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1. INTRODUCTION 

For a large class of electrical networks containing lossless transmission 
lines, the describing equations can be reduced to a system of difference- 
differential equations. For examples of this see Miranker [l] and Brayton [2]. 
The simple reason for this reduction is that each transmission line can be 
described in terms of a time delay 7 and a characteristic impedance Z. In 
general, the equations are of the neutral type (see [3] p. 166 for a definition). 
Such networks arise in high speed computers where nearly lossless trans- 
mission lines are used to interconnect switching circuits. In general, in circuits 
where the propagation time in a length of wire is significant compared to 
the characteristic frequencies of the circuit, it is necessary to use transmission 
lines to have an accurate model. 

It is not the purpose of this paper to describe the circuits or the reduction 
of the equations to difference-differential equations, but to give some results 
which are useful in choosing the step-size for the numerical integration of 
systems of difference-differential equations. The system that will be investi- 
gated is given by 

cqt) + Aqt - T) + Bx(t) + Cx(t - T) = 0, (1) 

where A, B, C are symmetric n x n matrices and x is an n-vector. Also cer- 
tain conditions on A, B, C which imply the asymptotic stability of (1) are 
assumed and these are given in Theorem 1. The case where A, B, C are non- 
symmetric is much more difficult and is not treated here. 

* The results reported in this paper were obtained in the course of research jointly 
sponsored by the Air Force Office of Scientific Research (Contract AF 49(638)-1474) 
and IBM. 
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A one-parameter family of difference schemes is investigated. This is 
obtained by making the replacements 

qt - T) -+ 
x(t + h - T) - x(t - T) 

h > 

4) - At + 4 + (1 - P) x(t), 

x(t - T) + p(t + h - T) + (1 - /.L) x(t - r), 

where 0 < t.~ < 1. Sufficient conditions in terms of the size of h for the 
asymptotic stability of the resulting family of difference equations are given 
in Theorem 2. When TV > 4, the result is that the equations are uncondition- 
ally asymptotically stable. For the scalar case and when p = 0, sufficient 
conditions for instability are given in Theorem 3 and this result shows that 
the delay terms cannot be neglected in determining the integration step- 
size h. 

2. STABILITY OF EQUATION (1) 

THEOREM 1. If A, B, and C are real symmetric n x n matrices, r > 0 and 
I f A, B & C are positiwe dejinite then 

R(t) + An(t - T) + Bx(t) + Cx(t - T) = 0 

is asymptotically stable. 

PROOF, According to a theorem by Miranker [4], (1) is stable if the values 
of s for which there exist a unit vector u satisfying 

su + Ase--% + Bu + Ce-% = 0 (2) 

have the property 

Re (s) < - S < 0. 

The reason for requiring that the roots be uniformly bounded away from 
the imaginary axis is because (I) is of the neutral type and there exists the 
possibility that the characteristic roots of such an equation could accumulate 
at f ice. Indeed it has been shown by Snow [6] that even though the charac- 
teristic roots may satisfy Re (s) < 0, it is possible for solutions to be unbound- 
edast-co. 
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The proof is by contradiction. First suppose s satisfies (2) and Re (s) 3 0 
for some unit vector U. Then taking inner products in (2) we have 

s(u, 24) t se-87 (24, Au) + (24, Bu) + e-qu, Cu) = 0. 

Let a = (u, Au), b = (u, Bu) and c = (u, CU). Then a, b, and c are real, 
/a/<l,b>Iclbyassumptionand 

s + usecsT + b + ce+ = 0. (4) 

Solving for s we have 

bti7 + c 

or with 

sz-----, 
es7 + a 

z, = es* 

(5) 

(6) 
we have 

If v = (Y + zj?, then 
(7) 

Re(bo+c) b[[a++(a+$)]2+,B2- (n-;‘b)2 / 
- = v+a (a + uj2 + B” 

The circle 

lies inside the unit circle / v 1 = 1 since 

and 

Thus for 1 z, 1 > 1, Re[(bv + c)/(v + u)] > 0 which by (7) implies 1 v I < 1 
and hence we have a contradiction. Therefore the roots s of the characteristic 
equation (2) are in the left half plane. 

