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Abstract

We construct a factorization of certain multilinear mappings through linear operators belongin
closed, injective operator ideals using interpolation technique. An extension of the duality th
for interpolation spaces is also obtained.
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1. Introduction

The by now classical paper [2] states as a main result the equivalence of the foll
three statements for multilinear mappingsM ∈ L(E1, . . . ,Em;F):

(1) M is weak-to-norm continuous on bounded sets,
(2) the linearizations

M(j) :Ej →L(E1, . . . ,Ej−1,Ej+1, . . . ,Em;F)

given byM(j)(xj )(x1, . . . , xj−1, xj+1, . . . , xm) = M(x1, . . . , xm) are linear compac
operators,

(3) there is a factorizationM = L(T1, . . . , Tm) with compact linear operatorsTj ∈
L(Ej ;Gj) and a multilinearbounded mappingL ∈L(G1, . . . ,Gm;F).
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The importance of this theorem is evident: It reduces topological properties of mul
linear mappings (and finally of holomorphic functions) to associated linear operato
makes the linear theory applicable. Therefore, several authors have tried to exte
result to multilinear mappings with other topological properties instead of compactne
[1,4,5,8]. S. Geiss [4] and H. Junek [8] were the first who used operator ideals a
terpolation technique. Recall that a subclassA ⊆ L of linear bounded operators with th
componentsA(E;F) = A ∩ L(E;F) is called to be anoperator ideal, if all components
A(E;F) are linear subspaces ofL(E;F) containing the spaceF(E;F) of all operators
of finite rank and if the components satisfy the typicalideal condition:

For all operatorsT ∈ A(E;F) and all linear bounded operatorsS ∈ L(E1;E) andR ∈
L(F ;F1) the product satisfiesRT S ∈ A(E1;F1).

The idealsK andW of all compact or weakly compactoperators, respectively, a
important examples. For more details on operator ideals we refer to [9]. Ideals of
operators were used by A. Pietsch in [10] to generate ideals of multilinear mappings
different ways:

Definition 1.1. For idealsA1, . . . ,Am of linear operators we define the classes[A1, . . . ,

Am] andL(A1, . . . ,Am) as follows: ForM ∈ L(E1, . . . ,Em;F) we put

(1) M ∈ [A1, . . . ,Am](E1, . . . ,Em;F) if all linearizations

M(j) :Ej →L(E1, . . . ,Ej−1,Ej+1, . . . ,Em;F)

belong toAj (Ej ;L(E1, . . . ,Ej−1,Ej+1, . . . ,Em;F)).

(2) M ∈L(A1, . . . ,Am)(E1, . . . ,Em;F) if M admits a factorization

M = L(T1, . . . , Tm)

with some operatorsTj ∈ Aj (Ej ;Gj) and some bounded multilinear mappingL ∈
L(G1, . . . ,Gm;F).

Obviously, we always have an inclusionL(A1, . . . ,Am) ⊆ [A1, . . . ,Am]. ForAj = K
the Aron–Hervés–Valdivia result mentioned above states

L(K, . . . ,K) = [K, . . . ,K],
while

L(W, . . . ,W) = [W, . . . ,W]
was shown in [1]. Here, we will investigate for what further ideals a factorization form

L(A1, . . . ,Am) = [A1, . . . ,Am]
holds true. This cannot be expected for all operator ideals. Indeed, ifS2(H ;H) denotes
the ideal of the Hilbert–Schmidt operators on an infinite dimensional Hilbert space, the
we obviously have

L(S2,S2)(H,H ;C) �= [S2,S2](H,H ;C).

Therefore, we need additional conditions on the idealsAj to get factorization theorem
The following definition is important for this purpose.
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Definition 1.2. Let A be any operator ideal.

(1) A is called to be closed, if the componentsA(E;F) are closed subspaces ofL(E;F)

for all pairsE,F of Banach spaces.
(2) A is called to be injective, if anyT ∈ L(E;F) belongs toA(E;F) provided that there

is an isomorphic embeddingJ :F → F1 such thatJT ∈ A(E;F1).
(3) A is called to be surjective, ifT ∈L(E;F) belongs toA(E;F) provided that there is

some quotient mapQ :E0 → E such thatT Q ∈ A(E0;F).

The idealsW andK are both injective and surjective, the idealG of all approximable
operators is neither injective nor surjective, and the idealsU of all unconditionally sum-
ming operators (weakly summable sequences are mapped into norm summable sequenc
andV of all completely continuous operators (weakly convergent sequences are m
into norm convergent sequences) are closed and obviously injective, but not surjective.

