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An aircraft that has been carefully optimised for a single flight condition will tend to perform poorly at 
other flight conditions. For aircraft such as long-haul airliners, this is not necessarily a problem, since 
the cruise condition so heavily dominates a typical mission. However, other aircraft such as UAVs, may 
be expected to perform well at a wide range of flight conditions. Morphing systems may be a solution 
to this problem, as they allow the aircraft to adapt its shape to produce optimum performance at each 
flight condition. Optimisation of morphing aerofoils is typically performed separately to the morphing 
mechanism design. In this work, an optimisation strategy is developed to account for a known possible 
morphing system within the aerodynamic optimisation process itself. This allows for the limitations 
of the system to be considered from the start of the design process. The Fishbone Active Camber 
(FishBAC) camber morphing system is chosen as the example mechanism, and it is shown that the 
FishBAC can achieve large improvements in performance over non-morphing aerofoils when multiple 
flight conditions are considered. Additionally, its performance is compared to an aerofoil whose shape 
can change arbitrarily (as if a perfect morphing mechanism can be designed), and it is shown that the 
FishBAC performs nearly as well, despite being a relatively simple mechanism.

© 2015 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In a broad sense, the camber of an aerofoil describes its asym-
metry, and is typically used to control its zero-lift angle of attack. 
Adding camber, for example, will tend to increase the amount of 
lift produced at a given angle of attack of the aerofoil, although 
this is of course limited by stall and separation. There may be 
changes in the lift to drag ratio also, though with such a broad 
definition of camber, it is difficult to state in a general way what 
this effect will be.

Almost all modern aircraft use discrete control surfaces, such 
as flaps, ailerons, or sometimes slats, to adjust the camber of the 
wing. Trailing edge devices are typically hinged surfaces occupy-
ing the rearmost 20–30% of the chord which rotate to change their 
angle, sometimes also translating in the chord-wise direction to 
increase chord as well as camber. The camber change, however, 
is almost always discrete in that after actuation of the control 
surface, there is no longer a smooth transition of camber in the 
chord-wise direction. This causes a similarly sudden change in the 
pressure distribution over the corner created at the hinge line, and 
is associated with a drag penalty and the possibility of separation.
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While this drag penalty may be deemed acceptable either be-
cause the control surface is only used occasionally (such as flaps 
on an airliner being used only at takeoff or landing), or because 
there is no suitable alternative, the penalty on surfaces that are in 
a continuously deflected shape can become significant over a long 
flight. An example of this would be an elevator or rudder device 
that is used to trim the vehicle, and is thus being employed for 
extended periods of time.

Camber-morphing aerofoils aim to achieve their camber change 
in a smooth way, to potentially reduce this drag penalty. This could 
be useful in normal aircraft applications, such as the above men-
tioned example of a trim-tab or tailplane control surface, but if 
the problem scope is extended to include rotorcraft, wind turbines, 
or any number of other applications where aerofoils are required 
to operate in a wide range of flight conditions, the potential ad-
vantages of a camber morphing aerofoil become more apparent. It 
is at these varied flight conditions that morphing aircraft may be 
able to provide a significant advantage over traditional aircraft. If 
the optimum aerodynamic shape is considerably different at the 
different flight conditions, then it makes sense to have an aircraft 
whose shape can change on the fly to react to changes in flight 
conditions, such that it always flies at optimum aerodynamic effi-
ciency.

The concept of camber morphing aerofoils is not a new one, 
and has been extensively studied by engineers over the last hun-
dred or so years; an early example is the 1920 design by Parker [1]. 
ss article under the CC BY-NC-ND license 
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Research activity in this area is even more intense now than it has 
been in the past, with the general trend being towards compliance 
rather than mechanism-driven camber changes. Ref. [2] provides a 
comprehensive review of past and current camber morphing con-
cepts.

In traditional aircraft design, aerodynamic and structural design 
are handled by different groups of engineers, and the design is 
iterated until an optimum is converged upon. However, morph-
ing aircraft design requires tighter integration of the aerodynamic 
and structural design to ensure that the aerodynamic design pro-
duced can be achieved by the morphing systems and structures 
available. This is a problem that does not appear to be commonly 
addressed. There are a large number of papers where an aerody-
namic analysis is first performed at the different flight conditions, 
and then a morphing mechanism is produced that can deform the 
structure to match those desired shapes. Refs. [3–7] are examples 
of such a design philosophy: the morphing is achieved through 
compliant mechanisms that can approximately match the target 
shapes. However, the accuracy to which the external shape can be 
matched clearly depends upon the complexity and number of de-
grees of freedom of the system. A very simple mechanism may 
only match the target shapes very approximately, whilst a more 
complex system will match the shapes more accurately, but come 
at the cost of increased weight (which may very rapidly offset the 
reduction in drag due to a higher lift-coefficient requirement) and 
complexity. For example, Gamboa et al. [8] used a complex actu-
ation system that can alter the thickness distribution around the 
chord line in flight, whilst also being able to change the chord 
length. Despite this, the authors showed that when the flexible 
skins were considered in an FSI problem, the shapes obtained were 
still only approximately those obtained from the aerodynamic op-
timisation.

