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Acetoacetate (AA) and 2-methylacetoacetate (MAA) are accumulated in metabolic disorders such as diabetes
and isoleucinemia. Here we examine the mechanism of AA andMAA aerobic oxidation initiated by myoglobin
(Mb)/H2O2. We propose a chemiluminescent route involving a dioxetanone intermediate whose thermolysis
yields triplet α-dicarbonyl species (methylglyoxal and diacetyl). The observed ultraweak chemiluminescence
increased linearly on raising the concentration of either Mb (10–500 μM) or AA (10–100 mM). Oxygen uptake
studies revealed that MAA is almost a 100-fold more reactive than AA. EPR spin-trapping studies with MNP/
MAA revealed the intermediacy of anα-carbon-centered radical and acetyl radical. The latter radical, probably
derived from triplet diacetyl, is totally suppressed by sorbate, a well-known quencher of triplet carbonyls.
Furthermore, an EPR signal assignable to MNP-AA• adduct was observed and confirmed by isotope effects.
Oxygen consumption and α-dicarbonyl yield were shown to be dependent on AA or MAA concentrations (1–
50 mM) and on H2O2 or tert-butOOH added to the Mb-containing reaction mixtures. That ferrylMb is involved
in a peroxidase cycle acting on the substrates is suggested by the reaction pH profiles and immunospin-
trapping experiments. The generation of radicals and triplet dicarbonyl products by Mb/H2O2/β-ketoacids
may contribute to the adverse health effects of ketogenic unbalance.
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Introduction

Acetoacetate (AA) is a carbohydrate, protein, and lipid catabo-
lite that is normally found in human plasma at concentrations below
0.5 mM, but can reach 6–10 mM during ketosis, a characteristic of
diabetesmellitus types 1 and 2 [1], strenuous physical exercise [2], and
the Atkins diet [3]. Another β-ketoacid, 2-methylacetoacetate (MAA)
accumulates in isoleucinemic patients, whose 2-methylacetoacetyl-
CoA thiolase is defective [4], leading to massive urinary excretion of
MAA, triglylglycine, and 2-methyl-3-hydroxybutyrate [5]. Isoleucine-
mic patients are characterized by recurrent ketoacidosis, lethargy,
vomiting, and usually manifest mental retardation, convulsions, and
coma [6].

AA is reportedly toxic to cells in culture due to generation of
free radicals and activation of pro-oxidant signaling pathways. For
example, exposure of monocyte cultures to AA (2–3 mM) results in
higher secretion of tumor necrosis factor-α (TNF-α) and depletion
of reducedglutathione (GSH) [7,8], and inhigher interleukin-6 secretion
when in the presence of phorbol 12-myristate 13-acetate [9]. Mitogen-
activated protein kinase (MAPK) increases in AA (0.5–20 mM)-treated
primary rat hepatocyte cultures [10], and endothelial cells exposed to
AA (5–20 mM) display higher levels of malondialdehyde and undergo
growth inhibition [11]. Paradoxically, AA was also shown to exhibit
antioxidantproperties, for example, inneurons stressedbyglutamate or
hypoxia [12]. In addition, AA increases the contractile performance of
stunned myocardium by acting as a β-adrenergic inotropic sub-
stance due to its utilization as carbon fuel [13] and NAD(P)+-linked
substrate [14].
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Scheme 2. Proposed reaction mechanism for the chemiluminescent oxidation of
AA by Mb/H2O2.
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It has long been known that myoglobin catalyzes the chemi-
luminescent oxidation of AA to formate and triplet methylglyoxal,
probably via a dioxetane intermediate [15]. Myeloperoxidase [16]
and, more recently, peroxynitrite [17] were also shown to trigger
the oxidation of β-ketoacids, in the latter case demonstrated to
yield methylglyoxal and diacetyl from AA and MAA as substrates,
respectively (Scheme 1). Noteworthy in this regard is that clinical
studies with diabetic patients show a high correlation between
plasma levels of AA and methylglyoxal, but not glucose [18].

Reactive carbonyl species such asmethylglyoxal, anα-oxoaldehyde,
can aggregate proteins and generate protein and DNA adducts [19],
reportedly leading to activation of pro-oxidant signaling cascades [20],
cellular malfunction, and aging [21,22]. Various pathological states,
such as diabetes type I and II, cardiovascular diseases, inflammation, and
chronic renal failure are shown to be related to accumulation of meth-
ylglyoxal and carbonyl protein adducts, collectively named “advanced
glycated end products” (AGEs) [23]. The progression of diabetic
micro- and macrovascular manifestations such as retinopathy and
chronic kidney failure is shown in different animal models and hu-
mans to be correlated to indexes of AGEs such as carboxyethyl-ε-
amine-lysine (CML), pentosidine, glyoxal-derived lysine dimer, and
methylglyoxal-derived lysine dimer [24–27]. Recently, a receptor for
AGEs, RAGE, was characterized and described to be directly asso-
ciated with the initiation of microvascular diseases [28]. Soluble
AGEs, such as the well-characterized CML, induce receptor expres-
sion and lead to the activation of signaling cascades through MAPK
and NFκβ [29].

