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Phosphoglucomutase 3 (PGM3) is an enzyme converting N-acetyl-glucosamine-6-phosphate to N-acetyl-
glucosamine-1-phosphate, a precursor important for glycosylation. Mutations in the PGM3 gene have recently
been identified as the cause of novel primary immunodeficiencywith a hyper-IgE like syndrome. Herewe report
the occurrence of a homozygous mutation in the PGM3 gene in a family with immunodeficient children, de-
scribed already in 1976. DNA from two of the immunodeficient siblings was sequenced and shown to encode
the same homozygous missense mutation, causing a destabilized protein with reduced enzymatic capacity. Af-
fected individualswere highly prone to infections, but lack the developmental defects in the nervous and skeletal
systems, reported in other families. Moreover, normal IgE levels were found. Thus, belonging to the expanding
group of congenital glycosylation defects, PGM3 deficiency is characterized by immunodeficiency, with or with-
out increased IgE levels, and with variable forms of developmental defects affecting other organ systems.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Phosphoglucomutase 3 (PGM3), previously known as N-acetyl
glucosamine-phosphate mutase (AGM1) [1], is an enzyme important for
posttranslational glycosylation. This enzyme converts N-acetyl-
glucosamine-6-phosphate (GlcNAc-6-P) to N-acetyl-glucosamine-1-
phosphate (GlcNAc-1-P), which is needed to synthesize uridine
tion; EBV, Epstein Barr Virus.;
c-6-P, N-acetyl-glucosamine-6-
ucomutase 3; UDP-GalNac, uri-

tion of Clinical Immunology,
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. This is an open access article under
diphosphate N-acetylglucosamine (UDP-GalNac). The latter is an impor-
tant building block for both N-linked and O-linked glycans, as well as
for glycolipids [2]. The O-GlcNAcylation of proteins is very sensitive to
UDP-GlcNAc concentrations [3], and might thus be seriously disturbed
by reduced PGM3 activity. It is suggested that O-GlcNAcylation can mod-
ulate cellular signaling and influence transcription regulatory pathways in
response to nutrients and stress [4,5]. This glycosylation signaling
pathway has been found to “cross talk”with mechanisms in the protein
phosphorylation signaling pathways, as reviewed in [6,7]. Changes in
glycosylation patterns have shown to be crucial for a number of
human immune-related disorders and frequently in combination with
disturbance in both physical and mental development [8,9]. A total loss
of O-GlcNAcylation is lethal during embryogenesis [10] and complete
Pgm3 loss-of-function has also been found to be lethal in mice [11].

Recently two independent groups identified hypomorphic muta-
tions in the PGM3 gene as the cause of a new form of immune deficiency
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with hyper-IgE syndrome (HIES) [12,13]. Sassi et al. described three dif-
ferent homozygous mutations in four North African or Turkish families,
which segregatedwith the disease symptoms [12]. Zhang et al. reported
on eight patients in two different families, one family with a homozy-
gousmutation and the secondwith compound heterozygousmutations
in the PGM3 gene [13]. Shortly after, a third report was publishedwhich
also described a correlation between homozygous or combined hetero-
zygousmutations in the PGM3 gene and severe immune deficiency [14].

Already in 1976 a report describing four siblings with repeated bac-
terial infections, neutropenia and neutrophil chemotactic defects, as
well as increased IgA levels and poor antibody response to vaccinations
was published [15]. At that time-point all affected siblings were alive,
but only one has survived to adult age. During a large screening with
targeted sequencing of 179 genes [16], the only survivor was found to
carry a homozygous hypomorphic mutation in the PGM3 gene. As we
report here, although resulting in severely impaired immune capacity,
not all mutations in this gene lead to a HIES-like phenotype.

2. Materials and methods

2.1. Informed consent

All material from patients and relatives as well as data from patient
records were achieved after informed consent and in accordance to the
ethical principles applied at Karolinska Institutet, Ethical permission no
144/01.

2.2. Sequencing

Genomic DNA from whole blood or from a skin biopsy in a paraffin
block (for deceased N.D.), was PCR-amplified and analyzed by cycle se-
quencing as earlier described [16]. For detailed methods and primer se-
quences, see Supplementary Methods.

