generalization of some results of 
[18] obtained for 12 = 2. 

THEOREM 1. Consider the operator equation 

Tm+Bm_lTm-l+ ... +B,=O (2.1) 
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in L(H), and let ~=rnax,~~~~_~)1B~II. Zf T is a solution of (2.1) and 

f(Z)=C,Zcla,z”> is an analytic function in the disc Izj < 1 + S, with c < 6, 
such that f(T) = 0, then T satisftes the equation 

C,_,T”-’ + C,,_,T”-‘+ . . . + C,, = 0, (2.2) 

where 

‘j= C anWn,jt O<j<m-1, 
I?,0 

(2.3) 

and the operators W,,, j are recurrently defined by the expressions 

W,,j=W”-1,j~1_W,_,,,~,Bj, 

[w,,,;...;w,,,_,] = [o;...;o;z] (2.4) 

for n > 1, 0 < j G m - 1, and with the agreement that W,- 1, _ 1 = o for 
n > 1. 

Proof. Let T be a solution of (2.1) and let W,(T) be the operator T”- I. 
Then it follows that 

T *-l= W,,(T), 

T”‘= -B,-B,T- .e. -B,_,Tmp’=Wl(T), 

Tm+l= _ B,T - BlT2 - . . . - Bn,_2Tm-1 

-B,_,(-B,-B,T-... -B,,_lTmpl) 

= B ,-lBo+ ... +(B:p,-B,_,)T”-‘=W,(T), 

T”‘++l= W,,(T), 

Every operator W,,(T) is a polynomial in T of degree at most m - 1. In the 
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following we prove that 

W,(T) =W,,,o + W,,,T + . .+ + Wn,m_lTm-l, n 2 0. (2.5) 

From the expression W,,(T) = W,_ XT)T, it follows that 

W,,(T)=(W,_,,,+ .a. +W”-l,m-lTm-l)T 

= W,_,,,T + . . . + W,_, m_2Tm-1 

+ Wn-l,m-l( - $ - . . . - B,_,T”-‘) 

= -Wn-l,m-lBo+(W,_l,o-W,_l,,_lB1)T+ 1.. 

+(W,-,,,-,-W,-,,,-,B,-,)T”-‘. 

Considering the expression (2.5), one gets (2.4). Let C be the operator matrix 

1 0 0 0 0 0 Z 

c= ; ; ; 

0 0 Z . . -f. . . . . 0 0 ; 

: I. (2.6) 

-$ -B, -B, .*- -z3m_1 

Let C” = (C/T)) for 1~ i, j < m, n >, 1, and C/f) belonging to L(H). It is 
easy to show that 

From (2.7) it follows that 

i 

m-1 

= max c I@!i,f’ll+ 2 ( - B,_,)C&+ 
lgj<m iSl /I i=l ill 

< (1+ c)llC”-‘11. 

(2.7) 
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Thus the operator series C n > ,,a,$” is convergent in L(H”). Moreover, from 
the expression (2.6) it follows that 

[w,,,;...;w,,,_,] = [w”_,,,;...;w,_,,,~,lc, 

and recurrently one gets 

w,,,;...;w,,,_,] = [o;...;o; z]cn, n >, 0. (2.8) 

From (2.8) and the convergence of the operator series C, ~ ea ,,C”, it follows 
that C n > ea ,W,(T) converges in L(H). Postmultiplying f(T) = En > aa .T” 
= 0; by T”-l, it follows that 

0 = c u~T”‘+“-~ = c u,W,(T) 
n>O n>O 

Thus, T satisfies the equation (2.2), with Cj given by (2.3). n 

The next result is a converse of Theorem 1 and shows under which 
conditions the solutions of the reduced equation of degree m - 1 are solutions 
of the initial equation of degree m. 

THEOREM 2. Let C be the operator defined by (2.6), suppose that 
jlBill < cfor 0 < i < m - 1, let 6 be a real number such that 0 < c < 6 and let 

f(Z)=&>:guG”, be an analytic function in the disc IzI < 1 + 6. Let the 
operator matrix 

be such that 

C m _ 1 is invertible (i> 



OPERATOR EQUATIONS 41 

and 

1 CO,d CLm-2 . . . LB,m-l 
I : 
1 c 0.1 c . . . 

1.1 : 1 L,, %l,m-l 
= [ : 1 C’ 

c,-‘,[ co >...a cm_,]. (ii) 

m-l,1 

Then any solution of the equution (2.2) is a solution of the equation (2.1). 