Here, we aim to clarify the mechanism of the Mb/peroxide-
catalyzed oxidation of AA and MAA through free radicals to meth-
ylglyoxal and diacetyl, respectively, in normally aerated buffer
(Scheme 2). This may shed light on the molecular bases of the clin-
ical complications of ketoacidosis and rhabdomyolysis. Acting as a
peroxidase in the presence of H2O2, the very unstable Compound I
form of Mb is stabilized by electron transfer from the hememoiety to
the Tyr103 residue, giving rise to Mb Compound II [30–32]. One or
more of these species is expected to oxidize AA or MAA yielding a
resonance-stabilized enoyl radical (AA• or MAA•) (Scheme 2). Reac-
tion of these radicals with dioxygen would form the corresponding
alkylperoxyl radicals that can propagate the chain reaction to the α-
hydroperoxides AAOOH or MAAOOH. The hydroperoxides might
then undergo cyclization to dioxetane intermediates followed by
their thermolysis to methylglyoxal or diacetyl products in the triplet
state. Both ground state [19,20] and excited state [33] α-dicarbonyl
products are very reactive toward proteins, DNA, and a wide spec-
trum of biomolecules. Myoglobin is therefore expected to be dam-
aged by theAAandMAA radical intermediates and dicarbonyl products.
In this regard, we emphasize here that the reaction of Mb with lipid
peroxides in kidneys of rats intramuscularly injected with glycerol
Scheme 1. Chemical structures of acetoacetate (AA) and 2-methylacetoacetate (MAA)
anions and of their oxidation products: methylglyoxal and diacetyl, respectively.
seems to contribute to the acute kidney failure caused by rhabdomy-
olysis [34].
Materials and methods

Reagents

Ethyl acetoacetate and ethyl 3-methylacetoacetate were from
Aldrich Co. (Saint Louis, MO, USA). Glyoxal (40%), methylglyoxal,
diacetyl, quinoxalinol, 2-methylquinoxaline, 2,3-dimethyquinoxaline,
xylenol orange, horse myoglobin (Mb), sorbic acid, sodium pyruvate,
glucose oxidase (from Aspergillus niger), o-phenylenediamine (OPD),
butanone, methylnitrosopropane (MNP), catalase (CAT), Cu,Zn-super-
oxide dismutase (SOD) (from bovine erythrocytes), and 70% tert-butyl
hydroperoxide were from Sigma Co. (St. Louis, MO, USA). Hydrogen
peroxide (30%), methanol, acetonitrile, phosphoric acid (85%), acetic
acid, HPLC grade solvents, and salts used for buffer preparation of
the highest purity available were from Merck Co. (Darmstadt,
Germany). DMPO was from Dojindo Co. (Kumamoto, Japan). All solu-
tions were prepared with water from MilliQ or PicoPure systems.
Phosphate buffers were treated with Chelex before use. Ethyl aceto-
acetate and ethyl 3-methylacetoacetate were distilled, aliquoted, and
kept at −20 °C until use. H2O2 solutions (ε240nm=0.0436 mM-1 cm-1

[35]) were prepared in water.
Sodium AA and sodium MAA were prepared daily by saponifi-

cation of ethyl acetoacetate or ethyl 3-methylacetoacetate 1.0 mol L-1

in water with 20% excess of NaOH for 1 h at 25 °C [36]. The solutions
were neutralized with HCl 2.0 mol L-1 and diluted to 0.25 mol L-1

before use.
Myoglobin preparation

Ferri- and ferromyoglobin were prepared by the addition of
potassium ferricyanide or sodium dithionite 10% (w/w), respectively,
to the protein solution (50 mg mL-1) in phosphate buffer 20 mM,
pH 7.0 equilibrated with N2 [37]. After 10 min the protein was de-
salted in a diethylammonium ethyl-cellulose column equilibrated
with phosphate buffer 20 mM, pH 7.0. The pooled protein fractionwas
chromatographed in a Sephadex G25 column, eluted with phosphate
buffer 20 mM, pH 7.4. The ferri- and ferromyoglobin concentra-
tions were determined (M630=2.1 mM-1 cm-1 and M580=14.4 mM-1

cm-1, respectively [30]), and aliquots were stored at −20 °C until use.
Ferrylmyoglobin was determined in reaction mixtures as described by
Giulivi and Cadenas [30] using a Varian, 50 BIO UV-VIS spectropho-
tometer. Unless otherwise stated, all experiments were performed
with ferrimyoglobin, abbreviatedhere asMb. The reactionswere carried
on under constant stirring in closed vials.