To show that the roots are uniformly bounded away from the imaginary 
axis we note that the function 

g(s) = s + use-87 + b + ce+ 
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is analytic and therefore its zeros cannot have an accumulation point in the 
finite plane. Thus if we assume there exists a set (w,}, 1 We I-+ lx), such that 
g(iw,) + 0, we can write 

g(s) = ~(1 + ae-87) (1 + O(l s I) ISI-+~ 

and hence for n sufficiently large, 

I i#eu,) I 3 (1 - I a I) > 0, 

a contradiction. This completes the proof of Theorem 1. 

3. STABILITY OF THE DIFFERENCE EQUATIONS 

From 

i(t) + Aiqt - T) + Bx(t) + Cx(t - T) = 0 

we obtain the one-parameter family of difference equations 

x(t + h) - x(t) 
h 

+ A x(t + h - T) - x(t - T) 
h + B[llx(t + 4 + (1 - P) Nt)l 

+ Cb(t + h - 7) + (1 - p) x(2 - T)] = 0, (8) 

where 0 < p < 1. 

THEOREM. I’ I f A, B -& C and (I f A) - (Q - p) h(B f C) are 
positive dejinite, then (8) is asymptotically stable. 

REMARK 1. We consider (8) as a continuous difference equation applying 
for all t > 0. If h is chosen so that mh = 7 where m is an integer, then (8) 
becomes a discrete difference relation 

X n+l = (I+ &3)-l [(I - (1 - CL) hB) xn - (A + W) x,+1-m 

+ (A - (1 - P) hC) x,,-,I. 

In practice one would probably choose h so that m is an integer. However 
no such restriction needs to be made here. 

REMARK 2. If p > 4 , then the last two matrices are positive definite if 
the first two are, and hence we have unconditional asymptotic stability which 
is analogous to A-stability as defined by Dahlquist [5]. 
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PROOF. It is enough to show that the characteristic equation 

det M = det 
Lh - 1 h + Ae-ST f??f! + B(peJh + 1 - P) 

+ Ce+(pesh + 1 - p)) = 0 (9) 

has no roots in the half plane Re (s) > - 6 < 0. Let w = es7 and m = 7/h. 

If (9) holds for some s, then there exists a unit vector u such that Mu = 0. 
Therefore 

(u, MZJ) = @h- ’ (1 + av-1) + (6 + cv-1) (@‘m + 1 - p) = 0, (10) 

where a = (u, Au), b = (u, Bu), and c = (u, CU). The quantities a, b, c 
are real and satisfy 1 a 1 < 1 and b > / c 1 because of the assumptions made 
on A, B, and C. Solving (10) for rNm we have 

Let 

21= v(1 -(l -I”)hb)+a-(l -/J)hc m 
( $1 +phb) +a $E”hc 1. (11) 

vllm E z = 
( 

v(1 - (1 - p) hb) + a - (1 - P)hC 
~(1 + @J) + a + phc 1 (12) 

and note that (12) defines a map from the complex v-plane to the complex x 
plane. Except for the special case c = ub (in which case the entire v-plane 
is mapped into the point 

z J-U-/dhb 
0 1 + phb 1 ’ 

the inverse map of (12) exists and takes the circle 1 z 1 = p into a circle in the 
w-plane with real center. (When c = ub, it will be shown later that I z. I < 1 
and hence the only solution to (11) is v. = zO” = exp (~~7) implying that 
Re (so) < O.)l If for p > 1, we can show that the v-plane circle satisfies 
1 v / < 1, then it follows, since this circle is compact, that (11) can have no 
solution w* = es*7 where Re (s*) > - 6 for some 6 > 0. (Accumulation on 
the imaginary axis is impossible since this would imply the existence of roots 
s, such that 1 exp (s,.r) I ---f 1 as r -+ co.) 