Proof. From the hypothesis imposed on f it is clear that S = f(C) is 
well defined. Let T be any solution of (2.2). From the hypothesis (i)-(ii) it 
follows that 

cj,,=cm-,,~c~J,cj> 
O< j<m-2, l<h<m-1. (2.9) 

Premultiplying the equation (2.2) by C,,,_ r,C;! r and substituting (2.9) it 
follows that 

m-l 
c C,,,Tj=O, O<h,<m-1. 

j=O 
(2.10) 

Considering f(C)C = Cf(C), equating the operators of the last row in the 
two members of this equality, one gets 

- C,_,B, = - Boco,,-1 - B,Co,,n_, - . . . - Bm_,Co,, - B,,_&o, 

co - C,_,B, = - BocI,m_I - B1Cl,m-2 - . . . 

- B,-,C,,, - B,-,C,, 

C m - 2 - C,_lB,_, = - Bocm_l,,_, - B1Cm_,,,,,_2 - . . . 

- LzCn,-I,I- JLlC”,F1. 

From this, with the agreement that C_ 1 = 0, 

m ~ 1 

B ,_,cj=c,_, Bj- C B*-h-lcj,h-cj-l (2.11) 
h=l 
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for 0 < j < m - 1. Premultiplying (2.2) by B,,_l, from (2.11) it follows that 

11, - 1 

c B,&Tj = 0, 
j=O 

m - 1 

C,,_,Bj- C Bm_h-lCj,b-Cj-l 
h=l 

m-1 
C,_lBj- C B,-h-lCj h-Cj-1 

h=l 

(2.12) 

From (2.10) one gets c,, h = - cyr%j, hTj, 1 < h < m - 1, and substituting 
these expressions into (2.12) yields 

that is 

m-1 n, - 1 

C,,_lBo+ c C,_rB,Tj- c CjplTj=O. (2.13) 
j=l j=l 

Postmultiplying (2.2) by T and solving, it follows that C,n_lTm = 
- Xy:l’Cj_ ,Tj, and from (2.13) results 

C,_,(B,+B,T+ ... +B,_,T”-‘+T”)=O. 

Premultiplying by CG?~, one concludes that T is a solution of (1.2). W 

REMARK 1. For the scalar case it is well known that an equation of the 
type (1.2) has at most m different solutions in the complex plane. If we 
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consider the equation (2.1) in L(H), H being a separable complex Hilbert 
space, this does not occur. In fact, any nontrivial projection P on H satisfies 
the seconddegree equation T 2 - T = 0. Moreover, notice that the coefficient 
operators of this equation are $ = I, B, = - I; thus from the expression 
(2.3), for any annihilating analytic function f, the reduced equation C,T + Co 
= 0 has coefficient operators which are scalar multiples of the identity 
operator, but a nontrivial projection cannot be a scalar multiple of the 
identity operator. An easy computation shows that taking f(z) = z2 - z, the 
coefficient operators are C, = C, = 0. So our method yields in this case a 
trivial equation, because the reduction is not possible. 

In the finite-dimensional case, an effective reduction of the equation (2.1) 
is available even when the operator C,,_ i is singular, by using generalized 
inverses [5, 271. For the infinite-dimensional case, the generalized inverse 
technique presents serious problems [3, 41, and in order to yield an effective 
reduction of the degree of the equation we need the invertibility of the 
operator C, _ i. 

Let Hi be a Hilbert space for i = 1,2, and let L be the operator matrix 
L = (Lij) where Ljj: Hi -+ Hi, for i, j = 1,2. If we assume that the operator 
L, is invertible, we can decompose the operator L in the following way: 

L= [; L12;G1][L11-L;L’1L21 ;2][L;L21 ;I. (2.14) 

Thus, as the first and the third factor in the decomposition (2.14) are 
invertible operators, the invertibility of L is equivalent to the invertibility of 
the operator K = L,, - L,2L&'L21. Notice that we denote L,,= Cmpl, L,, 
= [Co,..., C,,_21, and 

C O,m-1 *.* Cm-2,m-1 

S=f(C), L,,= ; 

[ C 0,l ... : I> C' m-2.1 G-l,d 
L,,= [ I : . 