image of Scheme�2


Fig. 1. Peroxidase activity of myoglobin/H2O2 on AA and MAA substrates in normally
aerated 100 mM phosphate buffer, pH 7.4. (A) Ferrylmyoglobin (15 μM) decay
induced byMAA (2.0–50 mM). (B) Abatement of DMPO-Tyr103Mb yield promoted by
AA and MAA (0.50–50 mM). Ratio Mb:H2O2 is 1:1 in A and 1:10 in B. Experimental
conditions are described under Materials and methods. Data are representative of at
least 3 independent experiments.
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Light emission measurements

Ultraweak chemiluminescencewas detected in aHamamatsu,Model
TVC 767, photocounter coupled to a Thorn EMI, Model 9658 AM, pho-
tomultiplier kept at −8 °C by an EMI, Model FACT50, thermoelectric
refrigerator.

Myoglobin immunospin-trapping experiments

Samples were prepared in 100 mM phosphate buffer, pH 7.4,
containing 10 μM Mb, 50 mM DMPO, with (i) 1.0–50 mM AA or MAA
and 100 μMH2O2, or (ii) 10 mMAA orMAA and 1.0 μM–1.0 mMH2O2.
The reaction was stopped after 2 h by the addition of 250 U mL-1 CAT.
After 5 min at 25 °C, the samples were diluted to (i) ice-cold buffer
for denaturating gel electrophoresis (1.25 μg of protein per lane) or
(ii) binding buffer for ELISA (2.25 μg of protein per well in 200 mM
carbonate buffer, pH 9.4).

Denaturing gel eletrophoresis was run with supplies from a
NuPAGE system (Invitrogen Co., USA) according to themanufacturer's
instructions.

Western blotting and ELISA were conducted using standard
procedures. Rabbit primary antibody anti-DMPO nitrone adduct,
polyclonal, was used at 1:5000 for Western blot (2 h at 25 °C) and
ELISA (1 h at 37 °C). Anti-rabbit secondary antibody, alkaline
phosphatase conjugated (Santa Cruz), was used at 1:500 for ELISA
(1 h at 37 °C), and anti-rabbit, IRDye 800CW conjugated (Li-Cor), was
used at 1:10,000 for Western blot (1 h at 25 °C).

CDP-Star (Tropix) was used as an alkaline phosphatase chemilu-
minescent substrate for the ELISA development, and the membranes
were scanned using the 800 nm laser of a Li-Cor infrared scanner
Odyssey for the Western blot detection.

Oxygen consumption

Oxygen uptakewasmonitored using a Clark-type electrode system
from Hansatech (Oxygraph system). The O2 concentrations were
assumed to be 240 and 210 μM under normal atmosphere pressure at
25 and 37 °C, respectively [38].

EPR spin-trapping studies

EPR spectra were obtained in a Bruker EMX spectrometer with a
High Q cavity at 25 °C. Spectra were recorded 3 min after the addition
of H2O2. Spectra were acquired using the software WinEPR.
Instrumental conditions were as follows: microwave power 20 mW,
time constant 83 ms, sweep time 1 G s-1, modulation of amplitude
0.5 G and gain 2.0×104. The spin-trapping agent MNP was prepared
in an amber vial using acetonitrile as solvent [39]. The solution was
prepared 3 h before use. Samples deprived of β-ketoacids did not
display anyMNP adduct signal, possibly originated by oxidation of the
solvent by Mb and H2O2. The experimental hyperfine splitting
constants are reproducible within 5% error. Spectral simulations
were made using the free software WinSim, version 0.96.

Determination of α-dicarbonyls

α-Dicarbonyl products from AA or MAA/Mb/H2O2 were deriva-
tized with o-phenylenediamine and the resulting quinoxalines ana-
lyzed by HPLC as follows [40,41]. Before addition of OPD (0.038%, w/v,
prepared in water), the pH of samples obtained from the reaction
mixture in phosphate buffer 0.10 M, pH 7.4 was adjusted with acetic
acid (62 mM) to about 5.0. The samples were incubated with OPD for
1 h under continuous agitation at 60 °C, and filtered through 0.45-μm
PVDF-syringe filters (Millipore) to be injected into the HPLC. Twenty
microliters of OPD-treated solutions was injected into a Model 515
Waters apparatus equipped with two pumps, an automatic injector
(Model 717 Plus) and a photodiode array detector (Model 996), with
a C18 precolumn (0.5 cm×4.6 mm) and column (25 cm×4.6 mm),
particle size of 50 μm (Supelco).