In this work, rather than performing an aerodynamic optimi-
sation and then designing a morphing system to obtain the re-
quired shape-change, the morphing system is explicitly accounted 
for within the optimiser. This means that the final design that the 
optimiser produces will be directly related to the morphing system 
in question, effectively turning the problem from multiple single-
objective aerodynamic optimisations into a single multi-objective 
optimisation. The camber morphing system used as an example in 
this paper is the Fishbone Active Camber (FishBAC) system.

The FishBAC system [9–12] is a biologically inspired compli-
ant structure, comprised of a thin bending spine with stringers 
branching from it. A pretensioned elastomeric matrix composite 
skin surface provides the aerodynamic shape. The skin tension is 
used to increase the out-of-plane stiffness, whilst the reinforce-
ment is used to produce a near-zero Poisson’s ratio in the spanwise 
direction. Unlike many other camber morphing designs, the Fish-
BAC deformations are achieved purely through compliance of the 
structure, rather than mechanisms. A non-backdriveable antagonis-
tic tendon system is used to drive the deformations.

This work concerns only 2D (aerofoil) optimisation, but the 
shape-change and optimisation frameworks could be trivially ex-
tended to 3D with a suitable aerodynamic analysis tool.

2. Shape-change framework with radial basis functions

The optimisation tool needs to be able to change the shape of 
the aerofoil in two ways: firstly, it must be able to directly modify 
its external shape (regardless of camber morph) to obtain an opti-
mum thickness distribution along the chordline; secondly, it must 
be able to add the effect of the FishBAC system.

Typically in aerofoil optimisation, the aerofoil is parametrised 
in some fashion. A common approach is to use a series of splines 
with control points [8], or to express the aerofoil as a baseline 
shape plus a summation of shape functions [13]. Spline-based 
methods approximate the shape of the aerofoil, and the accuracy 
of the approximation is dependent upon the number of control 
points used. Higher degrees of accuracy then imply more degrees 
of freedom for the optimisation to operate on, which in turn will 
require longer computational time to reach a converged optimum. 
These commonly used methods may also not be compatible with 
an additional camber change, such as the one imposed by Fish-
BAC. However, Gamboa et al. [8] had good success using splines to 
model both an external shape, and a camber morph.

Radial basis function methods [14] are favoured by some au-
thors [15–18], especially for FSI simulations where they provide 
not only a framework to deform the aerodynamic and structural 
meshes, but a way to interpolate the forces and moments between 
them, as the two meshes will likely not be coincident. Addition-
ally, they extend trivially to three-dimensional problems. A similar 
approach is used in this work. Using the RBF method, the aero-
foil does not need to be parametrised, and is instead expressed 
as a cloud of points of arbitrary order and spatial resolution. This 
point cloud is referred to as the aerodynamic surface. A second 
series of points is used to control the shape of the aerodynamic 
surface, generally referred to in this work as shape-control points. 
Again, the order and spatial resolution of these points is arbitrary. 
Choosing a large number of these shape-control points increases 
the number of degrees of freedom in the optimisation, giving the 
opportunity to have more complex shape changes at the cost of 
increased computational effort. Finally, a third point cloud is used 
to represent the camber line of the aerofoil, and thus the effect of 
the morphing actuation system.

These three point clouds are coupled together via matrices, and 
changes in any one point cloud are interpolated onto the others 
through these matrices. One of the advantages of the RBF method 
is that whilst the initial calculation of the coupling matrices re-
quires some significant computational effort, once established, the 
matrices remain constant. If a point cloud changes, then its effect 
upon the other two point clouds can be calculated by a simple 
matrix multiplication of the change in the cloud by the relevant 
coupling matrix. Therefore, once the coupling matrices have been 
established, all shape changes can be computed with very lit-
tle computational cost. The optimisation framework is discussed 
in more detail in Section 3, but in general terms, the optimiser 
does not act on the aerodynamic surface cloud directly, but rather 
modifies the shape-control cloud, which then affects the aerody-
namic cloud directly via its coupling matrix. Camber changes occur 
through the camber cloud, which causes a change in the shape-
change cloud, which then in turn changes the external shape to 
reflect the change in camber.

There are a large number of basis functions to choose from. 
A radial basis function operates on the radius between points, and 
returns a scalar value. The returned value will vary between 1.0 
when the distance is 0, and 0 when the distance is equal to the 
support radius. This support radius is chosen by the user, and 
roughly speaking represents the radius of influence of one point 
on the other points. A support radius of just larger than the aero-
foil chord length is used in this paper, as this allows all points to 
affect all others. The Wendland C2 function (shown in Eq. (1)) is 
selected as the RBF, as it has been used by previous authors with 
good success [17].

