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Abstract

We construct a factorization of certain multéiar mappings through linear operators belonging to
closed, injective operator ideals using interpolation technique. An extension of the duality theorem
for interpolation spaces is also obtained.
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1. Introduction

The by now classical paper [2] states as a main result the equivalence of the following
three statements for multilinear mappingse L(E1, ..., En; F):

(1) M is weak-to-norm continuous on bounded sets,
(2) the linearizations

MY E;— L(E1,...,Ej-1,Ej41,..., Em; F)

given by MY (x;)(x1, ..., Xj—1, Xj41s -+ ., Xm) = M(x1, ..., x,) are linear compact
operators,

(3) there is a factorizatiolM = L(Tx,...,T,) with compact linear operator§;
L(E;; G ) and a multilineabounded mapping € £(G1, ..., Gn; F).
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The importance of this theorem is evideh reduces topological properties of multi-
linear mappings (and finally of holomorphic functions) to associated linear operators and
makes the linear theory applicable. Therefore, several authors have tried to extend this
result to multilinear mappings ith other topological propertgeinstead of compactness
[1,4,5,8]. S. Geiss [4] and H. Junek [8] were the first who used operator ideals and in-
terpolation technique. Recall that a subclaks £ of linear bounded operators with the
componentsA(E; F) = AN L(E; F) is called to be amperator ideal, if all components
A(E; F) are linear subspaces @f E; F) containing the spac& (E; F) of all operators
of finite rank and if the components satisfy the typickhl condition:

For all operatord” € A(E; F) and all linear bounded operata§s L(E1; E) andR €
L(F; F1) the product satisfieRT S € A(E1; F1).

The idealsC and W of all compact or weakly compadperators, respectively, are
important examples. For more details on operator ideals we refer to [9]. Ideals of linear
operators were used by A. Pietsch in [10] to generate ideals of multilinear mappings in two
different ways:

Definition 1.1. For idealsAy, ..., A, of linear operators we define the clasgds, ...,
AnlandL(Ag, ..., Ay) as follows: ForM € L(Eq, ..., Ey; F) we put

() MelAs,...,A,1(E1, ..., Ey; F) if all linearizations
MY E;— L(E1,...,Ej-1,Ej+1, ..., Em; F)

belongtoA;(E;; L(E1, ..., Ej_1,Ejq1,..., En; F)).
2 MeL(A,...,Apn)(E,..., E,; F)if M admits a factorization

M=L(Ty,...,Ty)
with some operator$; € A;(E;; G;) and some boundeduttilinear mappingL e
L(G1,...,Gy; F).
Obviously, we always have an inclusidit Ay, ..., A,) € [A1, ..., Ay]. For4d; =K
the Aron—Hervés—Valdivia result mentioned above states
LK,....K)y=[K,...,K],
while
LWV,...W)=W,..., W]
was shown in [1]. Here, we will investigate for what further ideals a factorization formula
LA, ..., An)=[A1, ..., Ayl

holds true. This cannot be expected for all operator ideals. Inde&d(H; H) denotes
the ideal of the Hilbert—Schitt operators on an infinite diensional Hilbert space, then
we obviously have

L(S2,82)(H, H; C) #[S2, S21(H, H; C).

Therefore, we need additional conditions on the idedjsto get factorization theorems.
The following definition is important for this purpose.
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Definition 1.2. Let A be any operator ideal.

(1) Ais called to be closed, if the componemtsE; F) are closed subspaces©OfE; F)
for all pairsE, F of Banach spaces.

(2) Ais called to be injective, if an¥ € L(E; F) belongs taA(E; F) provided that there
is an isomorphic embedding: F — Fy suchthat/ T € A(E; F1).

(3) Ais called to be surjective, i € L(E; F) belongs toA(E; F) provided that there is
some quotient mag@ : Eg — E such thatl’ Q € A(Eg; F).

The ideals)V and K are both injective and surjective, the id€abf all approximable
operators is neither injective nor surjective, and the id&atsf all unconditionally sum-
ming operators (weakly summable sequencesrapped into norm summable sequences)
andV of all completely continuous operators (weakly convergent sequences are mapped
into norm convergent sequences) are closebdaoviously injective, but not surjective.

It was shown in [4] that a factorization theorem holds true, if the closed idéalsre
both injective and surjective, and it was staie{b] that a factorization theorem holds also
true for closed, injective ideald; = --- = A,, = A. The wrong proof given in [5] was
improved later on in [6].