2.3. Cell culturing

Whole EDTA-bloodwas diluted 1:2 in RPMI 1640 (Life Technologies)
with 20% DMSO and aliquots of 1.5 ml were frozen at−80 °C. To ascer-
tain sufficient amounts of cells for further analysis, an aliquot was subse-
quently transformed with Epstein Barr Virus (EBV) supernatant B95-8.
EBV-transformed cellswere cultured in RPMI 1640with 20% bovine sera.

For lymphocyte activation whole blood with heparin addition was
diluted in medium and stimulated as previously described [17]. For de-
tails, see Supplementary Methods.

2.4. Immunoblotting

EBV-transformed cells were used for Western blot and RNA extrac-
tion as described in the supplementary section. Briefly, cells were
lysed in RIPA buffer containing 0.1% sodium dodecyl sulfate (SDS) and
protease inhibitors, separated by SDS-polyacrylamide gel electrophore-
sis and transferred to nitrocellulose membranes. Proteins were probed
with rabbit polyclonal anti-PGM3 andmousemonoclonal anti-Actin an-
tibodies. Different amounts of cell lysates corresponding to between 0.5
and 2 × 106 cells were tested to verify that the signals for both proteins
were within a linear range. At the same occasion cells were harvested
for RNA extraction and specific mRNA levels analyzed by quantitative
RT-PCR as described in the supplementary section.

2.5. PGM3 enzyme activity assay

A plasmid containing the human PGM3 gene with the Ile322Thr
missense mutation was prepared and used to produce recombinant
protein. For details, see Supplementary Methods. The purified protein
was then analyzed in an enzyme assay to measure conversion of
GlcNAc-6-P in vitro as earlier described [14]. A 200 μl standard mixture
containing 50 mM Tris–HCl (pH 8.0), 5 mM MgCl2, 10% (v/v) glycerol,
200 μMGlcNAc-6-P, and 50 μg of the indicated PGM3 protein was incu-
bated at 30 °C for 10 min. The reaction was inactivated by incubation at
80 °C for 5min and then subjected tomass spectrometry in “multiple re-
action monitoring” mode (MSMS). The transition from the molecular
ion (m/z 300) to a fragment specific to the substrate (GlcNAc-6-P) (m/z
138) was used to measure substrate consumption in relation to that of
the wild-type enzyme.

2.6. Structure analysis of PGM3

For the structure analysis of the Ile322Thrmutant, we used a homol-
ogy model of human PGM3 based on the experimental X-ray structure
ofAspergillus fumigatus PGM3 [18]made by SWISS-MODEL [19] (Protein
Data Bank [PDB] ID 4BJU), which has ~50% sequence identity with the
human protein.

2.7. Statistics

Statistical analysis was performed using Statistical Package for the
Social Sciences (SPSS) Software. Statistical significance was determined
using 1-way ANOVA, followed by the Duncan comparison test. P ≤ 0.05
was considered statistically significant.

3. Results

In 1976, a case report describing four immunodeficient siblings in a
Swedish family was published [15]. Results regarding the effect of the
identified PGM3 mutation on a molecular basis, together with a short
summary with updates of the clinical findings are given below. Labora-
tory data for the single healthy child in this family (M.D., born 1970) has
been included as an age-matched, healthy, heterozygous control. The
designation of the patients is according to the earlier report.

3.1. Disease histories

3.1.1. H.D. born 1964, female
As earlier described [15] from the age of four months H.D. suffered

from recurrent skin abscesses, otitis media, bronchitis, persistent ecze-
ma, neutropenia and eosinophilia. During infections the number of neu-
trophils was partly restored to normal. H.D. exhibited normal growth
and development. In 1973 she showed evidence of a severe varicella in-
fection and in 1974 she had symptoms of moderate polyarticular ar-
thralgia and arthritis and indications of rheumatoid arthritis, which
were efficiently treated with prednisolone. H.D. suffered from pneumo-
nia twice, and although no specific etiology was determined, there was
appropriate response to antibiotics. In 1976 she became febrile and de-
veloped severe eczema and a sore throat. The patient was treated with
antibiotics and finally high doses of corticosteroids as well as transfu-
sions of leukocytes. Despite therapy the patient died, at the age of 12
years. The post mortem examination showed signs of pneumonia and
pericarditis.