φ(r) =
{

(1 − r)4(4r + 1) : 0 < r ≤ 1
0 : 1 < r

(1)

Rendall and Allen [17] give a thorough description of the RBF 
method for FSI problems, and so only a brief summary will be 
provided here. They commented on the use of polynomial terms 
in addition to the basis functions to exactly recover rotations and 
translations. For their work, they used the polynomial terms to 
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Fig. 1. Example of a NACA 0012 morphed to different cambers through the RBF method.
calculate the coupling between the structural mesh and the aero-
dynamic surface mesh, but did not employ these terms to calculate 
the coupling between the aerodynamic surface and the CFD vol-
ume mesh. This was to prevent the entire mesh from translating or 
rotating (essentially limiting the deformation in the volume mesh 
to be near to the wing). In this work, polynomial terms are used 
for all coupling matrices so that a pure rotation or translation of 
the surface-control points will produce the same rotation or trans-
lation in the camber line and surface, and vice versa.

If the surface-control points were to move by a distance of �xs
(where the subscript s indicates a surface-control point), then the 
change to the aerodynamic surface (subscript a) is given by:

�xa = Hsa�xs (2)

The coupling matrix, Hsa , is itself the product of two matrices:

Hsa = C−1
ss Asa (3)

Css and Asa are calculated as:

Css =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1 · · · 1
0 0 0 0 xs1 xs2 · · · xsN

0 0 0 0 ys1 ys2 · · · ysN

0 0 0 0 zs1 zs2 · · · zsN

1 xs1 ys1 zs1 φs1s1 φs1s2 · · · φs1sN
...

...
...

...
...

...
. . .

...

1 xsN ysN zsN φsN s1 φsN s2 · · · φsN sN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Asa =
⎡
⎢⎣

1 xa1 ya1 za1 φa1s1 φa1s2 · · · φa1sN

...
...

...
...

...
...

. . .
...

1 xaN yaN zaN φaN s1 φaN s2 · · · φaN sN

⎤
⎥⎦ (5)

Due to the zero-block at the upper left of the Css matrix, com-
putation of the inverse can be performed by extracting the blocks 
as follows:

Css =
[

0 P
PT M

]
(6)

C−1
ss =

[
MpPM−1

M−1 − M−1PT MpPM−1

]
(7)

where

Mp = (PM−1PT )−1 (8)

The process to find the other coupling matrices, Hsc (where the 
subscript c denotes the camber points) and Hcs can then be re-
peated in an identical fashion.

The choice of spatial resolution of the point clouds depends 
upon a number of factors. For the aerodynamic cloud, there must 
merely be sufficient resolution to produce a smooth shape for the 
aerodynamic meshing and analysis tool, and there is little penalty 
in using a large number of points, since the majority of the compu-
tational time is likely to be directed towards producing the aero-
dynamic solution, rather than calculating the deformed shape of 
the surface (which as discussed above is a simple matrix multipli-
cation). The same can be said for the camber point cloud, which 
merely needs to be sufficiently fine to accurately represent the 
camber-line of the aerofoil. Greater resolution of this cloud allows 
for more complex camber shapes, but since the FishBAC concept 
used in this paper produces a simple camber morph that is rep-
resented to good accuracy with a third order polynomial, only a 
low resolution of points is required. The polynomial used is shown 
in Eq. (9), where w is the deflection, and xs is the start location 
of the morph. Finally, for the shape-control cloud, it is advanta-
geous to use as few points as possible, as this will decrease the 
time required to find the optimum shape. Thus the user will tend 
to choose the minimum number of points that can still create the 
range of shapes that may yield optimum performance. Two differ-
ent densities of points are used and compared in this work, as it 
is not known a priori how many shape-control points are required.

w =
⎧⎨
⎩

0 : 0 < x ≤ xs

−wTE(x − xs)
3

(1 − xs)3
: xs < x

(9)

An example of a deformed NACA 0012 aerofoil, showing the 
effect of a camber change on the surface, is shown in Fig. 1.

3. Optimisation framework

Morphing aircraft usually weigh more than their non-morphing 
counterparts, on account of their increased mechanism and ac-
tuation weight, and also because of their inherent and necessary 
structural compliance in certain places. This will often lead to 
strengthening of the structure in other (generally less optimal) 
places. The vehicles thus make sense when there is a mission with 
multiple highly varied flight phases, where the optimal shapes are 
greatly different. For these types of missions, a non-morphing air-
craft will be highly compromised in design.