C?A 

Then, hypotheses (i)-(ii) of Theorem 2 imply that S = f(C) is not invertible 
and K = 0; in particular, if H is a n-dimensional complex Hilbert space, the 
hypotheses (i) and (ii) of Theorem 2 are equivalent to the conditions that 
C m _ i is invertible and S has rank 12. 
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3. BOUNDARY-VALUE PROBLEMS AND CAUCHY PROBLEMS 

We start this section with a definition. If {xi; 0 < i < n - l} is a set of n 
different complex numbers, then the Vandermonde determinant 

1 1 . . . 1 

detV(x,,...,x”_,) = :’ 
xi ... m-r 
: 

n-1 
x0 

n-1 
Xl 

. . . 
xn”:: 

is nonzero, and thus the Vandermonde associated matrix is invertible. For the 
operator case this does not occur, and we are interested in finding sufficient 
conditions imposed on a set of operators X0, Xi,. . . , X,_ i, in order to ensure 
that the Vandermonde operator of {Xi; 0 < i < n - l}, defined by 

is invertible. The Vandermonde operator (3.1) has been studied by several 
authors in different contexts [lo, 221. Let us consider some examples. 

EXAMPLE 1. Let n = 2, and let 
L(H). Then it follows that 

X0, X, be two different operators in 

From this, V( X0, Xi) is invertible if and only if the operator X, - X0 is 
invertible. 

Let L = (Lij) for i, j = 1,2 be the operator matrix introduced in Remark 
1 above. If we suppose that L,, is invertible, we may decompose L in the 
following way: 
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From (3.2) it follows that L is invertible if and only if the operator 
K = L,,- LZlL$L12 is invertible, because the first and the third factor of 
the decomposition (3.2) are invertible operators. Moreover it is a straightfor- 
ward matter to show that in this case one has 

L_'= L,'(I + L,&'L,,L,') 

[ 

- L,,'L,,Ic' 

-K-IL L-1 
1 

(3.3) 
21 11 

K-1 * 

Let {Xi; 0 < i < 2} be a set of different operators in L(H) such that X, - X0 
is invertible. Then if we denote 

L,, = V(X,, X,)9 L,, = [x& x;] > L,,=Xz, and L,,= 

taking into account (3.2), it follows that V(X,, Xi, X2) is invertible if and 
only if the following operator is invertible: 

K=X;-[[X&X;] 
1+(x,-XJ'x, -(x,-x,)-' 1 I[ 1 -(x1-XJ'x, (x,-x,)-' x2 

=x,z-x,2-(x~-x~)(x1-xo)-1(xo-x2). (3.4) 

From (3.4) several different hypotheses can be imposed on X,, Xi, and X2 
in order to obtain the invertibility of V(X,, X,, X,). 

EXAMPLE 2. If X,X,=X,X,, X,X,=X,X,, X,-X,, X2- Xi, and 
X, - X, are invertible operators in L(H), then the Vandermonde operator 
V(X,, X,, X2) is invertible, and its inverse operator is given by (3.3) with 

L,, = v(x,, Xl), L,=X& L,,= [X,2, X,z], J512= : 
[ 1 2 ’ 

and K=(X,- X,)(X,- X,). 
The result is a consequence of (3.2), (3.3) and (3.4), because from 

(3.4) and the hypothesis it follows that K = (X2 + X,)(X, - X,) + 
(X0 + X,)(X, - x2> =(X2 - Xl>(X, - &I>. 
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Although the Vandermonde operator V(X,, X,, X,) may be invertible 
with V(X,, X,) singular (an example is given in [lo]), the following result 
gives a sufficient condition in order to ensure the invertibihty of the 
Vandermonde operator V(X,, . . . , X,_ 1), n > 3, under the hypothesis of 
invertibility of V(X,, . . . , X,-,). 

PROPOSITION 1. Consider a set of n different operators in L(H), {Xi; 

O<i<n-l}.ThenV(X,,...,X,_r) is invertible if the following conditions 

are satisfied: 

(9 V(X ~““> X,_,) i.s invertible. 

(ii) The matrix 

z 
X 

x,“;;- [x,“-‘,...,x,“~~][v(x,,...,x,_,)] -l I.1 n-l =K (3.5) 

X:1: 

is invertible. 