In the present paper we give an alternative proof of the factorization formula for closed,
injective ideals using interpolation spac&his method works well also for the case of
different idealsAy, ..., A, and additionally it provides us with numerous possible fac-
torization spaces. The appligan of the interpolation technique to our situation requires
a vector valued version of the duality theorem for interpolation spaces given in this paper.
This could also be useful in other applications.

2. Operatorson interpolation spaces

Let us recall some notions of the interpolatitheory. For details we refer to the text-
book [3].

Definition 2.1. A couple X = (Xo, X1) of Banach spaces is called to be compatible;df
and X1 are continuously embedded into some Hausdorff topological vector shabkth
respect to this embedding we define as usually

AX =XoNX1 equipped with|x|| , ¢ = max{|lx | xo. lx1x,}.
XX =Xo+ X1 equippedwith|x|zz = inf [xolx,+ Ixtllx,.
X=x0+X1
and for allz > 0 we define the both functionals

J(t,x)=J(t,x,X) =maX{|x|lx, tlxllx,} forxeAX,
K(t,x)=K(t,x,X)=inf{llxollx, +tllx1llx,: x =xo+x1} forxe XX.
In particular, we havéix| , 5 = J(1, x) and| x|y 3 = K(1, x).

Using these functionals th€- and the/-interpolation methods can be established:
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Definition 2.2. For 0< ® < 1 and 1< g < oo we define the interpolation spaces

o
(X0, X1)k,6.4 = {x XX Ixlko,= Y (277K 0)! < oo},

V=—00

oo
(X0, X1)7,0.4 = :x eZX: x50, = nf D (@I x)! < oo},

v y=—00

where the convergenae= " x, with x, € AX is taken inX X. For g = oo we put

Ixllk.0.00=sUp2 ®'K (2", x) and |xllse00= inf sup2 "I (2", x,),
VEZ X=X veZ

respectively.
Because ofK (1, x + y) < K(t,x) + K(¢t,y) andJ (¢, x + y) < J(¢t,x) + J (¢, y) both

functionals| - || x,e,; and| - || 7,0, are norms. The central result of the interpolation theory
is the equivalence of both methods:

Theorem 2.3[3, Theorem3.3.1For 0 < ® < land1< g < cowehave(Xo, X1 x,0,¢ =
(X0, X1)1,0,4 With equivalent norms.

Now, we are going to extend the duality theorem on interpolation spaces from the case
of linear functionals to linear operators.

Definition 2.4. A compatible paitX = (Xo, X1) is called to be fully compatible, i X is
dense in bothXp and X ;.

Proposition 2.5. The pair X = (Xo, X1) isfully compatibleif and only if for every Banach
space Y therestriction mappings

pj L(X;;Y)— L(AX;Y), j=0,1,
areinjective. In this case, the pair

LX;Y)=(L(X0:Y), L(X1;Y))
is compatible with respect to the embeddings £(X ; ¥) € L(AX;Y) given by pj. Inpar-
ticular, wehave Y L(X;Y) C L(AX;Y).

Proof. If AX is dense inXg thenT|,5 =0 impliesT|x, =0 for all T € L(Xo; Y), and
the same holds true fak;. The “only if” part is a consequence of the Hahn—-Banach
theorem. O

Proposition 2.6. Let X = (Xo, X1) be any fully compatible pair and let ¥ be any Banach
space. Then we have

ALX;Y)=L(ZX;Y) and |T:ZX—>Y|= 1T azck:v)-
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Proof. EachT € AL(X;Y) admits a unique linear extensidh: XX — Y defined by
T (xo + x1) = Txo + T x1 for xo € X andx1 € X1. We are going to check the equality of
the associated norms. Lete ¥ X with ||x| x5 < 1 be given. We choose a representation
x = xg + x1 With [lxollx, + llx1llx, < 1. Then we get

ITx||=Txo+ Txil| < IT:Xo— Y| - llxollxo + 17 : X1 — Y| - lx1llx,

<max{||T:Xo— Y, IT:X1— Y[} (Ilxollxo + Ix1llx,),

and this implies|7: ZX — Y| < ITNazcx:v) To prove the converse we may suppose
1T pzx:v) = IT: X0 — Y. For e > 0 there is somexg € Xg with |lxollx, < 1 and
IT:Xo—>YII<[Txoll +e<IT: XX —> Y[ -lxollgx +e<IT: XX —>Y[+e. O

Corollary 2.7. Let X = (Xo, X1) be any fully compatible pair and let ¥ be any Banach
space. Then we have

_ T
J(t,T,L(X;Y))= sup %
e K@ 4 x,X)

forall T e L(XX;Y)andall t > 0.