Two different flight conditions are chosen within this work, 
detailed in Section 4. Each has a target lift coefficient, and the ob-
jective is to reduce the drag at both flight conditions. Rather than 
a single optimal aerofoil, there exists a family of aerofoils, all of 
which may be considered optimum depending upon the relative 
importance of the two flight conditions. Whilst the optimisation 
process can go a long way towards automating the aerofoil design, 
ultimately the decision of which aerofoil is ‘best’ is still up to the 
aircraft designer, commonly referred to as the decision maker (DM) 
in optimisation problems.



248 J.H.S. Fincham, M.I. Friswell / Aerospace Science and Technology 43 (2015) 245–255
Fig. 2. Examples of non-morphing and morphing Pareto frontiers.
The usual way to represent this family of optimum designs is 
with a Pareto frontier. In the case chosen here, the two objectives 
are the drag coefficient at each of the flight conditions. An exam-
ple of what the Pareto frontier may look like is shown in Fig. 2. For 
morphing aerofoil design, previous authors (as mentioned in Sec-
tion 1) usually approach the problem by producing the Pareto fron-
tier, and then attempting to devise a morphing system to morph 
between two different optimum shapes on the Pareto frontier, e.g. 
the two designs highlighted at the extremities of Fig. 2(a). This 
morphing aerofoil will have greater performance at both condi-
tions than the ‘best compromise’ aerofoil marked on the figure.

This process, assuming that a perfect morphing system can be 
achieved, collapses the Pareto population down to a single line, 
as shown by the grey line in Fig. 2(b), yielding a single optimum 
individual from the original frontier of Pareto designs (the point 
on this line closest to the origin). In this work, the goal is to ex-
plicitly account for the morphing system within the optimisation 
itself, such that the final aerofoil produced by the optimiser will 
be achievable by the specified camber morphing system. Since the 
limitations of the morphing system are now accounted for, instead 
of collapsing a non-morphing frontier down to a single line (and 
thus ultimately a single optimum design), a new Pareto frontier 
is produced representing a new range of morphing designs. The 
frontier will generally be smaller than the non-morphing frontier, 
as the morphing system has effectively reduced the variation in 
off-design performance of the designs, yielding much closer perfor-
mance between all designs on the frontier. However, there will still 
be a frontier generated rather than a single optimum, and some 
designs will show better performance in Condition 1 than Condi-
tion 2, for example. Because of this, the problem is still treated 
as a multi-objective optimisation. An example of how this frontier 
might look is shown in Fig. 3.

Genetic algorithms (GA) are suited to solving multi-objective 
problems which may exhibit many local optima in design. A GA 
is used to produce the external shape optimisation of the aero-
foils in question. For each individual, when the performance is 
evaluated at the two flight conditions, a second layer of opti-
misation is utilised to determine the best camber morph at the 
flight condition in question. There are two flight conditions, but 
each is treated as a single objective optimisation for the morph 
optimiser. Additionally, the drag as a function of camber morph 
should be a smooth function, ideally exhibiting a single minimum. 
A gradient-based optimisation technique should work well for this 
sub-problem. However, the outer GA optimiser can produce highly 
unusual aerofoils, especially when morphed, and these will not 
always produce a converged aerodynamic solution. With the aero-
dynamic tool used in this paper, this problem was indeed found to 
Fig. 3. Accounting for the morphing system in the optimisation leads to a new, 
smaller, frontier.

be the case, and it was deemed simpler and more robust to sim-
ply sweep through camber morphs from a prescribed minimum 
to maximum, whilst discarding non-converged or spurious results. 
The minimum can then be selected, and refinement of the step-
size performed in the area of interest, if required. This is a simple 
technique which is likely not the most efficient, but is at least ro-
bust. It should be noted that changing camber also causes a change 
in lift coefficient at a given angle of attack, so the correct α value 
must be computed for each new morph to obtain the desired CL . 
The operations within one generation of the GA are summarised in 
Fig. 4.

A relatively standard GA technique is used within this paper. 
The only non-standard addition is a variable mutation rate to pro-
mote diversity within small populations. A linear function is used 
that scales the rate of mutation from a high level for small pop-
ulations, and a low baseline level when the breeding population 
reaches a certain size.

4. Software and problem definition

The GA and camber-morphing optimisation are written in 
Python, whilst the aerodynamic solver used is XFOIL, a 2D panel 
method with coupled boundary layer solver [19]. XFOIL has shown 
good performance when compared to RANS CFD for this specific 
type of problem [12], and can simulate the effects of transition, 
separation, and compressibility, all to varying degrees of approxi-
mation. Compared with RANS methods, the solution time is orders 
of magnitude lower. The optimisation algorithm is trivially paral-
lelisable (with close to linear speed-up), and so is run on 10 cores 
in this work.
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Fig. 4. Order of operations for performance evaluation for a given population.
Table 1
Flight conditions considered.