It was shown in [4] that a factorization theorem holds true, if the closed idealsAj are
both injective and surjective, and it was statedin [5] that a factorization theorem holds al
true for closed, injective idealsA1 = · · · = Am = A. The wrong proof given in [5] wa
improved later on in [6].

In the present paper we give an alternative proof of the factorization formula for cl
injective ideals using interpolation spaces. This method works well also for the case
different idealsA1, . . . ,Am and additionally it provides us with numerous possible f
torization spaces. The application of the interpolation technique to our situation requi
a vector valued version of the duality theorem for interpolation spaces given in this
This could also be useful in other applications.

2. Operators on interpolation spaces

Let us recall some notions of the interpolation theory. For details we refer to the tex
book [3].

Definition 2.1. A coupleX̄ = (X0,X1) of Banach spaces is called to be compatible, ifX0
andX1 are continuously embedded into some Hausdorff topological vector spaceZ. With
respect to this embedding we define as usually

∆X̄ = X0 ∩ X1 equipped with‖x‖∆X̄ = max
{‖x‖X0,‖x‖X1

}
,

ΣX̄ = X0 + X1 equipped with‖x‖ΣX̄ = inf
x=x0+x1

‖x0‖X0 + ‖x1‖X1,

and for allt > 0 we define the both functionals

J (t, x) = J (t, x, X̄) = max
{‖x‖X0, t‖x‖X1

}
for x ∈ ∆X̄,

K(t, x) = K(t, x, X̄) = inf
{‖x0‖X0 + t‖x1‖X1: x = x0 + x1

}
for x ∈ ΣX̄.

In particular, we have‖x‖∆X̄ = J (1, x) and‖x‖ΣX̄ = K(1, x).

Using these functionals theK- and theJ -interpolation methods can be established:
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Definition 2.2. For 0< Θ < 1 and 1� q < ∞ we define the interpolation spaces

(X0,X1)K,Θ,q =
{

x ∈ ΣX̄: ‖x‖q

K,Θ,q =
∞∑

ν=−∞

(
2−ΘνK(2ν, x)

)q
< ∞

}
,

(X0,X1)J,Θ,q =
{

x ∈ ΣX̄: ‖x‖q

J,Θ,q = inf
x=∑

ν xν

∞∑
ν=−∞

(
2−ΘνJ (2ν, xν)

)q
< ∞

}
,

where the convergencex = ∑
ν xν with xν ∈ ∆X̄ is taken inΣX̄. Forq = ∞ we put

‖x‖K,Θ,∞ = sup
ν∈Z

2−ΘνK(2ν, x) and ‖x‖J,Θ,∞ = inf
x=∑

ν xν

sup
ν∈Z

2−ΘνJ (2ν, xν),

respectively.

Because ofK(t, x + y) � K(t, x) + K(t, y) andJ (t, x + y) � J (t, x) + J (t, y) both
functionals‖ ·‖K,Θ,q and‖ ·‖J,Θ,q are norms. The central result of the interpolation the
is the equivalence of both methods:

Theorem 2.3 [3, Theorem 3.3.1].For 0 < Θ < 1 and 1 � q � ∞ we have (X0,X1)K,Θ,q =
(X0,X1)J,Θ,q with equivalent norms.

Now, we are going to extend the duality theorem on interpolation spaces from th
of linear functionals to linear operators.

Definition 2.4. A compatible pairX̄ = (X0,X1) is called to be fully compatible, if∆X̄ is
dense in both,X0 andX1.

Proposition 2.5. The pair X̄ = (X0,X1) is fully compatible if and only if for every Banach
space Y the restriction mappings

ρj :L(Xj ;Y ) →L(∆X̄;Y ), j = 0,1,

are injective. In this case, the pair

L(X̄;Y ) = (
L(X0;Y ),L(X1;Y )

)
is compatible with respect to the embeddings L(Xj ;Y ) ⊆ L(∆X̄;Y ) given by ρj . In par-
ticular, we have ΣL(X̄;Y ) ⊆ L(∆X̄;Y ).