Proof. For X, = (X1, || - l;) with [|x|l; = ¢~Y||x||x, andT € L(¥X; Y) we have
J(t. T.LX:Y))=max{||T: Xo— Y|.tIT: X1 — Y|}
=max{||T:Xo— Y|l IT:X; — Y|}
=Tl ac((xo.X):Y)>
and forx € ¥ X we get

1 o 1 _
K(t ,x,X)—lexfgfrxl(llxollxo-i-l lx1llx;) = Xl £ (x0.x,)-

Now, the statement follows from Proposition 2.6

A Banach space’ is said to have the metric extension property, if for any Banach
spaceX and any subspacep C X each operatof’ € £(Xo; ¥) admits a norm preserving
extensiorl’ € L(X; Y). For example, alL..-spaces have the metric extension property.

Proposition 2.8. Let X = (Xo, X1) be any fully compatible pair. Let Y be any Banach
space with the metric extension property. Then we have
SLX:Y)=L(AX;Y) and ||T:AX—> Y| < 1Tl s 2ek:y) < 2IT:AX = Y.
Proof. To prove the first inequality, lef’ = 7o + 71 be any representation df
L(X0;Y)+L(X1;Y)CL(AX;Y). Letx € AX be any point. Then we get
ITx] = Tox + T1x|| < [ Tox|| + [ Tax||
SITo:Xo— Y- llxllxe + 1T1: X1 — Y - [Ixlx,
< (IToll + 171l) - maxX(|lxllxo. 1x11x,) = (1 Toll + 1 T1ll) - x| -
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This implies||7:AX — Y| < [|IT || 5z x.y,- Conversely, let any': AX — Y be given.
We consider the normed subspdte- {x @ x: x € AX)} of Xo oo X1 and define a linear
operatorS: E — Y by S(x @ x) = Tx. Then we get

[Sc@x)|=ITx| <IT:AX > Y| lxl,5 <IT:AX > Y| - [lx ®x]|g.

This implies||S|| < ||T: AX — Y|. SinceY has the metric extension property, there is an
extension

S:X0Poo X1— Y

of § satisfying||S|| = ||S|. Let tj:X; = Xo ®oo X1 for j =0,1 denote the canonical
embeddings. Putting

Tj:S‘-Lj

we obtainTox + Tix = S(x & 0) + 0@ x) = S(x & x) = Tx for x € AX. This shows
YL(X;Y)=L(AX;Y). Moreover, we have

1Tl 52 gev) < 1To: Xo— Y[ +1T1: X1 — Y[ < 2|8 < 2T AX — Y|,

and the proof is finished. O

Corollary 2.9. Let X = (Xo, X1) be any fully compatible pair and let ¥ be any Banach
space with the metric extension property. Then we have

_ T
K (1. T, L(X: Y)) <2 sup 1Tl

— < 2K(t,T,L(X;Y)
xeAX J(t_l’x’ X) ( )

forall T € ¥£(X;Y)andall t > 0.

Proof. Forz > 0 we define the Banach spake= (X1, | - [I) with ||x||, = f1||x||xl. For
T e XL(X;Y)we get

K(t, T, L(X; Y))=T iptrT (ITo: Xo— Y[ +1IT1: X1 — Y])
=10 1

= _inf (ITo:Xo— Y+ IT1: X; — Y]))
T=To+T1

=Tl 5 £((X0,X,);)-
On the other hand, we havie || s(xo. x,) = Max(|lx [l x,. t2lx|lx,) = J (71, x, X) for
x € AX . The statement of the corollafgllows now from Proposition 2.8. O
Proposition 2.10. Let X = (X, X1) be any fully compatible pair and let ¥ be any Banach
space. For any0 < ® < landany 1 < g < oo we have
(L(Xo; Y), L(X1; Y))J)@)q/ C L((Xo; X1)k,0.4:Y)
with