Reynolds number Mach CL

Condition 1 6.5E+05 0.100 0.800
Condition 2 2.5E+06 0.417 0.046

Two flight conditions are considered, which are summarised in 
Table 1. The low Reynolds number case can be considered a loiter 
case, whilst the high Reynolds number case is considered to be 
a dash or cruise case. These flight conditions may be typical of 
a military UAV, which would dash to an area, and then loiter to 
perform reconnaissance.

The optimisation problem as described in Section 3 is consid-
ered. A non-morphing case is also considered so that the advan-
tage of a morphing aerofoil can be compared to that of a compro-
mised non-morphing aerofoil.

Through the RBF method, each individual within the popula-
tion is expressed as a set of perturbations from a baseline shape. 
Choosing a good starting shape is important, as it will greatly 
speed up the convergence to the optimum set of solutions. Since 
a camber morph is allowed for in the problem described in Sec-
tion 3, it is expected that the external shape of the aerofoil may 
not need to be significantly cambered. Because of this expectation, 
the NACA 0012 aerofoil is selected as a baseline, as it is a symmet-
ric aerofoil that is known to have reasonably good performance at 
low Mach numbers.

The two optimisation processes (non-morphing and morphing) 
are both repeated for two sets of surface-control points. It was 
briefly mentioned in Section 2 that the number of surface-control 
points required is unknown before performing the optimisation to 
obtain the best set of optimum designs. In the first set, referred 
to as Set A, and shown in Fig. 5, six control points are used. The 
leading edge point is not allowed to move, whilst the trailing edge 
point is only allowed to move in the z (vertical) direction, to effec-
tively fix the chord-length of the aerofoil. It is worth noting here 
that for a real camber-morphing aerofoil, the chord length will 
shorten as the aerofoil is deflected. However, this shortening effect 
has previously been shown to be small, even for very large deflec-
tions, and can thus be ignored [20]. The other four control points 
(two on the upper surface, and two on the lower) all have two 
degrees of freedom, and so are free to translate in both x and z. 
The upstream of these two are bounded between 0 < x ≤ 0.5 and 
the downstream two points are bounded so that 0.5c < x ≤ 1.0. 
In terms of z bounds, the upper two points are bounded so that 
0 < z ≤ 0.1, whilst the lower two points are bounded between 
0 > z ≥ −0.1. Although these bounds effectively permit an aerofoil 
of zero thickness, the optimiser does not generally run up against 
this constraint, and will be shown to often choose a thinner aero-
foil than the NACA 0012 baseline. A very thin wing will have its 
own structural issues which are not considered in this work, but 
could be incorporated within the problem constraints. The total 
number of degrees of freedom for the outer shape is thus 9, ex-
cluding the ability to camber morph, which could be considered 
as an additional degree of freedom.
Fig. 5. The two sets of surface-control points used.

The first set of surface-control points discussed above allows 
for some control over the total thickness of the aerofoil, as well as 
the position of maximum thickness, with some control, albeit lim-
ited, over the aerofoil camber. The position of maximum thickness, 
however, is not explicitly controlled, and is inherently a function 
of the positions of the upstream and downstream surface-control 
points. The second set (B) of control points used includes an addi-
tional two points located at the position of maximum thickness of 
the baseline aerofoil, as shown in Fig. 5. This gives greater control 
over the position of maximum thickness, as well as the thick-
ness to chord ratio, whilst also independently allowing for concave 
shapes, such as those typically found in reflex or supercritical aero-
foils. It is not expected that a great degree of concavity will be 
required in this work to reach an optimum, but it is useful to con-
sider this possibility. If the problem suited reflex or supercritical 
aerofoils more (such as a requirement to carefully control pitch-
ing moment, or for transonic cases), surface-control points such as 
Set B may be required. The number of degrees of freedom for Set B 
is 13, excluding the camber morphing ability.

5. Results and discussion

Before optimisation of the morphing aerofoil was performed, 
the non-morphing case was computed. This serves as a useful 
comparison, not only because it will help to quantify the advan-
tage of morphing aerofoils vs. their non-morphing counterparts, 
but also because it is the method used to optimise aerofoils that 
can morph arbitrarily (and thus shadows the work of previous au-
thors).

Fig. 6 shows the final-generation populations and Pareto fronts 
from the optimisations. The green and red points show the two 
sets of non-morphing Pareto frontiers. The two sets of results share 
the same trends at end points of the frontier (representing the best 
aerofoils for a single condition only), and general shape and slope 
of the frontier. For the most part, the frontier is approximately a 
straight line, indicating a simple trade-off between performance in 
Condition 1 and Condition 2. The slope is an important parameter 
because it indicates the penalty in designing for off-design condi-
tions. There is a corner produced at good Condition 1 performance 
(upper left on the graph), but a relatively short arm of the frontier 
above this in both Set A and Set B results.