Isocratic separation was employed using as a mobile phase 20 mM
acetate buffer, pH 4.2, added to acetonitrile 6:4 (V/V). Better resolution
was achieved in the gradientmode using 30 to 90%methanol in 20 mM
acetate buffer, pH 4.2, over 30 min, followed by the initial conditions
for 5 min.

Quinoxaline HPLC peaks were characterized by the retention times
and the absorption spectra of quinoxalines reported elsewhere [42].
Peaks were quantified using a standard curve (R2N0.995) obtained
with samples prepared of 5.0 μM–5 mM methylglyoxal or diacetyl
treated with OPD by the same procedure used for the reaction
mixtures. Chromatograms extracted from the data acquired by the
photodiode array detector at 314 nm were used for peak integration
and quantification.

Acetoacetate determination

Acetoacetate was determined according to Walker [43], modified
as follows. The diazonium salt of p-nitroaniline (0.04%, w/v) in 70 mM
acetate buffer, pH 5.5, reacts with AA yielding an orange adduct that
was measured at 450 nm for 5 min. The curved slope was used to
calculate the concentration of AA in the reaction sample. The high
assay sensitivity allowed calculating AA consumption as the
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Fig. 2. Aerobic oxidation of AA catalyzed by Mb on adding H2O2 accompanied by
O2 (●), H2O2 (■), and AA (▲) consumption. Reactions were prepared in 100 mM
phosphate buffer, pH 7.4. Other experimental conditions are described under
Materials and methods. Data are representative of three independent experiments.
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difference between AA concentration in aliquots prior to and after
H2O2 addition to the reaction mixtures.

MAA, glyoxal, diacetyl, methylglyoxal, sodium pyruvate, and sodium
oxalate (5 mMeach) did not result in any absorbance increase at 450 nm.
Fig. 3. EPR spin-trapping experiments with MNP, AA, and Mb in the presence of H2O2. The
(250 μM) and AA (50 mM), MNP 50 mM (A), and its doubly integrated area responds linearl
Materials and methods.
H2O2 determination

Hydrogen peroxide was determined every 2 min by the ferrous
oxidation of xylenol orange (FOX1) method [44]. Notably, iron ions
liberated by Mb in the presence of hydroperoxides could result in
overestimation of the FOX assay [45]; however, addition of CAT
(10 U mL-1) 5 min prior to the H2O2 assay completely abolishes the
FOX signal.
Results

Spectrophotometric and immunospin-trapping studies

To demonstrate that MAA and AA behave as substrates for
ferrylMb acting as a peroxidase, heme hyperoxidation and Tyr 103
primary protein radical formation were monitored by a spectropho-
tometric assay of ferrylMb and an immunospin-trapping experiment
(Fig. 1). Both β-ketoacids—AA (2.0–50 mM), used in ferrylMb eval-
uation, and AA or MAA (0.50–50 mM), used in the immunospin-
trapping experiments—were shown to be electron donors in phos-
phate buffer, pH 7.4, to Mb intermediates generated on addition of
H2O2. Myoglobin and H2O2 were tested at ratios of 1:1 for measuring
ferrylMb content and 1:10 in the immunospin-trapping experiments.
The immunospin-trapping studies showed that MAA is roughly 5-fold
more effective than AA in inhibiting the antibody binding, revealing a
higher reactivity for MAA. This difference is predicted by the lower
oxidation potential of the enol forms of α-alkylated β-diketones and
β-ketoesters as compared to their dealkylated homologues [46].
6-line signal of the putative MNP-AA• adduct is detected in the presence of both Mb
y to the reagent concentrations (B and C). Experimental conditions are described under
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Reaction kinetics as a function of AA concentration

Acetoacetate oxidation byMb/H2O2 was accompanied by H2O2, O2,
and AA consumption (Fig. 2). Consumption of H2O2 by Mb and up-
take of O2 by AA were roughly correlated and exhibited a biphasical
increase as a function of AA concentration. The exponential con-
sumption of both O2 and H2O2 occurred at low AA concentrations, but
was followed by a slower near linear consumption above 10 mM.