Proof. If ∆X̄ is dense inX0 thenT |∆X̄ = 0 impliesT |X0 = 0 for all T ∈ L(X0;Y ), and
the same holds true forX1. The “only if” part is a consequence of the Hahn–Ban
theorem. �
Proposition 2.6. Let X̄ = (X0,X1) be any fully compatible pair and let Y be any Banach
space. Then we have

∆L(X̄;Y ) = L(ΣX̄;Y ) and ‖T :ΣX̄ → Y‖ = ‖T ‖∆L(X̄;Y ).
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Proof. EachT ∈ ∆L(X̄;Y ) admits a unique linear extensionT :ΣX̄ → Y defined by
T (x0 + x1) = T x0 + T x1 for x0 ∈ X0 andx1 ∈ X1. We are going to check the equality
the associated norms. Letx ∈ ΣX̄ with ‖x‖ΣX̄ < 1 be given. We choose a representat
x = x0 + x1 with ‖x0‖X0 + ‖x1‖X1 < 1. Then we get

‖T x‖ = ‖T x0 + T x1‖ � ‖T :X0 → Y‖ · ‖x0‖X0 + ‖T :X1 → Y‖ · ‖x1‖X1

� max
{‖T :X0 → Y‖,‖T :X1 → Y‖} · (‖x0‖X0 + ‖x1‖X1

)
,

and this implies‖T :ΣX̄ → Y‖ � ‖T ‖∆L(X̄;Y ). To prove the converse we may suppo
‖T ‖∆L(X̄;Y ) = ‖T :X0 → Y‖. For ε > 0 there is somex0 ∈ X0 with ‖x0‖X0 � 1 and

‖T :X0 → Y‖ � ‖T x0‖ + ε � ‖T :ΣX̄ → Y‖ · ‖x0‖ΣX̄ + ε � ‖T :ΣX̄ → Y‖ + ε. �
Corollary 2.7. Let X̄ = (X0,X1) be any fully compatible pair and let Y be any Banach
space. Then we have

J
(
t, T ,L(X̄;Y )

) = sup
x∈ΣX̄

‖T x‖
K(t−1, x, X̄)

for all T ∈L(ΣX̄;Y ) and all t > 0.

Proof. ForXt = (X1,‖ · ‖t ) with ‖x‖t = t−1‖x‖X1 andT ∈L(ΣX̄;Y ) we have

J
(
t, T ,L(X̄;Y )

) = max
{‖T :X0 → Y‖, t‖T :X1 → Y‖}

= max
{‖T :X0 → Y‖,‖T :Xt → Y‖}

= ‖T ‖∆L((X0,Xt );Y ),

and forx ∈ ΣX̄ we get

K(t−1, x, X̄) = inf
x=x0+x1

(‖x0‖X0 + t−1‖x1‖X1

) = ‖x‖Σ(X0,Xt ).

Now, the statement follows from Proposition 2.6.�
A Banach spaceY is said to have the metric extension property, if for any Ban

spaceX and any subspaceX0 ⊆ X each operatorT ∈L(X0;Y ) admits a norm preservin
extensionT̃ ∈ L(X;Y ). For example, allL∞-spaces have the metric extension propert

Proposition 2.8. Let X̄ = (X0,X1) be any fully compatible pair. Let Y be any Banach
space with the metric extension property. Then we have

ΣL(X̄;Y ) = L(∆X̄;Y ) and ‖T :∆X̄ → Y‖ � ‖T ‖ΣL(X̄;Y ) � 2‖T :∆X̄ → Y‖.

Proof. To prove the first inequality, letT = T0 + T1 be any representation ofT ∈
L(X0;Y ) +L(X1;Y ) ⊆ L(∆X̄;Y ). Let x ∈ ∆X̄ be any point. Then we get

‖T x‖ = ‖T0x + T1x‖ � ‖T0x‖ + ‖T1x‖
� ‖T0 :X0 → Y‖ · ‖x‖X0 + ‖T1 :X1 → Y‖ · ‖x‖X1

�
(‖T0‖ + ‖T1‖

) · max
(‖x‖X0,‖x‖X1

) = (‖T0‖ + ‖T1‖
) · ‖x‖ ¯ .
∆X
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This implies‖T :∆X̄ → Y‖ � ‖T ‖ΣL(X̄;Y ). Conversely, let anyT :∆X̄ → Y be given.

We consider the normed subspaceE = {x ⊕ x: x ∈ ∆X̄} of X0 ⊕∞ X1 and define a linea
operatorS :E → Y by S(x ⊕ x) = T x. Then we get∥∥S(x ⊕ x)

∥∥ = ‖T x‖ � ‖T :∆X̄ → Y‖ · ‖x‖∆X̄ � ‖T :∆X̄ → Y‖ · ‖x ⊕ x‖E.