Since the v-plane circle has real center, it is enough to show that for p 3 1 

1 In addition, if c = ob, Eq. (10) has the solution et = --(I which is clearly less 
than unity in modulus. 
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the real values of this circle are inside the unit circle. Denote these values by 
v+ .Then 

or 

0% = - 
a(& p - 1) + hc(l - P i PCL) 

f p - 1 + hb(1 - P f PP) * 

Clearlysincep~l,~a~<1,andb>~c~,then)v+~<1.Thereforeit 
remains to prove that 

0 < 1 * v_ = (P + 1) (1 F 4 + MP + 1) - 1) w T 4 (p + 1) (1 + Phb) - hb - (13) 

Adding the two positive (by assumption) quantities 

0 -=c [(I - a) - (4 - P> h(b - 41 + [U + 4 - (4 - PL) w + 41 
= 2(1 + phb) - hb < (p + 1) (1 + /Lhb) - hb, (14) 

we see that the denominator in (13) is positive. The numerator is positive since 

Hence 1 rfi v- > 0. 
It remains to be shown that for c = ub, 1 x,, 1 < 1. For this case 

and clearly if x0 > 0 then z, < 1. However 

l+z =2(l+@4--b,o 
0 

l+pM 

by (14) and hence 1 z, I < 1. 
If we take 71 = 1 and p = 0 so that (1) and (8) are scalar equations, then 

we have 

THEOREMS. If~>0, IAI<l,B>ICIundh=~/mwheremisu 
positive integer, then Eq. (8) is unstable provided 

h , 2(1 + A) 
B+C 

ad mistmn 
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or 

h >g -4 
B-C 

and m is odd. 

Before proving these results we compare them with the stability bound 

O<h<+ (15) 

for the Euler integration of the differential equation 

3i(t) = - Bx(t) +f(t). 

This is the equation obtained from (1) if we treat the delay terms as a forcing 
function. Here we are dealing with the difference equation 

x(t + h) - 44 
h 

= - Bx(t) +f(q. 

The conclusions of Theorem 3 show that it is incorrect to treat the terms 
Aa(t - r) and Cx(t - T) as forcing terms in the stability analysis. For 
example, suppose A = ?J , B = 3, C = 1, r = 3 and m = 5. Then 
h = T/m = + , 2(1 - A)/(B - C) = 4, 2/B = $ and hence 

2(1 - A) 
B-c <h+ 

However, since m is odd, (8) is unstable even though we are satisfying the 
Euler stability condition (15). 

PROOF OF THIWREM 3. It suffices to show that (9) with u = 1 has a 
solution s where Re (s) > 0. With w = esh, (9) becomes 

p(w) s wm+l + (Bh - 1) w”’ + Aw + (Ch - A) = 0. (16) 

We have instability if (16) holds for some w with j w / > 1. If m is even and 
m < (4) [(B + CM1 + A)], then 

p(-l)=(B+C)h-2(1 +A)>0 

while p(w) < 0 for sufficiently large negative w. Hence p(w) = 0 has a real 
root w < - 1. If m is odd and m < (42) [(B - C)/(l - A)], then 

p(-1)=2(1 -A)-(B-C)h<O 

while p(w) > 0 for sufficiently large negative w so again there is a root of 
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p(w) = 0 with w < - 1. Thus the instability statements in the theorem 
have been established. 

We now show that the condition 

I f A - (4 - p) h(B i C) > 0 (17) 

is not necessary for the stability of (8) by considering the scalar case with 
p = 0 and 0 < 7 = h. Since m = 1, Eq. (15) can be written as 

w2 + (A + BT - 1) w + (CT - A) = 0. (18) 

The quadratic equation w2 + (YW + p = 0, where (Y and j3 are real, has roots 
satisfying 1 w 1 < 1 if and only if 1 + OL + j3 > 0, 1 - (y. + j3 > 0 and 
/I < 1. In Eq. (18), 1 + 01 + p = (B + C) 7 > 0, so the necessary and 
sufficient conditions for stability of (8) when 0 < T = h, 1 A 1 < 1, B > 1 C 1 
are 

and 

2(1 -A)-(B-C)T>O 

CT-A<(. 

IfA=Q,B=l,C=s, T=h=2,then2(1 -A)-(B-C)T=~>O 
and CT - A = & < 1 so (8) is stable. However (17) is not satisfied since 

1 +A-+h(B+C)= -.l <O. 
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