3.1.2. N.D. born 1966, male
N.D. displayed neutropenia and eosinophilia, and also in this patient

the number of neutrophils was partly restored during infections. He ex-
hibited normal growth and development. At the age of 18 months N.D.
became seriously ill with gastroenteritis, pneumonia and a gluteal ab-
scess. S. aureus and C. albicanswere isolated from stool, pus, and throat
swabs, but not from blood. After this episode, the patient suffered from
skin abscesses, otitis media, bronchitis, sinusitis and eczema. In
1973N.D. became critically ill with varicella complicated by disseminat-
ed pneumonia and encephalitis. He eventually recovered but after this
suffered from repeated pneumonias. Although a specific bacterial path-
ogen was not identified, there was prompt response to antibiotics. In
June 1976 N.D. was again diagnosed with pneumonia but pathogenic



Table 1
Cell counts and immunoglobulin levels in the patient with homozygous PGM3mutation.

February 2014 Reference interval

A.D.* M.D.

Leukocytes (×109 cells/L) 4.4 7.0 3.5–8.8
Eosinophils (×109 cells/L) 0.9 b0.1 0.0–0.5
Neutrophils (×109 cells/L) 2.2 4.4 1.6–7.5
Basophils (×109 cells/L) b0.1 b0.1 0.0–0.1
Monocytes (×109 cells/L) 0.7 0.4 0.1–1.0
NK (CD3−16+56+)(×109 cells/L) 0.04 0.33 0.07–0.42
Total lymphocytes (×109 cells/L) 0.6 2.2 1.0–4.0
CD3+ cells (×109 cells/L) 0.37 1.05 0.78–2.07
CD4+ (% of CD3+ cells) 39 40 35–59
CD8+ (% of CD3+ cells) 31 15 14–36
CD4+/CD8+ ratio 1.27 2.68 1.13–3.93
CD19+ B-cells (×109 cells/L) 0.06 0.52 0.09–0.40
IgD+ CD27− (naïve)a) 81 52 47–84
IgM+ CD21+a) 74 67 31–88
IgD+ CD27+ (marginal zone)a) 6 16 6–29
IgD− CD27+ (memory)a) 5 23 8–29
IgM+ CD21− (active immature)a) 10 4 0.7–10
IgM− CD38+ (plasma blasts)a) 2 1 0–3.2
IgM++CD38++ (transitional)a) 7 b0.5 b1
IgA g/L 5.6 1.2 0.88–4.50
IgE ×103 units/L 19 24 b122
IgM g/L 0.22 1.6 0.27–2.10
IgG g/L 8.4b) 11.3 6.7–14.5

Values outside normal intervals are indicated in bold. *A.D. is the proband with homozy-
gous mutation, whereas M.D. serves as a healthy, heterozygous control.

a % of CD19+ cells.
b The patient is on gamma globulin substitution therapy.

Fig. 1. Identifiedmutation in thepatient andher relatives. A) Sequencing results identifying themutation in the PGM3 gene,whichdemonstrates the exchange of aminoacid322 from Ile to
Thr. B) Pedigree chart showing the presence of the identified mutation. The arrow indicates the proband. The mutation could not be verified in two of the immunodeficient deceased sib-
lings due to lack of biological samples. Neither has the presence of themutation been studied in any of the grandchildren, who all are healthy. One child of the proband died at birth due to
an intrauterine infection.
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microorganisms were not found in cultures. Treatment with antibiotics
was given without improvement and N.D. died, 10 years old. The par-
ents declined autopsy.

3.1.3. E.D. born 1967, female
During infancy E.D. developed a thoracic skin abscess, from which

S. aureus was isolated and she developed severe perianal dermatitis.
Later she suffered from repeated pneumonias, pseudocroup once, and
severe varicella in 1973. From 1976 she was on average diagnosed
with two to four pneumonias per year and was treated with repeated
courses of antibiotics. In 1979 she developed lobular atelectasis. E.D.
also suffered from chronic eczema, which periodically became general-
ized anddemandedhospital treatment. Occasionally secondary bacterial
skin infections appeared. Her general condition gradually deteriorated
with weight loss and chronic cough. 1984 she was hospitalized during
several long periods due to pneumonia, a large atelectasis, and feeding
difficulties. Despite intensive care treatments E.D. died in May 1984, at
the age of 16 years.