EPR spin-trapping studies

In EPR spin trapping with MNP, the Mb/H2O2/AA reaction mixtures
displayed a 6-line spectrum with coupling constants aN=1.46 mT and
aβ
H=0.33 mT assignable to an MNP-secondary carbon-centered radical

adduct (Fig. 3A). The doubly integrated area of the signal increased on
raising the concentration of both Mb (50–500 μM) and AA (5–50mM)
(Figs. 3B and C). The hyperfine coupling constants in the EPR spectral
simulation of this MNP-radical adduct are similar to those found by
Fig. 4. EPR spectra of MNP-AA● radical adduct assigned to the AA secondary carbon-centered
5 mM H2O2 in aerated 100 mM phosphate buffer, pH 7.4, at 25 °C. Other experimental cond
Mottley and Robinson [47] for the acetylacetone oxidation byHRP/H2O2

(aN=1.46 mT and aβ
H=0.34 mT) ascribed to -•CH-, vicinal to the two

carbonyl electron-withdrawing groups. Superoxide anion radical,
eventually generated by electron transfer from AA enoyl radical inter-
mediate to O2 as suggested by Jain et al. [11], is not involved in the
chain reaction, as indicated by the absence of an SOD (4000 U mL-1)
effect (data not shown). Indeed, considerable evidence reveals that
monoenoyl radicals like AA• tend to insert molecular oxygen to form an
alkylperoxyl radical intermediate (AAOO•) and ultimately a dioxetane
by cyclization, whereas dienoyl radicals and semiquinones are prone
to electron transfer to O2 yielding O2

• - radical and an α-dicarbonyl
product or a quinone, respectively [48].

Using 13C-enriched AA, along with spectral simulations, it was
possible to unequivocally identify the 6-line MNP adduct signal as
derived from the AA radical centered on C2 (Fig. 4).

When MAA was investigated as the substrate for the Mb/H2O2

system, two triplet MNP radical adducts were detected by EPR. The
signal with aN=0.83 mT can be ascribed to the MNP adduct with
radical. Reaction mixture: 100 mMMNP, and 50 mM 13C-enriched AA, 500 μMMb and
itions were as shown under Materials and methods.

image of Fig.�4
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acetyl radical, and the other (aN=1.54 mT) to one derived from a
tertiary carbon-centered radical (Fig. 5).With regard to the detection of
an acetyl radical MNP adduct in the reaction mixture, it is worth noting
similar previous work carried out with 3-methylacetoacetone/HRP
[46] and ethyl 2-methylacetoacetate/peroxynitrite [17]. Therein,
the intermediacy of a putative MNP adduct with an acetyl radical
derived from α-cleavage of triplet diacetyl formed by the thermo-
lysis of a hypothetical dioxetane intermediate was demonstrated as
well.
Fig. 6. Effect of H2O2 concentration produced by the glucose/GOX system on the yields
of methylglyoxal and diacetyl produced by AA and MAA, respectively, on treatment
with Mb. Reaction mixture: 5.0 mM glucose, 50 mM AA or MAA, and 50 μM Mb in
Product analysis associated with ferrylmyoglobin intermediacy

Two experimental protocols were used to demonstrate and
quantify the generation of methylglyoxal and diacetyl by AA and
MAA oxidation, respectively, mediated by the peroxidase activity
of Mb. First, H2O2 was produced continuously by glucose (5 mM)/
glucose oxidase (GOX) (1–500 mUmL-1) added to the buffer. Diacetyl
and methylglyoxal were found in the spent reaction mixtures of
MAA and AA, respectively, in a dose-dependent fashion. At lower GOX
concentrations (1–10 mU mL-1), the yield of α-dicarbonyl products
increases linearly on raising the β-ketoacid concentration (Fig. 6).
Furthermore, under identical experimental conditions, the yield of
diacetyl product was about 9-fold that of methylglyoxal, thereby
confirming the higher reactivity of MAA due to the electronic effect of
the α-methyl substituent. Accordingly, the rate of oxygen uptake by
the MAA/Mb system was about about 9 times faster than with AA
when H2O2 generated by glucose/GOX was replaced by a bolus addi-
tion of tert-butOOH (not shown). Because methylglyoxal can strongly
bind to proteins, its concentration in the Mb-containing reaction
mixture is probably underestimated.

A second protocol for determining products consisted of the
addition of H2O2 at various concentrations to the Mb/β-ketoacid-
containing buffer (Fig. 7). Maximal amounts of the α-dicarbonyl
product were found with 1:25 Mb:H2O2. Under these conditions, the
diacetyl yield from MAA oxidation was almost 60 times higher
than that of methylglyoxal obtained from AA. Interestingly, lower
yields of α-dicarbonyl products were found when the highest
Fig. 5. EPR spin-trapping experiments using MAA as substrate for the peroxidase-acting
Mb/H2O2 system. Experimental conditions: MNP (100 mM), MAA (50 mM), and Mb
(250 μM) in the presence of H2O2 (1:10, 2.5 mM). Other experimental details were as
shown under Materials and methods.

aerated 100 mM phosphate buffer, pH 7.4, stirred for 2 h at 25 °C in closed vials.
concentrations of H2O2 were used (1:50 and 1:100). In agreement,
the amplitude of the MNP spin-trapping signal of AA was suppressed
in a dose-dependent manner when catalase (0.16–400 U mL-1) was
added (data not shown). Taken together, these results indicate that
the substrates undergo oxidation mediated by the redox cycling of
holoMb, and not from iron or heme released by the protein.