[T (X0, XD k.04 = Y| <ITls0,4-
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Proof. For 1< p < oo we denote the norm of the sequence spgga&) by || - |- Let
TeXL(X;Y)with0+#| Tl e, < oo be given. For > 0 we choose a representation
T=3, TywithT, e L(XX;Y)and

@902, T, £ )|, <A+ ITI 0.4
Letx € AX be fixed. Using Corollary 2.7 and Hélder’s inequality we get

ITxly <Y ITxlI <Y K@ ™Y, x, X) - J (28, Ty, L(X; Y))

VEZ VEZ
=) 29VK(27".x,X)- 277V (2", T, L(X: Y))
VveZ

[@ K@ x %), - (27" (2" T, LK 1))

Ixllk.0.q - QA+NTl,0,-

q/

NN

SinceAX is dense iNXo, X1)k,0.4 (cf. [3, Theorem 3.4.2]), the inequality

ITxlly < lIxllk,0.q - A+ T 1,04
holds true for allx € (Xo, X1)x,0,4, and this implies the claimed estimation
An inverse inclusion holds true at least for the case 1:
Proposition 2.11. Let X = (X, X1) be any fully compatible pair and let ¥ be any Banach
space with the metric extension property. For any 0 < ® < 1 we have
L((Xo, X1)1,0,1Y) S (L(X0; 1), LIX1 V) g 6.0
with
ITlk.0.00 < 2|T: (X0, X1)s,0,1— Y|
Proof. We putX = (Xo, X1)s0.1. Let T € L(X;Y) be given. We fixe > 0. Propo§i-

tion 2.8 impliesT € X £(X;Y). By Corollary 2.9, for each € Z there is some € AX
such that

- - I7x] Il 0.1
KV T,LX; ) <2+e)———— < 2+9)|T: X = Y| ——=.
( (K1) S @) o <@+ I a5

Since||x|l.0.1 <279"J (2", x) for x € AX and allv € Z, we get
2PVK(27, T, LX; V) <2+ )T : X - Y|

forall v € Z, and thisimplied|T || k.0.00o < 2+ &)|T: X > Y|. O

As a consequence we obtain from Theor2®, Propositions 2.10 and 2.11 the follow-
ing generalization of the duality theorem:
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Theorem 2.12. Let X = (Xo, X1) be any fully compatible pair and let Y be any Banach
space with the metric extension property. Then we have

L((Xo0. X1)6.1;Y) = (L(X0: ¥), L(X1: Y))

with equivalent norms.

[ORe)

3. ldealsof operatorson inter polation spaces

In this section we are going to study injeetideals on interpolation spaces. &p, Y1)
be any compatible pair. Recall that a Banach spaegth AY C Y C XY is of the class
J(©, Yo, Y1) for 0 < ® < 1, if there is some constanit such that|y|ly < Ct=@J(z, y)
holds true for all: > 0 and ally € AY. Obviously, the interpolation spacek, Y1)1.0.4
are of class/ (@, Yy, Y1) forall 1 < g < oo (see [3, Theorem 3.2.2)).

The starting point is now the following result due to Stephan Heinrich proved in [7] as
Proposition 1.6:

Proposition 3.1. Let A be any closed, injective operator ideal, let (Yo, Y1) bea compatible
pair and let Y be of class J (O, Yo, Y1) for some 0 < ® < 1. If T € A(X;Yp) and T €
L(X;Y1)thenT € A(X;Y).

In order to extend at least some version of this result to the multilinear case we will
use the canonical embedding of a Banach spag#o a space with the metric extension

property:
Definition 3.2. For any Banach spadéwe define
YW =ts(By) and Jy:Y — YN byJyy=(y,-).
The mapping/y is obviously an isometric embedding aritll shares the metric exten-

sion property with allL-spaces. It is easy to see that for all Banach spécasdY an
isometric embedding (G; Y) — L(G; Y'™) is given byT — Jy - T.

Proposition 3.3. Let X = (X, X1) be any fully compatible pair, let E3, ..., E,, and F be
any Banach spaces, and let X = (Xo, X1)o.1 for some 0 < & < 1 be given. If both,

Me [‘C”AZa"'aAl‘n](XOa E25"'5El‘n; F)a
MelLl,L,....,LI(X1, E2, ..., Ep; F),
then

Mell, Ap, ..., Anl(X, E2, ..., En; F).