3.1.4. A.D. born 1972, female
Four days after birth a routine blood test showed neutropenia

(400 neutrophils/mm3 blood), but she remained healthy during in-
fancy, besidesminor eczema. In 1973, at the age of 13months she de-
veloped a severe varicella, and at the age of two years she had
pneumonia. A.D. thereafter continued to have recurrent airway in-
fections, pneumonias and otitis medias. Similar to her siblings she
had neutropenia and eosinophilia, and increased IgA levels. Since
1984 she has been on prophylactic treatment with intravenous
gammaglobulin. She has been pregnant three times and has two
healthy children born 1991 and 1999. At the third pregnancy in
2001 the child died during delivery due to a severe intrauterine bac-
terial infection. A.D. is now working full time as a nurse's assistant at
a hospital. Besides recurrent bacterial upper airway infections, on av-
erage three to five per year, which have been treated with antibi-
otics, mostly amoxicillin, she is mainly healthy.

3.2. Identification of the mutation

During a targeted sequencing study [16], the onlymutation that was
identified in patient A.D. was in the PGM3 gene, where a homozygous
mutation replacing Ile322 with Thr was found. Both parents and the
healthy sister were shown to carry the corresponding sequence in one
allele (Fig. 1A). DNA extracted from a 40-year-old skin biopsy from
the deceased N.D., confirmed the presence of the same homozygous
mutation (Fig. S1). The pedigree of the family is presented in Fig. 1B.
The verification of this second sequence provides further support for
the correlation between disease and homozygous mutations in the
PGM3 gene.

3.3. Laboratory data

As a child A.D., aswell as her deceased siblings, hadmostly normal to
low levels of leukocytes, with frequently low percentages of lympho-
cytes and neutrophils and sometimes very elevated numbers of eosino-
phils [15]. Data from selected time points since 1984 are provided in



Fig. 2. Human PGM3-model and enzyme activity. The molecular model of the human
PGM3 based on the X-ray structure of Pgm3 from Aspergillus fumigatus. The position of
the Ile322Thr mutation is indicated in red. It is located at the end of the β-sheet in the
sugar-binding domain (domain 3) and seems to be engaged in hydrophobic contacts
that likely contribute to the stability of the domain. The Ile322Thr substitution might
therefore have a destabilizing effect on the three-dimensional structure of the protein.
The green sphere represents the central magnesium ion. The effect of the amino acid sub-
stitutions on PGM3 was tested by mass spectrometry in “multiple reaction monitoring”
mode; the transition from the molecular ion (m/z 300) to a fragment specific to the sub-
strate (GlcNAc-6-P) (m/z 138) was used for measuring substrate consumption in relation
to that of the wild-type. Mean of 3 experiments, SEM in parenthesis.
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Supplementary Table I and Fig. S2. In February 2014 a screening of the
lymphocyte populations was performed, and samples from the healthy
sister (M.D.) were included, as an age matched control. Although the
Fig. 3. Stability of PGM3 protein in EBV-transformed cells: Whole cell lysates from EBV-transfo
control with onemutated allele (M.D.), and the patient with homozygous mutations (A.D.) we
tected using rabbit polyclonal anti-PGM3, and mouse monoclonal anti-Actin antibodies. Panel
intensities for PGM3 expression from four different experiments with error bars representin
ANOVA followed by Duncan comparison test. *P ≤ 0.01, **P ≤ 0.001.
neutrophil count on this occasion was within the normal range, the
lymphocyte count was low and the eosinophils elevated (Table 1). The
numbers of T, B, and NK cells were all reduced, while the CD4/CD8
ratio and the proportion of different B-cell populations were mostly in
the normal range. The exceptions were a slight reduction in percentage
of memory B-cells and a substantial increase in IgMHigh/CD38High

B-cells, corresponding to transitional B-cells.
Although A.D. has a general lymphopenia the lymphocyte mitogen

proliferation as tested by the flow cytometric assay of specific cell-
mediated immune response in activated whole blood (FASCIA) was
within the normal range, except for CD19+ cells stimulated with poke-
weed mitogen, which was slightly reduced (Supplementary Table II).

