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This paper deals with the fully-developed two-layer Eyring–Powell fluid in a vertical channel
divided into two equal regions. One region is filled with the clear Eyring–Powell fluid and other with
the nano-Eyring–Powell fluid. The flow is observed under the uniform wall temperature and concentra-
tion boundary conditions for combined heat and mass transfer. The governing coupled nonlinear ordinary
differential equations (ODEs) of the flow in each layer are analytically solved by using optimal homotopy
analysis method (OHAM) based on the homotopy analysis method (HAM). HAM is an efficient analytical
approximation method to solve highly nonlinear problems. The effect of Brownian motion parameter on
Eyring–Powell fluid is also observed and the influence of significant parameters is presented for their
different values.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction a multi-layer, where on each fluid substrate a different layer is
The study of mixed, free and forced convective heat transfer in a
vertical parallel plate channel has always gained massive attention
because of its wide range applications in many industrial pro-
cesses. Methodologies to suppress or eliminate interfacial instabil-
ities and further stabilize multi-layer flows, are therefore
inherently of interest. Some examples comprise microelectronic
cooling, design of cooling system in electronic devices, nuclear
reactors cooled during emergency shutdown, chemical processing
equipment, solar technology, etc. Initially, Tao [1] has investigated
the laminar fully developed mixed convection in a vertical channel
and later, this work of Tao was extended by Habchi and Acharya [2]
to asymmetric heating where one plate is heated and the other
plate is adiabatic. Further, in a vertical channel with asymmetric
wall temperature, Aung and Worku [3] analyzed developing flow
and flow reversal and then they provided results for mixed convec-
tion flow with different wall temperatures [4]. Single-fluid model
was considered in all the above mentioned studies, but a large
amount of the scientific and technological problems related to
plasma physics, petroleum industry, magnetofluid dynamics,
geophysics, etc., involve multifluid flow situations. Multilayer
flows mainly occur in three different patterns. First of all in
co-extrusion processes which make a product of more than one
layer concurrently. Secondly, several film coating processes involve
used. Thirdly, in lubricated transport processes in which between
the walls of a duct and the transported fluid, a lubricating fluid lies
in a layer. The flow and the heat transfer of two immiscible fluids
were investigated by Nikodijevic et al. [5] in the presence of a uni-
form inclined magnetic field. And a three-layer unsteady flow in
which porous media are sandwiched between viscous fluids was
studied by Umavathi et al. [6]. Recently, Farooq et al. investigated
the two-layer flow with nanofluids for third grade-fluids [7]. They
have considered the mixed-convection in a vertical channel and
the fluid properties at the interface are also observed.

The study of nanofluids has now become a global research area
and it has gained the massive attention of researchers in the last
few years. Its properties are known to be effective on heat transfer
and convective flows such as viscosity and thermal conductivity.
Water, oil and ethylene glycol mixture are the conventional heat
transfer fluids and these fluids are poor at heat transfer. An
innovative technique has been used extensively to improve the
heat transfer by using ultra fine solid particles in the fluids during
the last decade. For this purpose, Choi [8] introduced the term
nanofluid which refers to the fluids by suspending nano-scale (less
than 1%) particles in the base fluid which increases the thermal
conductivity of the fluid up to approximately two times. Nanotech-
nology is regarded as one of the most significant forces that is the
foundation of the next major industrial revolution of this century
and it causes many applications in space crafts, electronic devices,
artificial organs, metrology and cooling applications of nanofluids,
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etc. Therefore, nanofluids promise to fetch about a revolution in
cooling technologies. As a consequence of these discoveries,
research and development on nanofluids has drawn considerable
attention from industry and academia over the past several years.
For the first time Khanafer et al. [9] examined heat transfer perfor-
mance of nanofluids enclosing the solid particle dispersion. A
detailed review on nanofluids has been given in a book entitled
Nanofluids: Science and Technology by Das et al. [10]. For a fully
developed flow the effect of nanoparticle volume fraction on veloc-
ity and temperature distribution was studied by Xu and Pop [11].
They have also counted into the laminar mixed convection flow
of a nanofluid caused by both the buoyancy force and external
pressure gradient in a vertical channel [12]. Nadeem et al. [13]
inspected the non-aligned stagnation point nano fluid over a con-
vective surface in the presence of a partial slip. Furthermore, they
numerically investigated the effect of the magnetic field on the
oblique flow of a Walter-B type nano fluid over a convective
surface [14].

Eyring–Powell fluid model [15] a complete mathematical model
was proposed by Powell and Eyring in 1944. It possesses many
advantages over the non-Newtonian fluid models such as it is
evoked from the kinetic theory of liquids rather than the empirical
relation and also for low and high shear rates it correctly reduces to
Newtonian behavior. The flow of an Eyring–Powell model fluid due
to a stretching cylinder with variable viscosity under boundary
layer conditions was presented by Malik et al. [16]. Hayat et al.
[17] examined the steady flow of an Eyring–Powell fluid over a
striking surface with convective boundary conditions. Ara et al.
[18] investigated the effect of thermal radiations on this flow over
an exponentially shrinking sheet.