In this case, V(XO,..., X,_,)- ’ is g iven by (3.3) taking as K the operator 

given in (3.5), L,,=V(X, ,..., Xn_2), Ler= [X,“-‘,... , X:1;], L,=X,“I:, 

Proof. The result is an easy consequence of (3.2), (3.3) and the follow- 
ing decomposition of V(X,, . . . , X,_ 1): 
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Let us consider the Cauchy problem 

47 

Xc”) + A n_1X(n-1)+ ... +AA,X=O 

X(O) = co > X(l)(O) = Cl,..., x(n-lyo) = c,. (3.6) 

Considering Yr = X, Y, = X(l), . . . , Y,, = X(n-l), the problem (3.6) is equiv- 
alent to the Cauchy problem on L(H”) 

= 

0 Z 0 
0 0 Z 

-A, -.A, -A, 

co W) 

[:I l-1 

= . . 
C' n-1 r,io) 

. . . 0 

. . . 0 

. . . - A”_, 

Yl I(: i” I> 
(3.7) 

Thus, if we denote by A the operator matrix of coefficients of (3.7), the 
operator exp( A(t - s)) is a fundamental operator of (3.7) and the Cauchy 
problem has only solution [22]. 

Let us consider the algebraic operator equation 

X” + A,_lX”-l + . . . + A, = 0 (3.8) 

We say that a set {Xi; 0 < i < n - l} of n different solutions of (3.8) is a 
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fundamental set of solutions of (3.8) if the Vandermonde operator 

V(X O,“‘, X,_ r) defined by (3.1) is invertible. Note that an operator function 
of the type X(t)=exp(Xat)D,+ ... +exp(X,_,t)D,_,, for any set of 
operators Di, 0 < i < n - 1, is a solution of the differential equation arising in 
(3.6) if Xi satisfies (3.8) for 0 < i < n - 1. 

The following result proves that if {Xi; 0 < i < n - l} is a fundamental 
set of solutions of (3.8), then any solution of (3.6) may be expressed in this 
form. 

THEOREM 3. Let {Xi; 0 Q i Q n - l} be a fundamental set of solutions 
of the equation (3.8), and let X be a solution of the operator differential 
equation of (3.6). Then there are operators Do,. . . , D, _ 1 in L(H), uniquely 
determined by X, such that 

n-l 

X(t) = c exp(X,t) Di. 
i=O 

These operators are defined by the expression 

Do [I X(O) 

D’ 

= [V(X,,..., X,_,)] -l 
n-1 I 1 ; . 

x'"-"(o) 

(3.9) 

Proof. Given the solution X of the differential equation of (3.6), we use 
the uniqueness property for the Cauchy problem (3.6) taking C, = X(‘)(O), for 
O<i<n-1, and note that every expression Cr,-,‘exp( Xi t ) Di satisfies the 
corresponding differential equation for any operators D,, . . . , D, _ I belonging 
to Z,(H). Thus, in order to prove the result, we must find operators Di in 
L(H), for 0 < i < n - 1, such that 

D,+ D,+ ... + D,ml=C,, 

X,0, + X,D, + . . . + X,_,D,_, = C,, 

X,!-‘0,+X;-‘+ ... +X;I;D n-1= C n-1. (3.10) 
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Note that the system (3.10) obtained by successive differentiations of the 
operator function W(t) = Cy$exp( X,t ) Di, and imposing W(‘)(O) = Ci, for 
0 < i < 72 - 1, is equivalent to the system 

Del ccl 
V(X (),...,X_J f = f 

i D n-1 II 1 (3.11) 

c n-1 

From the hypothesis the system (3.11) has only one solution, given by (3.9). n 

REMARK 2. Note that an explicit expression for the operators D,, for 
0 < i < n - 1, is available when V( X,, . . . , X,_ r) is invertible, by application 
of Proposition 1 and Examples 1 and 2. Note also, that an equation of the 
type (3.8) can be unsolvable, as we pointed out in the introduction; thus for 
certain equations it is not possible to find a fundamental set of solutions. 
Moreover, given a solvable equation, a set of n different solutions, n being 
the degree of the equation, is not necessarily a fundamental set. For instance, 
let us consider the operator differential equation X@) - X(l) = 0. Then the 
algebraic equation X2 - X = 0, has the fundamental set of solutions (0, I }; 
but if we consider two different projections P, and Pz such that their ranges 
satisfy (0) s range( PI) g range( PJ # H, then the solution set { P,, P2), is not 
a fundamental set of solutions because of Example 1 and the fact that Pz - P, 
is not invertible in L(H). 

The following result is concerned with the study of the next boundary-value 
problem. 