The IgG level was within the normal range since the patient is on a
continuous gamma globulin substitution therapy. At three earlier occa-
sions the IgE level was measured and found to be in the high normal or
just above the normal range (Supplementary Table I). In contrast to
what was described for the patients in two of the earlier reports of
PGM3deficiency, her IgE level remains normal,while the IgA concentra-
tion in blood 5.6 g/L, however, is above the normal range (Table 1).

3.4. Enzyme activity and stability of mutated PGM3 protein

The position of the Ile132 was studied in the same model of human
PGM3 aswas earlier described [14] (Fig. 2). Since human PGM3 protein
has not been crystallized yet, the best model available is based on the
X-ray structure of Pgm3 from A. fumigatus [18]. In this homology
model Ile322 is located in the end of the β-sheet in the sugar-binding
domain (domain 3), and seems to be engaged in hydrophobic contacts
that likely contribute to the stability of the domain. The Ile322Thr
rmed cells derived from a healthy control without mutation in the PGM3 gene (control), a
re processed for Western blotting. Actin serves as control of the loading. Proteins were de-
A shows the filter from a representative experiment. Panel B shows the mean of relative
g standard deviation of the mean. Statistical significance was analyzed using a one-way
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substitution may therefore have a destabilizing effect on the three di-
mensional structure of the protein.

In order to investigate the activity of the mutated enzyme and to
compare the effect of this mutation with those earlier reported, a re-
combinant protein with the identified PGM3 Ile322Thr substitution
was prepared in Escherichia coli. Purified recombinant enzymewas sub-
sequently tested for conversion of GlcNAc-6-P to GlcNAc-1-P, in vitro
(Fig. 2). The activity for the enzyme with the new mutation was 47.8%
(SEM 5.3%), which is in the same range aswas seenwith two of the ear-
lier reported mutations Asp239His and Gln451Arg, with 59% (SEM
11.8%) and 50% (SEM 10%) activity respectively [14].

To be able to study the stability of this protein in cells we immortal-
ized patient B-cells by EBV transformation. B-cells from A.D. required
twice the time as compared to the control cells to display transformed
cell aggregates. These cells grew much slower, also after the cell line
Table 2
Summary of published laboratory data and clinical findings for patients with PGM3mutations.

Patient A.D.a

Laboratory data
Erythrocytes Normal
Platelets Normal or↑
Leukocytes Normal
Neutrophils Normal
Eosinophils ↑
Total lymphocytes ↓
CD3+ cells ↓
CD4+/CD8+ ratio Normal
CD4+ ↓
CD8+ ↓
NK cells ↓
Total CD19+ B-cells ↓
% transitional B-cells IgM++CD38++ ↑
% memory B-cells IgD−CD27+ ↓
% naïve B-cells IgD+CD27− Normal
% plasma blast B-cells Normal
IgE Normal
IgA ↑
IgG γ-globulin substitution
IgM ↓
In vitro T-cell PHA proliferation Normal
T-cell response to recall antigen Mainly normalg

Neutrophil chemotaxis NR

Clinical findings
Anemia Occasionally
Abscesses/skin infections Yes
Bronchiectasis No
Eczema/dermatitis Yes
Otitis Yes
GI problems/food allergy No
Pneumonia/respiratory tract infections Yes
Encephalitis No
Recurrent staphylococcal infections No
Fungal/Candida infections No
Severe viral infections/EBV viremia Yes
Skeletal dysplasia & PC No
Scoliosis No
Abnormal cerebral myelination No
Dysmorphic facial features No
Developmental delay and/or intellectual disability (low IQ) No
Psychomotor retardation No
Failure to thrive No
HSCT No