Proof. Itis sufficient to prove
M :E, — L(X,Ea,...,En_1;F) € Ap.
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For each Banach spa@we have a canonical isometry
‘C(Zs E27 cee Emfl§ F) = ‘C(Z; ‘C(E21 LR Emfl; F))'

For abbreviation we put¥ = L(E>,..., E,—1; F). Then the above formula reads as
L(Z,E2, ..., Ey_1; F) = L(Z;Y). With this identification we get from the assumption

M™ e L(En; L(X1;Y)) and M e A, (Em; L(X0; Y)).
Using the isometric embedding(G; Y) C L(G; Yiniy constructed above, we get
M™ € L(En; L(X1;Y™)) and M™ € Ay (Em: L(Xo: Y'™)).
Now, the interpolation formula (Theoret12) together with Proposition 3.1 gives us
M™ € Ay (Em; L(X; Y)).
SinceA,, is injective, this yields
M € Ay (Em; LX;Y)) = Ap(Ems LX, Ea, ..., En—1; F)). O
Theorem 3.4. For all closed, injective operator ideals Ay, ..., A, the following factor-
ization formula holds true:
[A1, ..., An]l=L(A1, ..., An).
Proof. Let M € [As, ..., Aul(E1, ..., Ey; F) be given. It is sufficient to construct a Ba-
nach spacé&, an operatorR € A1(E1; G) and a multilinear mapping
MgelLl, Ao, ..., Au1(G, Eo, ..., E,; F) satisfyingM = Mg(R,Id, ..., 1d).
By assumption, we have
M € A(Ex; L(Ea, ..., Em; F)).

We putY = L(E3, ..., En; F).LetG1 be the closure off D (Ep) inY andlet/ :G1 — ¥

be the canonical injection. Then we ha¥ = J . § for someS: E; — G1. Since

Az is supposed to be injective, we haSec A1(E1; G1). Let Go = E1/kerS and let

Qo: E1 — Gg be the canonical quotient map. Then we have a canonical linear continu-
ous dense embeddify: Go — G1 such thatS = T - Q¢. With respect to this embedding,
the pair(Go, G1) is fully compatible. Let O0< ® < 1 be fixed and puG = (Go, G1)e.1.

Then we get the following commutative diagram wittiy = T':

Go
Qo
To
ToQo
Eq G
n
S
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From Proposition 3.1 we concludg Qo € A1(E1; G). Next, we define multilinear
mappingsMp, Mg, andM; to make the following diagram commutative:

M
EixEyx---xE;, — F

T Id Id Id

M
Gi1xEyx- - xE; — F

We start with the definition oM1. To ensure the commutativity we should have
M1(T1ToQ0x1, - - -, Xm) = M(x1, ..., xm) = MDD (x1) (x2, ..., xm)
=S(x)(x2, ..., xm) = (T1ToQox1) (X2, . . ., Xm),
i.e., the first component applies to the remaining ones. Therefore, we define
My(L,x2,...,xm)=L(x2,...,xn) forLeG1C L(E2,...,E,; F).
ThenMj is obviously a mtilinear bounded mapping. Next, we define
Mg = M1(Ty,1d, ..., Id) and Mo= M1(T1To,1d, ..., |d).
This gives us the factorization
M = Mg(ToQo,1d, ..., Id) with ToQo € A1(E1; G).
Finally, we showM¢ € [L, Ao, ..., Aul(G, E2, ..., Ey; F). First, we define
Jo:L(Go, Eo, ..., Em_1; F) = L(E1, Eo, ..., Em_1; F)

by Jo(U) =U(Qo, Id, ..., 1d). SinceQq is a quotient mapJo comes out to be an isometric
embedding. Now we have

Jo- MJ™ =M™ € Ay (Ep; L(E1,..., En—1; F)),

and this impliesVIy" € Ay, (Ew; L(Go, Ez, ..., En_1; F)) by the injectivity of.A,,. The
same holds true for the other coordinates. This shows

MoelLl, Az, ..., Aul(Go, Eo, ..., Ey; F).
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Since(Go, G1) is fully compatible by construatin, we can apply Proposition 3.3. This
finally showsMg € [L, A2, ..., Anl(G, E2, ..., Ey; F). O

A large variety of closed and injective ideals can be found in [9] and in [7], and this
shows that the theorem has a wide field of applications.
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