This implies‖S‖ � ‖T :∆X̄ → Y‖. SinceY has the metric extension property, there is
extension

S̃ :X0 ⊕∞ X1 → Y

of S satisfying‖S̃‖ = ‖S‖. Let ιj :Xj → X0 ⊕∞ X1 for j = 0,1 denote the canonica
embeddings. Putting

Tj = S̃ · ιj
we obtainT0x + T1x = S̃(x ⊕ 0) + S̃(0 ⊕ x) = S̃(x ⊕ x) = T x for x ∈ ∆X̄. This shows
ΣL(X̄;Y ) = L(∆X̄;Y ). Moreover, we have

‖T ‖ΣL(X̄;Y ) � ‖T0 : X0 → Y‖ + ‖T1 :X1 → Y‖ � 2‖S̃‖ � 2‖T :∆X̄ → Y‖,
and the proof is finished.�
Corollary 2.9. Let X̄ = (X0,X1) be any fully compatible pair and let Y be any Banach
space with the metric extension property. Then we have

K
(
t, T ,L(X̄;Y )

)
� 2 sup

x∈∆X̄

‖T x‖
J (t−1, x, X̄)

� 2K
(
t, T ,L(X̄;Y )

)
for all T ∈ ΣL(X̄;Y ) and all t > 0.

Proof. For t > 0 we define the Banach spaceXt = (X1,‖ · ‖t ) with ‖x‖t = t−1‖x‖X1. For
T ∈ ΣL(X̄;Y ) we get

K
(
t, T ,L(X̄;Y )

) = inf
T =T0+T1

(‖T0 :X0 → Y‖ + t‖T1 :X1 → Y‖)
= inf

T =T0+T1

(‖T0 :X0 → Y‖ + ‖T1 :Xt → Y‖)
= ‖T ‖ΣL((X0,Xt );Y ).

On the other hand, we have‖x‖∆(X0,Xt ) = max(‖x‖X0, t
−1‖x‖X1) = J (t−1, x, X̄) for

x ∈ ∆X̄ . The statement of the corollaryfollows now from Proposition 2.8. �
Proposition 2.10. Let X̄ = (X0,X1) be any fully compatible pair and let Y be any Banach
space. For any 0 < Θ < 1 and any 1 � q < ∞ we have(

L(X0;Y ),L(X1;Y )
)
J,Θ,q ′ ⊆ L

(
(X0;X1)K,Θ,q;Y

)
with ∥∥T : (X0,X1)K,Θ,q → Y

∥∥ � ‖T ‖J,Θ,q ′ .
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Proof. For 1� p � ∞ we denote the norm of the sequence space�p(Z) by ‖ · ‖p . Let
T ∈ ΣL(X̄;Y ) with 0 �= ‖T ‖J,Θ,q ′ < ∞ be given. Forε > 0 we choose a representati
T = ∑

ν∈Z
Tν with Tν ∈L(ΣX̄;Y ) and∥∥(

2−νΘJ
(
2ν, Tν,L(X̄;Y )

))∥∥
q ′ � (1+ ε)‖T ‖J,Θ,q ′ .

Let x ∈ ∆X̄ be fixed. Using Corollary 2.7 and Hölder’s inequality we get

‖T x‖Y �
∑
ν∈Z

‖Tνx‖ �
∑
ν∈Z

K(2−ν, x, X̄) · J (
2ν, Tν,L(X̄;Y )

)

=
∑
ν∈Z

2ΘνK(2−ν, x, X̄) · 2−ΘνJ
(
2ν, Tν,L(X̄;Y )

)
�

∥∥(
2−ΘνK(2ν, x, X̄)

)∥∥
q

· ∥∥(
2−ΘνJ

(
2ν, Tν,L(X̄;Y )

))∥∥
q ′

� ‖x‖K,Θ,q · (1+ ε)‖T ‖J,Θ,q ′ .

Since∆X̄ is dense in(X0,X1)K,Θ,q (cf. [3, Theorem 3.4.2]), the inequality

‖T x‖Y � ‖x‖K,Θ,q · (1+ ε)‖T ‖J,Θ,q ′

holds true for allx ∈ (X0,X1)K,Θ,q , and this implies the claimed estimation.�
An inverse inclusion holds true at least for the caseq = 1:

Proposition 2.11. Let X̄ = (X0,X1) be any fully compatible pair and let Y be any Banach
space with the metric extension property. For any 0 < Θ < 1 we have

L
(
(X0,X1)J,Θ,1;Y

) ⊆ (
L(X0;Y ),L(X1;Y )

)
K,Θ,∞

with

‖T ‖K,Θ,∞ � 2
∥∥T : (X0,X1)J,Θ,1 → Y

∥∥.