To confirm participation of ferrylMb as the primary MAA oxidant,
the pH profiles (pH 5.8 – 8.0) of oxygen consumption (Fig. 8A) and
diacetyl production (Fig. 8B) were traced using MAA and Mb/H2O2

1:1. Ferrylmyoglobin is known to be more reactive at lower pH
[34,49]. Both parameters were shown to decrease exponentially on
raising the pH and to be strongly correlated. These findings sup-
port the involvement of ferrylMb in electron abstraction from MAA
yielding the MAA• radical, thereby initiating the MAAOO•-propagated
oxidation of the substrate by dissolved molecular oxygen and ulti-
mately producing diacetyl.

In order to further demonstrate a direct connection between
ferrylMb and one-electron oxidation of AA and MAA, the double
integrated EPR peak areas for AA•, MAA•, and acetyl adducts with
MNP were studied as a function of the ratio Mb:H2O2 (Fig. 9). The
highest radical concentrations were found for a ratio of Mb:H2O2

1:25. Higher peroxide concentrations led to a decrease in the signal
area for the radical adducts, probably due to Mb oxidative degrada-
tion. Altogether, the areas of the radical adducts, pH profile data,
and α-dicarbonyl yields are consistent with a catalytic peroxidase
activity of Mb.
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Fig. 8. pH profile of oxygen consumption and diacetyl production by MAA treated with
Mb/H2O2. Oxygen consumption (A) and diacetyl yield (B) were determined for MAA
(20 mM) treated with Mb (50 μM) in the presence of H2O2 (500 μM) in phosphate
buffer at various pHs. Panel C depicts the correlation between the extent of oxygen
uptake and diacetyl production. Other experimental conditions are described under
Materials and methods.

Fig. 7. Yield of methylglyoxal (A) and diacetyl (B) treated with Mb/H2O2. Reaction
mixture: AA (A, 50 mM) and MAA (B, 50 mM) with Mb (A, 50 μM; and B, 250 μM)
treated with H2O2 at various ratios of Mb:H2O2, in 100 mM phosphate buffer, pH 7.4, at
37 °C. Data are representative of three independent experiments.
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Chemiluminescence studies

To investigate whether the oxidation of β-ketoacids indeed pro-
ceeds via a dioxetane intermediate, whose thermal cleavage yields
electronically excited triplet products [33], the AA or MAA/Mb/H2O2-
containing reaction mixtures were examined in a highly sensitive
photocounter for ultraweak chemiluminescence emission (Fig. 10).
Alkyl-substituted dioxetanes and dioxetanones like the hypothetical
AA and MAA-derived peroxide intermediates have long been known
to cleave into two carbonyl products, one of them predominantly in
the triplet, phosphorescent state [33,50,51,58]. Triplet carbonyls are
efficiently quenched by dissolved (triplet) molecular oxygen and
thermally deactivated by solvent molecules, hence the detection of
ultraweak direct chemiluminescence.

Although very weak, the intensity of light emission detected in
the photocounter from the AA/Mb/H2O2 system was strongly cor-
related to the concentration of AA or Mb added in the reaction mix-
ture (Figs. 10A–C). Because (i)methylglyoxal is the product expected
from the homolysis of the hypothetical 1,2-dioxetanone derived
from AA cleavage and (ii) the reaction is chemiluminescent, it is
conceivable that the reaction emitter is indeed triplet methylgly-
oxal. If this actually happens, then triplet methylglyoxal should un-
dergo α-cleavage (Norrish Type I reaction) yielding acetyl radical, as
noted above in the EPR spin-trapping studies. Suppression of the
MNP-acetyl radical adduct signal on addition of sorbate, a diffusional
triplet carbonyl quencher [52], was accordingly observedwhen using
MAA as a substrate for Mb/H2O2 (Fig. 10D). The EPR signal attributed
to the MNP-acetyl radical adduct was affected, whereas that derived
from the MAA• intermediate was not. Furthermore, addition of sor-
bate did not interfere with ferrylMb generation or the ferrylMb re-
action with MAA (data not shown).