LEMMA 1. Let {Xi; 0 < i < n - l} be a fundamental set of solutions of 
the equation (3.8), and let B, be an invertible operator such that BiXi = XiB,, 
for 0 G i G n - 1. Then the operator 

B,X, 8,X, . . . B,_,X,_, 

Box,“-’ B,X;-’ ... B,- IX:I: 

is invertible in L(H”). 
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Proof. The result is a direct consequence of the commutativity hypothe- 
sis and the following decomposition: 

B, 0 ... 0 

0 B, ... 0 z =v(x, )..., X”_,) 
n 

The following result is concerned with the boundary-value problem 

Xc”’ + A n_ ,X(“- ‘) + . . + + A,X = 0, 

X”‘( b.) - J@)(O) = E. t) O<iQn-1, bi > 0, (3.12) 

where Ei and Ai are operators in L(H) and bi are real numbers, for 
O<i<n-1. 

THEOREM 4. Let {Xi; 0 G i 6 n - 1) be a fundamental set of solutions 
of the equation (3.8) such that 

2kri 

“j+T’ O<j<n-1, 

where zj belongs to the spectrum a(Xj) for 0 d j 6 n - 1, and k is any 
integer. Then the boundary-value probkm (3.12) has only one solution given 
by X(t) = Cy,-o’exp(Xit)Di, where the operators Di, for 0 G i < n - 1, are 
determined by the expression 

exp(X,b,)-Z ... exp(X,-rb,-r) -Z 

[exp(X&,)-Z]X, ... [exp(X._,b,_,)-Z]X._, 

. .. [exp(X,_,b,_,) - I] Xzrt 

(3.14) 
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Proof. From Proposition 1, the general solution of the differential equa- 
tion arising in (3.12) is given by W(t) =Cy~Jexp(X~t)D,, for arbitrary 
operators Di in L(H), for 0 < i < n - 1. Thus in order to obtain a solution of 
the boundary-value problem (3.12), it is sufficient to find operators Di such 
that the boundary conditions of (3.12) are satisfied. Imposing these condi- 
tions on W(t), it follows that the operators Di must verify 

n-l n-l 

C exp(X,b,) X/D, - 1 X,!'Di = Ej, 0 Q j Q n - 1. (3.15) 
i=o i=O 

The system (3.15) coincides with (3.14). From the hypothesis (3.13) and the 
spectral mapping theorem [9], the operators exp(Xjbj) - Z for 0 < j d n - 1 
are invertible, and it is clear that Bj = exp(Xjbj) - Z satisfies BjX j = Xi Bj 
for 0 < j Q n - 1. From Lemma 1, the coefficient operator matrix of the 
system (3.14) is invertible in L(H”), and thus there are operators Di, for 
O<i<n--1, uniquely determined, such that X(t) = Cr:,iexp(Xit) Di is the 
only solution of the problem (3.12). H 

REMARK 3. In order to compute the operators Di, 0 = i = n - 1, it is 
necessary to compute the inverse of the coefficient operator matrix arising in 
the system (3.14). A method for obtaining it is suggested in (3.2) and (3.3). 
Thus an explicit expression for the operators Di in terms of the data and the 
fundamental set of solutions is available. 

In the following result we study a different boundary-value problem with 
only one boundary condition and where only one solution of the algebraic 
equation (3.8) is sufficient in order to obtain an explicit expression for the 
solutions. 

THEOREM 5. Let us consider the boundary-value problem 

Xc”) + A,_,X("-'1 + . . . + A,X = 0 

EX( b) - X(O)F = G, b > 0, (3.16) 

where E, F, and G are operators in L(H) and b is a positive real number. 
Let X, be a solution of (3.8). 

(i) Zf us( E exp( X,b)) f~ u,,(F) = 0, then a solution of the problem (3.16) 
is given by the operator finction 

X(t) = ew(X,t) Do, (3.17) 
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where DO is a solution of the algebraic equation 
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Eexp(X,b)U-UF=G. (3.18) 

(ii) Zf a( E exp( X,b)) n a(F) = 0, and F is an algebraic operator annihi- 
lated by the polynomial p(z) = CR,,,pkzk, then a solution of the problem 
(3.16) is given by (3.17), where DO is given by the expression 

5 P,[EexP(X,b)lk c c pj[Eexp(bX,)]j-lGFk-j 
k=O 

Proof. For any operator D in L(H), it is clear that X(t) = exp(X,t) D 
satisfies the differential equation arising in (3.16). This function X satisfies 
the boundary condition of (3.16) if and only if D satisfies the equation (3.18). 
From the hypothesis of (i) and Theorem 5 of [6], the equation (3.18) is 
solvable. Thus (i) is proved. 

(ii): Under the Rosenblum condition imposed in the hypothesis, the 
equation (3.18) has only one solution. This solution is given by (3.19): see 

[ll, P91. n 
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