Proof. We put X = (X0,X1)J,Θ,1. Let T ∈ L(X;Y ) be given. We fixε > 0. Proposi-
tion 2.8 impliesT ∈ ΣL(X̄;Y ). By Corollary 2.9, for eachν ∈ Z there is somex ∈ ∆X̄

such that

K
(
2−ν, T ,L(X̄;Y )

)
� (2+ ε)

‖T x‖
J (2ν, x, X̄)

� (2+ ε)‖T :X → Y‖ ‖x‖J,Θ,1

J (2ν, x, X̄)
.

Since‖x‖J,Θ,1 � 2−ΘνJ (2ν, x) for x ∈ ∆X̄ and allν ∈ Z, we get

2ΘνK
(
2−ν, T ,L(X̄;Y )

)
� (2+ ε)‖T : X → Y‖

for all ν ∈ Z, and this implies‖T ‖K,Θ,∞ � (2+ ε)‖T :X → Y‖. �
As a consequence we obtain from Theorem2.3, Propositions 2.10 and 2.11 the follo

ing generalization of the duality theorem:
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Theorem 2.12. Let X̄ = (X0,X1) be any fully compatible pair and let Y be any Banach
space with the metric extension property. Then we have

L
(
(X0,X1)Θ,1;Y

) = (
L(X0;Y ),L(X1;Y )

)
Θ,∞

with equivalent norms.

3. Ideals of operators on interpolation spaces

In this section we are going to study injective ideals on interpolation spaces. Let(Y0, Y1)

be any compatible pair. Recall that a Banach spaceY with ∆Ȳ ⊆ Y ⊆ ΣȲ is of the class
J (Θ,Y0, Y1) for 0 < Θ < 1, if there is some constantC such that‖y‖Y � Ct−ΘJ (t, y)

holds true for allt > 0 and ally ∈ ∆Ȳ . Obviously, the interpolation spaces(Y0, Y1)J,Θ,q

are of classJ (Θ,Y0, Y1) for all 1 � q � ∞ (see [3, Theorem 3.2.2]).
The starting point is now the following result due to Stephan Heinrich proved in [

Proposition 1.6:

Proposition 3.1. Let A be any closed, injective operator ideal, let (Y0, Y1) be a compatible
pair and let Y be of class J (Θ,Y0, Y1) for some 0 < Θ < 1. If T ∈ A(X;Y0) and T ∈
L(X;Y1) then T ∈A(X;Y ).

In order to extend at least some version of this result to the multilinear case w
use the canonical embedding of a Banach spaceY into a space with the metric extensio
property:

Definition 3.2. For any Banach spaceY we define

Y inj = �∞(BY ′) and JY :Y → Y inj by JY y = 〈y, ·〉.

The mappingJY is obviously an isometric embedding andY inj shares the metric exten
sion property with allL∞-spaces. It is easy to see that for all Banach spacesG andY an
isometric embeddingL(G;Y ) →L(G;Y inj) is given byT 
→ JY · T .

Proposition 3.3. Let X̄ = (X0,X1) be any fully compatible pair, let E2, . . . ,Em and F be
any Banach spaces, and let X = (X0,X1)Θ,1 for some 0 < Θ < 1 be given. If both,

M ∈ [L,A2, . . . ,Am](X0,E2, . . . ,Em;F),

M ∈ [L,L, . . . ,L](X1,E2, . . . ,Em;F),

then

M ∈ [L,A2, . . . ,Am](X,E2, . . . ,Em;F).

Proof. It is sufficient to prove

M(m) :Em → L(X,E2, . . . ,Em−1;F) ∈Am.
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For each Banach spaceZ we have a canonical isometry

L(Z,E2, . . . ,Em−1;F) = L
(
Z;L(E2, . . . ,Em−1;F)

)
.

For abbreviation we putY = L(E2, . . . ,Em−1;F). Then the above formula reads
L(Z,E2, . . . ,Em−1;F) = L(Z;Y ). With this identification we get from the assumption

M(m) ∈L
(
Em;L(X1;Y )

)
and M(m) ∈ Am

(
Em;L(X0;Y )

)
.