NR = not reported, PC = Pectus carniatum, HSCT = hematologic stem cell transplantation.
a For A.D. laboratory data from 2014 and clinical data from patient history are given.
b Includes early childhood data for patient AD and additional information from the clinical r
c During infection with fever the leukocyte and neutrophil counts increased while eosinoph
d Values varied between normal and abnormal in some of the patients.
e Reference values from Karolinska University Hospital.
f The patient with elevated IgE did not have skeletal abnormalities.
g See Supplementary Table I.
h Tuberculin, candida, staphylococcal and streptococcal antigen.
i Tuberculin [PPD] or tetanus toxoid.
was established. An additional indication for the destabilizing effect of
the PGM3 mutation was found when analyzing PGM3 protein levels in
cell lysates by Western blot (Fig. 3). At the same time we confirmed
the unchanged PGM3mRNA levels in these cells as compared to control
cells, using quantitative RT-PCR (data not shown). Collectively this sug-
gests that protein, but not mRNA, is destabilized owing to themutation.

4. Dicussion

The newly described correlation between homozygous or com-
pound heterozygous autosomal recessive mutations in the PGM3 gene
andmostly severe immunedefects are accompanied by different clinical
symptoms [12–14]. In this reportwe have described a new PGM3muta-
tion and compared the clinical symptomswith those found in earlier re-
ported cases (Table 2).
Björkstén & Lundmark
[15]b

Sassi et al.
[12]

Zhang et al.
[13]

Stray-Pedersen et al.
[14]

NR 7/7↑ NR NR
NR 3/6↑ NR Not reduced
↓c 2/7↓, 3/7↑ 6/8↓d,e,f 3/3↓
↓c 2/7↓, 2/7↑ 3/8↓, 187↑e 3/3↓
↑c 7/7↑ 4/78d,e NR
Normal 2/7↓ 7/8↓d,e ↓
NR 4/7↓ NR ↓↓
NR 7/7↓ 1/7↓, 2/7↑e 3/3↑
NR 6/7↓ 5/7↓ NR
NR 7/7↑ 5/7↓ NR
NR 4/7↑ 3/7↓ Normal
NR 4/7↓, 1/7↑ CD20+4/7↓1/7↑ ↓↓
NR 3/5↑ NR NR
NR 1/5↓, 1/5↑ 7/7↓ NR
NR 1/5↓ NR NR
NR 2/5↓, 1/5↑ NR NR
4/4 normal 7/7↑↑ 6/7↑↑, 1/7↑ 1/3↑↑f

↑ 5/7 ↑ 6/7↑ 1/3↓
NR 3/7↑ 1/7↓, 3/7↑ 1/3↓
Normal to low 3/7↑1/7↓ Normal 2/3↓
3/3 normal 4/6↓ Normal NR
No 4/4h 6/6↓i NR NR
4/4↓ 3/3 unaltered NR NR

1/4 NR 1/8 2/3
3/4 7/9 8/8 3/3
1/4 6/? 5/8 NR
4/4 7/9 8/8 3/3
2/4 NR 7/8 1/3
1/4 NR 5/8 3/3
4/4 9/9 6/8 3/3
1/4 NR 1/8 NR
2/4 8/9 6/8 NR
1/4 6/9 1/8 NR
4/4 4/9 5/7 NR
No NR NR 2/3f

NR 1/9 4/8 NR
NR NR 4/8 2/3
No 4/9 Several 2/3
No 6/7 7/8 2/3
No 3/7 NR NR
No 7/9 NR 1/3
No NR NR 2/3

ecords of the deceased siblings.
il count was normalized until the patient recovered.
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The PGM3 enzyme is crucial within the synthesis pathway for UDP-
GalNac, a building block required for posttranslational glycosylation.
Congenital defects in glycosylation (CDG) cause a number of immune-
related disorders, frequently in combination with skeletal anomalies,
psychomotor retardation and developmental delay [8,9,20]. Recombi-
nant PGM3 containing the Ile322Thr mutation described here was
clearly destabilized, leading to a rapid degradation as well as a reduced
enzymatic activity (Fig. 2), and thus a serious disturbance in glycosyla-
tion efficiency. Other mutations located in different parts of the enzyme
were also reported to reduce the enzyme activity [14]. The PGM3
enzyme activity has also been investigated in cell-lysates from several
patients [12].