Discussion

Acetoacetate and MAA are two β-ketoacid catabolites long known
to be elevated at millimolar concentrations in the plasma of in-
dividuals exhibiting ketoacidoses resulting from such conditions as
diabetes, fasting, and protein- and fat-rich diets. They are shown here
to undergo chemiluminescent myoglobin/H2O2-catalyzed oxidation
in normally aerated phosphate buffer, pH 7.4, yielding methylglyoxal

image of Fig.�8
image of Fig.�7


Fig. 9. EPR spin-trapping studies of the effect of the Mb:H2O2 concentration ratio on the oxidation of AA and MAA. Spectra were traced for reaction mixtures containing 25 mMMNP
and (A) AA or (B) MAA (50 mM) treated with increasing ratios of Mb (25 μM):H2O2. (C and D) Dependence of the doubly integrated areas for the peaks attributed to AA● or MAA●

(plus MNP-acetyl radical adduct in the latter case), respectively, on the Mb:H2O2 ratio. See Figs. 3–5 for EPR radical signal assignments.
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and diacetyl, respectively, as final products. Evidence is provided
here in favor of a reaction mechanism (Scheme 2) by the following
consecutive steps: (i) hydrogen abstraction from the enolate form
of AA or MAA by ferrylMb yielding a resonance-stabilized enoyl
radical at the substrate C2; (ii) oxygen addition to the substrate
radical intermediate to form the respective α-peroxyl AAOO• and
MAAOO• radicals; (iii) reaction propagation by the alkylperoxyl
radicals yielding AA or MAA α-hydroperoxides until dissolved oxy-
gen depletion; (iv) α-hydroperoxide cyclization to the corresponding
dioxetanones, whose thermal cleavage produces methylglyoxal or
diacetyl, respectively, in the electronically excited triplet state; and
(v) triplet carbonyl decay by light emission, deactivation by solvent,
and quenching by oxygen to their ground state or Norrish cleavage
to acetyl radicals are competing processes that destroy the excited
product.

β-Dicarbonyl compounds and β-ketoacids and esters have long
been known to exist in aqueous medium in a phosphate-catalyzed
dynamic equilibrium with their enolic forms, stabilized by an intra-
molecular hydrogen bond (Scheme 1). Consequently, the enolization
constants of β-dicarbonyls (e.g., ethyl acetoacetate, Ke=0.053; acet-
oacetone, Ke=0.34) [53] are much higher than those of monoketones
(e.g., acetone, Ke=6.0×10-9) [54], or monoaldehydes (e.g., isobutanal,
Ke=1.7×10-4) [55]. In addition, α-alkylation of enols and phenols
renders them more prone to electron donation. Thus, the oxidation
potential of pentan-2-one, pentan-2,4-dione (acetoacetone), and 3-
methylpentan-2,4-dione (3-methylacetoacetone) decreases in this
same order [56]. Therefore, the ease of both enolization and one-
electron oxidation is expected to contribute to the reactivity of carbonyl
compounds with oxygen initiated by peroxidase-acting hemeproteins
in the presence of peroxides. Accordingly, isobutanal [57] and 3-
methylacetoacetone [58] were unequivocally shown to yield acetone
and diacetyl, respectively, in the triplet state, when treated in aerated
phosphate buffer with HRP (horseradish peroxidase) in the presence
of traces of peroxides. Formation of these products was supported by
the complete matching of the chemiluminescence spectrum of the
isobutanal or 3-methylacetoacetone reactionwith the phosphorescence
spectra of acetone and diacetyl, respectively. Triplet carbonyls are
potentially biological toxicants due to their chemical reactivity, similar
to that of alkoxyl radicals [33]: hydrogen abstraction from polyunsat-
urated fatty acids, isomerization, cleavage to radicals, and addition to
double bonds, for example. In addition, triplet carbonyls can transfer
electronic energy to ground state oxygen yielding the very highly
electrophilic excited O2 (1Δg) [59].

Here, methylglyoxal-generating and oxygen-consuming AA was
also shown to be chemiluminescent in the presence of Mb/H2O2