Set B shows consistently better performance across the frontier, 
however, which demonstrates that a greater performance can be 
achieved by allowing for a larger number of degrees of freedom 
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Fig. 6. Populations from the optimisations.
within the shape optimiser. However, one can expect that adding 
additional degrees of freedom beyond Set B will yield diminish-
ing returns at greater computational cost to reach an optimum set 
of designs. Genetic algorithms are usually run multiple times since 
they rely on a stochastic search of the design space. For these re-
sults, and especially those in Set B, populations from different runs 
were merged together in an attempt to provide a more even cov-
erage of the Pareto frontier. It is a common problem with GA that 
without using this merging technique, the frontier from any sin-
gle run is unlikely to be free of significant gaps. Unfortunately, by 
doing this, convergence is difficult to track, and so no convergence 
data is provided in this work. However, it can be safely said that 
Set B populations took significantly more computational effort to 
reach a satisfactory (both converged and without gaps) frontier.

Several aerofoils from the Pareto frontiers are compared in Ta-
ble 2. For each of Set A and Set B, three aerofoils are chosen 
representing: the best aerofoil in Condition 1; the best aerofoil in 
Condition 2; and the ‘best compromise’ aerofoil. In this case, the 
best compromise aerofoil is considered to be the one that is the 
minimum distance from the origin in the objective function space 
(Fig. 6), effectively placing equal importance on the two flight con-
ditions. As was discussed previously, Set A and Set B performance 
is very similar. Choosing the best aerofoils for Condition 1 shows 
that drag from the baseline aerofoil (NACA 0012) can be reduced 
by over 50% in Condition 1, at the expense of increased drag in 
Condition 2 (13% for Set A, and 17% for Set B). For the Condi-
tion 2 aerofoils, the opposite is true; performance in Condition 1 
has been traded off (approximately a 12% increase in drag for both 
sets) to achieve a significant reduction in drag in Condition 2 (36% 
for Set A, and 39% for Set B). The best compromise aerofoils are 
both reasonably close in performance to their Condition 1 coun-
terparts. However, the drag at Condition 2 is actually higher than 
that of the baseline aerofoil. Condition 2 has a very low target CL
to represent a high-speed dash condition. This favours symmetrical 
aerofoil designs, but in order to obtain performance in Condition 1, 
the best compromise aerofoils tend to be slightly cambered.

The generally poor performance of the baseline aerofoil can be 
attributed to its ‘peaky’ pressure distribution, in which the suction 
peak is located very near to the leading edge, and shows a large 
unfavourable gradient on the upper surface shortly thereafter. This 
causes a relatively early laminar–turbulent transition of the bound-
Table 2
Comparison of drag for various non-morphing aerofoils.

Best in Condition 1 Best in Condition 2 Best compromise

C D1 C D2 C D1 C D2 C D1 C D2

Set A 0.00559 0.00617 0.01386 0.00347 0.00574 0.00578
Set B 0.00544 0.00640 0.01335 0.00335 0.00565 0.00566

Baseline aerofoil (NACA 0012) C D1 C D2

0.12080 0.00545

Table 3
Transition points for various non-morphing aerofoils.

Condition 1 Condition 2

Upper xtr Lower xtr Upper xtr Lower xtr

Best in Condition 1
Set A 0.7616 1.000 0.8575 0.0360
Set B 0.7706 1.000 0.8716 0.0150

Best in Condition 2
Set A 0.0175 1.000 0.7928 0.7341
Set B 0.0196 0.9975 0.7642 0.7761

Best compromise
Set A 0.7163 1.000 0.8511 0.0961
Set B 0.7636 0.9995 0.8703 0.1093

Baseline aerofoil (NACA 0012)
0.0650 0.9959 0.4671 0.5438

ary layer, leading to higher drag. Since XFOIL has been set up to 
calculate transition, the optimiser is generally driving the designs 
towards natural laminar flow. This can be seen in Table 3, which 
shows the transition position (normalised by chord length) on the 
upper and lower surfaces of three aerofoils of interest from each 
set.

The table shows that the baseline aerofoil transitions very near 
to the leading edge on the upper side in Condition 1. The best 
aerofoils in Condition 1 from Set A and Set B show that this tran-
sition point has been moved back to a little further than 75% 
chord, which is associated with the significantly lower drag value, 
shown in Table 2. The best aerofoils in Condition 2, however, show 
even less laminar flow than the baseline at Condition 1. Unsur-
prisingly, they show much better transition performance at Con-