Using the isometric embeddingL(G;Y ) ⊆ L(G;Y inj) constructed above, we get

M(m) ∈L
(
Em;L(X1;Y inj)

)
and M(m) ∈ Am

(
Em;L(X0;Y inj)

)
.

Now, the interpolation formula (Theorem2.12) together with Proposition 3.1 gives us

M(m) ∈Am

(
Em;L(X;Y inj)

)
.

SinceAm is injective, this yields

M(m) ∈Am

(
Em;L(X;Y )

) =Am

(
Em;L(X,E2, . . . ,Em−1;F)

)
. �

Theorem 3.4. For all closed, injective operator ideals A1, . . . ,Am the following factor-
ization formula holds true:

[A1, . . . ,Am] = L(A1, . . . ,Am).

Proof. Let M ∈ [A1, . . . ,Am](E1, . . . ,Em;F) be given. It is sufficient to construct a B
nach spaceG, an operatorR ∈A1(E1;G) and a multilinear mapping

MG ∈ [L,A2, . . . ,Am](G,E2, . . . ,Em;F) satisfyingM = MG(R, Id, . . . , Id).

By assumption, we have

M(1) ∈ A1
(
E1;L(E2, . . . ,Em;F)

)
.

We putY = L(E2, . . . ,Em;F). LetG1 be the closure ofM(1)(E1) in Y and letJ :G1 → Y

be the canonical injection. Then we haveM(1) = J · S for someS :E1 → G1. Since
A1 is supposed to be injective, we haveS ∈ A1(E1;G1). Let G0 = E1/kerS and let
Q0 :E1 → G0 be the canonical quotient map. Then we have a canonical linear con
ous dense embeddingT :G0 → G1 such thatS = T · Q0. With respect to this embeddin
the pair(G0,G1) is fully compatible. Let 0< Θ < 1 be fixed and putG = (G0,G1)Θ,1.
Then we get the following commutative diagram withT1T0 = T :

E1
�T0Q0

G

�

G0

T0

�
T1

G1

���������Q0

���������S
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r

ic
From Proposition 3.1 we concludeT0Q0 ∈ A1(E1;G). Next, we define multilinea
mappingsM0, MG, andM1 to make the following diagram commutative:

E1 × E2 × · · · × Em
�M

F

Q0

�
Id

�
Id

�
Id

�
G0 × E2 × · · · × Em

�M0
F

T0

�
Id

�
Id

�
Id

�
G × E2 × · · · × Em

�MG
F

T1

�
Id

�
Id

�
Id

�
G1 × E2 × · · · × Em

�M1
F

We start with the definition ofM1. To ensure the commutativity we should have

M1(T1T0Q0x1, . . . , xm) = M(x1, . . . , xm) = M(1)(x1)(x2, . . . , xm)

= S(x1)(x2, . . . , xm) = (T1T0Q0x1)(x2, . . . , xm),

i.e., the first component applies to the remaining ones. Therefore, we define

M1(L,x2, . . . , xm) = L(x2, . . . , xm) for L ∈ G1 ⊆ L(E2, . . . ,Em;F).

ThenM1 is obviously a multilinear bounded mapping. Next, we define

MG = M1(T1, Id, . . . , Id) and M0 = M1(T1T0, Id, . . . , Id).

This gives us the factorization

M = MG(T0Q0, Id, . . . , Id) with T0Q0 ∈A1(E1;G).

Finally, we showMG ∈ [L,A2, . . . ,Am](G,E2, . . . ,Em;F). First, we define

J0 :L(G0,E2, . . . ,Em−1;F) →L(E1,E2, . . . ,Em−1;F)

byJ0(U) = U(Q0, Id, . . . , Id). SinceQ0 is a quotient map,J0 comes out to be an isometr
embedding. Now we have

J0 · M(m)
0 = M(m) ∈ Am

(
Em;L(E1, . . . ,Em−1;F)

)
,

and this impliesM(m)
0 ∈ Am(Em;L(G0,E2, . . . ,Em−1;F)) by the injectivity ofAm. The

same holds true for the other coordinates. This shows

M0 ∈ [L,A2, . . . ,Am](G0,E2, . . . ,Em;F).
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is

this

181–

al. 52

c. 127

.

987)

on
Since(G0,G1) is fully compatible by construction, we can apply Proposition 3.3. Th
finally showsMG ∈ [L,A2, . . . ,Am](G,E2, . . . ,Em;F). �

A large variety of closed and injective ideals can be found in [9] and in [7], and
shows that the theorem has a wide field of applications.
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