(Figs. 2, 7, and 10), which may attest to the intermediacy of a
dioxetane-type intermediate. That ferrylMb acts as an electron accep-
tor from AA and MAA is demonstrated by DMPO immunospin

image of Fig.�9


Fig. 10. Ultraweak chemiluminescence elicited by the AA/Mb/H2O2 system. (A) Temporal course of light emission from Mb (500 μM) and H2O2 1:1 (500 μM) with added AA
(100 mM). (B and C) Dose-dependent light intensity vs AA and Mb concentrations, respectively. (D) Quenching effect of sorbate (50 mM) on the MNP-acetyl radical adduct EPR
signal observed with Mb (250 μM) added to H2O2 1:100 (25 mM) and MAA (50 mM) in the presence of MNP (50 mM). Other experimental conditions were as described under
Materials and methods.
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trapping (Fig. 1B) and the importance of the ratio of Mb:H2O2 in
product yields and radical intermediate production (Figs. 8 and 9).
The intermediacy of resulting AA-secondary carbon radical (Figs. 3
and 4 and Table 1) and the MAA-tertiary radical (Fig. 5) centered at
carbon 2 was obtained by EPR spin trapping with MNP, combined
with isotopic labeling in the case of AA (Fig. 4). The EPR spin-trapping
studies revealed the presence of the distinctive acetyl radical MNP
adduct (Figs. 5 and 9) in the reactionmixture containingMAA, probably
formed by Norrish cleavage of triplet diacetyl formed from the di-
oxetanone intermediate of the substrate oxidation. Accordingly, the
signal of the MNP-acetyl radical adduct was quenched on addition
Table 1
Hyperfine coupling constants (mT) of the MNP radical adducts obtained from AA and
MAA oxidized by the Mb/H2O2 system in aerated 100 mM phosphate buffer, pH 7.4, at
25 °C.

aN aβ
H aα

13C aβ
13C aγ

13C

O-CCC

OO H

H3C
βγ

β

1.458 0.334 0.68 1.284 0.076

O-CCC

OO

H3C

CH3

O-CCC

OO

H3C

CH3

1.58

C

O

H3C
0.83
of sorbic acid (Fig. 10), a well-known conjugated diene that acts as a
collisional quencher of triplet ketones [52].

Product analysis and kinetics data showed that MAA is about one
order of magnitude more reactive than AA for oxidation by the Mb/
H2O2 system (Figs. 6 and 7), as predicted by the effect of α-
methylation that makes MAA easier to be oxidized [17,46,56]. Re-
placement of H2O2 by tert-butOOH to produce ferrylMb corroborated
these data (not shown).

The role of ferrylMb as initiator of the oxygen-consuming
reaction of AA and MAA was shown here by the spectrophotometric
detection of heme hyperoxidation and by an immunospin-trapping
experiment which detects the primary Mb Tyr 103 radical (Fig. 1).
Accordingly, the pH profiles of oxygen consumption and diacetyl
production by the Mb/H2O2-catalyzed oxidation of MAA revealed
that the reaction rates are higher at lower pH, as expected for ferrylMb
acting as the primary one-electron oxidant of the β-ketoacid (Fig. 8).
When higher amounts of H2O2 were added (Mb:H2O2N1:25) (Figs. 7
and 9), the yield of products and of substrate radicals decreased
significantly, which was attributed to the observed bleaching and
destruction of the hemeprotein (data not shown).

Biological implications

The findings of the present work alert us to the potential adverse
effects of peroxidase-acting Mb in ketogenesis. For example, keto-
genesis is largely accepted as a risk factor for rhabdomyolysis due to
osmotic imbalance [60–62], but there may also be a contribution
from free radicals, reactive α-dicarbonyl products, and excited states
generated by Mb-catalyzed peroxidation of β-ketoacids such as AA
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andMAA. Carbon-centered radicals and tripletmethylglyoxal produced
by Mb/peroxide acting as a peroxidase on AA have the potential to
modify a large spectrumof biomolecules. Furthermore,methylglyoxal is
an α-oxoaldehyde that is extremely reactive with amino groups of
proteins by virtue of the electron-withdrawing effect from
a neighboring carbonyl group, leading to advanced glycated end
products, such as ε-carboxyethyl lysine (CEL) and methylglyoxal-
derived lysine dimer (MOLD) [63]. These carbonyl adducts accumulate
and are proposed as biomarkers in age-related diseases such as diabetes
[64], uremia [65], Alzheimer's [66], atherosclerosis [67], and aging [68].
It is tempting topropose that theMb-catalyzed oxidation of AA operates
in ketoacidotic patients, and is thus responsible for the higher
methylglyoxal levels detected in plasma from these patients [18].

Receptors for AGEs, named RAGEs, have been shown to be in-
volved in the development of macro and microvascular diseases
associated with diabetes and aging [21,28,29], where α-dicarbonyl
catabolite Schiff reactions with protein amino acid residues have been
implicated. In conclusion, we hypothesize here that Mb and other
peroxidase-acting hemeproteins induce the aerobic oxidation of
β-ketoacids accumulated in ketoacidosis, yielding reactive radi-
cals, α-dicarbonyls, and excited triplet species which spark adverse
biological responses.
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