J.H.S. Fincham, M.I. Friswell / Aerospace Science and Technology 43 (2015) 245–255 251
Fig. 7. Non-morphing aerofoil performance (Set A on left, Set B on right), showing the best aerofoil in each flight condition, plus the best compromise between the two, in 
addition to a baseline NACA 0012. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
dition 2, where the baseline aerofoil transitions at around 45–55% 
on both upper and lower surface, whilst both Set A and B opti-
mised aerofoils transition at between 70 and 80%. Finally, the best 
compromise aerofoils show very similar transition performance to 
the best aerofoils in Condition 1 at Condition 1, but tend to lose 
their laminar flow over the lower surface in Condition 2, unlike 
the baseline aerofoil – this can be directly related to their increase 
in drag over the baseline aerofoil in Condition 2.
Fig. 7 shows the shape and pressure distribution of the three 
aerofoils from each set. Due to the relatively short length of the 
upper arm of the Pareto front in Fig. 6, the best compromise aero-
foil is similar in shape to the best aerofoil in Condition 1 for both 
sets of control points. This is reflected in the pressure distribution 
plots, which show that for both sets of aerofoils at Condition 1, the 
best aerofoil and the compromise aerofoil have reduced suction 
peaks from the baseline aerofoil (and the best aerofoil for Condi-
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Fig. 8. Relative performance of morphing vs. non-morphing aerofoils as a function of C D in flight conditions 1 and 2, for Set A.
tion 2). In Condition 2, both sets of aerofoils show that the best 
at Condition 1 now displays a large suction peak at the leading 
edge, whilst the compromise, best, and baseline aerofoils all show 
a reduction in the suction peak and correspondingly higher perfor-
mance.

The blue line represents the best aerofoil at Condition 2, and 
shows how the optimiser has attempted to flatten the pressure 
distribution to produce a very small amount of lift. The moment 
coefficient is not constrained or penalised within this work, but 
it is worth noting that some aerofoils show the upper and lower 
pressure lines crossing in Condition 2. This might suggest that a 
large moment coefficient is being generated in these cases, which 
might not be a favourable characteristic. To avoid this, one could 
incorporate a simple constraint within the optimiser (valid individ-
uals must have a moment coefficient smaller in magnitude than a 
certain value), or as an additional objective (minimise both drag 
and moment) at considerably increased computational cost.

Returning to Fig. 6, the improvement in performance for the 
FishBAC aerofoils over the non-morphing aerofoils can be clearly 
seen by the movement of the Pareto frontier towards the ori-
gin. As predicted in Section 3, the frontiers are smaller than the 
non-morphing frontiers, and exhibit a sharper corner, making the 
choice of ‘best compromise’ aerofoil a little clearer. Again, Set B 
has slightly out-performed Set A, although the general shape and 
end-points of the frontiers are very similar. The morphing aero-
foils appear to have reached a better optimum at Condition 2 than 
the non-morphing optimisation found, which indicates that the 
non-morphing optimisations have yet to successfully identify the 
end-point of the frontier.

The relative performance of the morphing aerofoils to the non-
morphing frontiers is shown for Set A in Fig. 8; Set B results are 
not shown, but display a similar trend. The left-hand subfigure 
shows the drag in Condition 2 for a given drag in Condition 1, 
whilst the right-hand subfigure shows the opposite. These figures 
essentially show the benefit of morphing in off-design conditions; 
for a given required performance in the main flight condition, they 
show the benefit in the off-design condition. From the left-hand 
figure, the morphing aerofoil is producing approximately 30–45% 
less drag in Condition 2 for any given desired performance in Con-
dition 1. From the right-hand subfigure, at a given performance 
in Condition 2, the morphing aerofoils perform 50% to 58% bet-
ter in Condition 1. The main difference between these two figures 
(which show two interpretations of the same data) is that if Con-
dition 1 is considered to be the main condition, as the design 
moves towards higher performance in this condition, the mor-
phing and non-morphing aerofoil performance grows closer. In 
Condition 2, however, the opposite is true; the morphing aero-
foil becomes ever better as greater performance in Condition 2 
is required. These figures begin to highlight some of the issues a 
designer may face when attempting to decide if morphing con-
cepts are worthwhile on his or her aircraft. There is a complex 
trade study required. Even though the morphing designs show at 
worst 30% less drag than non-morphing, there is of course an un-
modelled weight penalty associated with morphing systems that 
should be accounted for, so the true morphing vs. non-morphing 
comparison will be rather more complex than this.

Figs. 9 and 10 show the shapes of three aerofoils from the two 
morphing Pareto fronts (Set A and Set B). Firstly, there is less varia-
tion between the three designs within each set than has been seen 
previously. The ability to morph has reduced the size of the Pareto 
frontier, but has also reduced the variation in shapes required to 
produce it. The optimiser has generally found thin shapes – this 
is slightly more pronounced than for the non-morphing aerofoils, 
which tended to be thinner than the baseline design, but not to an 
extreme extent. It may be necessary for a designer to place stricter 
bounds on the minimum thickness than has been done here, to 
ensure that a suitable structure can be designed.