Among the described patients 83%were reported to have a develop-
mental delay and/ormental retardation, and scoliosis or skeletal chang-
es were found in 7 of 20 (35%) cases (Table 2). Zang et al. [13] also
performed MRI scanning of the brains of some of their patients. They
found signs suggesting dysmyelinisation, signs which were claimed to
be typical across the cohort. Due to that report an MR was performed
on patient A.D. No signs of abnormal myelinisation could be found
(data not shown). None of the children in the family with the here re-
portedmutation has shown signs of delayed development ormental re-
tardation. Thus, not all mutations in the PGM3 gene will necessarily
cause developmental neurological disturbances or skeletal changes.

According to the initial reports, mutations in the PGM3 gene appear
to give a typical pattern of what is described as hyper IgE syndrome
(HIES). Immunodeficiency in combination with highly elevated IgE
levels has earlier been found in patients with dominant mutations in
the signal transducer and activator of transcription 3 (STAT3) gene
(AD HIES), and in patients with autosomal recessive mutations in the
dedicator of cytokinesis 8 (DOCK8), or the tyrosine kinase 2 (TYK2)
genes (AR HIES), as reviewed [21,22]. Almost all patients with reported
mutations in the PGM3 gene have had a history of severe eczema, ab-
scesses, Staphylococcal infections, and recurrent pneumonias, typical
symptoms found in patients with AR HIES. Severe viral infection was
also described in 13 of 20 patients (Table 2). All patients described in
the two first reports did also display highly elevated IgE levels [12,13].
The four siblings with severe immunodeficiency that were described
in the Swedish family [15], however, all had a normal IgE level and
among the three patients in the third report [14] only one had abnor-
mally high IgE. Thus, mutations in PGM3 are not necessarily leading to
HIES. Similarly, mutations in the transforming growth factor beta recep-
tor 1 (TGFBR1) gene, depending on their nature, may or may not be as-
sociated with highly elevated IgE levels in patients with Loeys-Dietz
syndrome [23]. Moreover, our patient, like the majority of the patients
in the two first reports, showed slightly elevated IgA levels.

In-depth investigations regarding the effects on the immune system
have been performed for many of the patients identified with PGM3
mutations. The total number of lymphocytes is mostly decreased,
while the levels of NK cells are less consistent. Increased levels of eosin-
ophils and reduced levels of neutrophils are also reported for most of
these patients (Table 2). In the 1970s there were no assays to perform
extensive fluorescence-activated cell sorting (FACS) analysis of whole
blood, which is routinely done today. Still, at that time point a thorough
analysis of different myelocyte groups in both blood and bone marrow
was made for at least one of the affected children. The total amount of
cells in the bone marrow aspirates was normal, although also here the
proportion of neutrophils was reduced and promyelocytes and eosino-
phils were elevated, indicating a disturbed granulocyte maturation
[15]. In the recent FACS analysis of cells from patient A.D. an increased
percentage of transitional B-cells was noticed (Table 1), a parameter
that was also reported for some patients in one of the other cohorts
(Table 2) [12]. In addition, a reduction in percentage memory B-cells
was seen in A.D. as well as in 8 of 12 earlier reported cases. Reduction
of memory B-cells has also been described for DOCK8-deficient patients
with AR HIES [24]. The inconsistency in CD4/CD8 ratios, with some pa-
tients having reduced, while other have increased ratios, might rather
be an effect of the low numbers and unevenmaturation of lymphocytes.
Recently, effects on the levels of plasmacytoid dendritic cells (pDC)
were reported in AR HIES with a DOCK8 mutation [25]. The effect of
PGM3 mutations on pDC levels has, however, not been investigated so
far.

5. Conclusion

In conclusion, to the best of our knowledge, the report on the
Swedish children published in 1976 represents the very first clinical
description of patients with mutations in the PGM3 gene. We have
now been able to conclusively demonstrate the cause of the disease,
which was fatal in three of four siblings. This report also contributes to
the description of the phenotypic variation among patients with PGM3
mutations. Reduced lymphocyte levels, neutropenia and eosinophilia
are prominent in this immunodeficiency. Increased IgA but not always
increased IgE levels are other manifestations, and many but not all
patients show neurological and skeletal defects.
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