Both figures plot three shapes for each individual design: the 
shape at each of the two flight conditions, in addition to an un-
morphed shape. It is this unmorphed shape that the optimiser 
acts upon. Although not constrained to do so, it has generally cho-
sen reasonably symmetric designs, and then utilised the FishBAC 
mechanism to add the camber required for optimum performance 
in Condition 1, and to a lesser extent, Condition 2. To make clear 
the shape-change due to FishBAC, the plots show the geometric 
shapes of the aerofoils, rather than plotting them at their correct 
angle of attack.

The pressure distributions show the same trends as those seen 
for the non-morphing aerofoils. The optimiser has tried to reduce 
the peakiness of the pressure distribution to encourage laminar 
flow, whilst those aerofoils that perform well in Condition 2 have 
very flat pressure distributions. Set A and Set B show the same 
trends in shapes and pressure distributions.

Finally, it is worth considering the performance of the opti-
mised FishBAC aerofoil against that of an aerofoil with an arbitrary 
or perfect morphing mechanism. This aerofoil will have the perfor-
mance of the best non-morphing aerofoils for Conditions 1 and 2, 
and is compared to the FishBAC and the baseline aerofoil in Ta-
ble 4. Despite the relatively simple mechanism of the FishBAC, 
which can change camber only, careful tailoring of the thickness 
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Fig. 9. Morphing aerofoil performance (Set A), showing the best aerofoil in each flight condition, plus the best compromise between the two, in addition to a baseline NACA 
0012.

Fig. 10. Morphing aerofoil performance (Set B), showing the best aerofoil in each flight condition, plus the best compromise between the two, in addition to a baseline NACA 
0012.
distribution around the camber line means that the drag is only 
3.5% higher at Condition 1, and 2.4% higher at Condition 2 than the 
aerofoil which can change shape arbitrarily. Relative to the base-
line aerofoil, there is still a very large increase in performance, but 
without the necessity to design a complex (and possibly heavy) 
mechanism as would be the case for the arbitrarily morphing aero-
foil. Fig. 11 shows that the optimum FishBAC aerofoil is very close 
in shape to the optimum arbitrary morphing aerofoil.
Table 4
FishBAC performance vs. the baseline aerofoil and an arbitrary morphing aerofoil.

C D1 C D2

NACA 0012 0.12080 0.00545
Best compromise FishBAC 0.00563 0.00343
Arbitrary morphing aerofoil (based off Set B) 0.00544 0.00335
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Fig. 11. Optimum FishBAC shapes compared to the optimum shapes for an arbitrary morphing aerofoil.
6. Conclusions

A multi-objective optimisation method for morphing aerofoils 
has been designed with the intention to incorporate specific mor-
phing systems into the optimisation process, rather than design-
ing the morphing systems and aerofoils separately. The FishBAC 
camber-morphing concept was used as the morphing system. In 
order to perform the optimisation, two different optimisation tech-
niques were coupled together: the first to optimise the thickness 
distribution of the aerofoil, and the second to find the optimum 
amount of camber to add for each objective. A Pareto frontier 
of optimum designs was produced. This differs from the conven-
tional approach, where the aerofoils are optimised without consid-
eration of morphing capability, and then a morphing mechanism 
is designed to attempt to morph between the best shapes. This 
approach yields only a single optimum design, but can lead to 
highly complex morphing mechanisms required to match the tar-
get shapes.

Both the thickness distribution and camber morph were applied 
to the baseline design via radial basis function interpolation, which 
allows for smooth shape changes with any number of degrees of 
freedom, without the need to parametrise aerofoil shape via shape 
functions or splines. This method is computationally efficient, and 
easy to work with, since it acts upon unstructured clouds of points. 
Three clouds of points (aerodynamic surface, shape control, and 
camberline points) were coupled together within the RBF frame-
work through simple coupling matrices.

Two different sets of surface-control points have been studied, 
with differing degrees of freedom, since it is unknown a priori
how many are required to reach a satisfactory optimum design. 
Ultimately, it has been shown that there is a small benefit for in-
creasing the number of degrees of freedom, though it is expected 
that increasing this further will yield diminishing returns at the 
cost of greater computational expense.

Pareto frontiers for the two sets of points were generated for 
non-morphing aerofoils via a genetic algorithm. When the coupled 
optimiser was applied to the FishBAC, it was found that there was 
a very large improvement in performance obtained by having a 
morphing aerofoil. For matched performance in on-design condi-
tions, the drag reduction in off-design conditions varied from 30%
to almost 60%.

When compared to an aerofoil which can morph arbitrarily (an 
assumed perfect morphing system that can change to any shape), 
the FishBAC was found to have 2–4% more drag. However, consid-
ering the simplicity of the morphing mechanism, this is considered 
a very promising result; nearly the same performance as a perfect 
system was obtained simply through a single degree of freedom 
camber morph (FishBAC), plus careful tailoring of the thickness 
distribution.
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