To the best of authors’ knowledge, the non-Newtonian clear
Eyring–Powell fluid and non-Newtonian nano-Eyring–Powell fluid
has never been investigated together in a two layer vertical
channel. This study investigates the steady fully-developed mixed
convection flow in a vertical channel and the governing fluid equa-
tions in each layer of the channel are more complicated because of
the presence of non-Newtonian Eyring–Powell fluid. Buoyancy
force using the mathematical nano-fluid model presented by Buon-
giorno [19], and an outer pressure gradient is used to drive the
flow. Until now, many studies have been presented which discuss
the influence of different fluid parameters on Eyring–Powell fluid
so, this study explicitly focuses on the effects of Brownian motion
parameter, buoyancy parameter, and thermophoretic effects on
this fluid and it may be considered as the extension of the problem
of a two-layer flow of viscous fluid along with viscous nano-fluid
investigated by Farooq and Liang [20].

In this paper, the optimal analysis homotopy method (OHAM)
via Mathematica package BVPH2.0 is used to solve the governing
Fig. 1. Physical configura
nonlinear coupled ODEs of the non-Newtonian fluid in both layers.
Residual errors and convergence control parameters for different
orders of approximation are presented in the tables. Graphical
results are displayed to show the influence of several interesting
parameters on the fluid flow, heat, and mass transfer. Fluid behav-
ior at the interface is also noted and discussed through the tables. A
comparison between the values of the physical properties of the
viscous fluid and a special case of Eyring–Powell fluid is presented
through the tables.

2. Mathematical model

Mathematically the Eyring–Powell model is presented as

A ¼ �pI þ C ð1Þ
where extra stress tensor C is given by

C ¼ l A1 þ 1
b _c

sin h�1 1
c
_c

� �
A1 ð2Þ

here l , b and c are the rheological parameters of the Eyring–Powell
fluid model [21], l is the coefficient of shear viscosity and c has the

dimension of ðtimeÞ�1 . We take the second order approximation of

the ðsin hÞ�1 function as

sin h�1 1
c
_c

� �
ffi 1

c
_c� 1

6
1
c
_c

� �3

;
1
c
_c

����
���� << 1 ð3Þ

and Eq. (2) takes the form

C ¼ lþ 1
bc

� �
A1 � 1

6bc3
_c2A1 ð4Þ

where _c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1
2 trA

2
1

q
and the kinematical tensor A1 is defined as

A1 ¼ rV þ ðrVÞT .

2.1. Problem formulation

Consider a two-layer vertical channel as shown in Fig. 1, also
consider a steady, laminar, boundary layer, and incompressible
flow between two vertical parallel plates extended in the x and z
direction. l is the width of each layer and the region in the domain
0 6 y 6 l is filled with clear Eyring–Powell fluid with viscosity l1

and density q1 . The other region in the domain �l 6 y 6 0 is filled
with nano-Eyring–Powell fluid with viscosity l2 and density q2. It
is assumed that the pressure gradient is constant in both the
regions, but the wall temperature is different for both the bound-
ary walls of the channel. The left wall is held at temperature Tw2

and the right wall is held at Tw1 temperature with Tw1 > Tw2.
tion of the problem.
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Under the above assumptions, the governing equations of
momentum and energy for the region-I are as follows:

m1þ 1
q1bc

� �
d2u1

dy2
� 1
2q1bc3

du1

dy

� �2 d2u1

dy2

 !
� 1
q1

@p
@x

þgb1ðT1�Tw2Þ¼ 0

ð5Þ

a1
d2T1

dy2
þ 1
q1Cp

m1þ 1
q1bc

� �
du1

dy

� �2

� 1
6q1bc3

du1

dy

� �4
 !

þ Q1

q1Cp
ðT1�Tw2Þ¼0

ð6Þ
and the governing equations of momentum, energy, and nanoparti-
cle volume fraction for region-II are defined as:

m2 þ 1
q2bc

� �
d2u2

dy2
� 1
2q2bc3

du2

dy

� �2 d2u2

dy2

 !
� 1
q2

@p
@x

þ gb2ðT2 � Tw2Þ ¼ 0

ð7Þ

a2
d2T2
dy2

þ 1
q2 Cp

m2þ 1
q2 bc

� �
du2
dy

� �2
� 1

6q2bc3
du2
dy

� �4� �

þs DB
dC
dy

dT2
dy

dT2
dy

� �2
þ DT

Tw2

dT2
dy

� �2� �
þ Q2

q2 Cp
ðT2�Tw2Þ¼0

ð8Þ

DB
d2C

dy2
þ DT

Tw2

d2T2

dy2
¼ 0 ð9Þ

here the subscripts i ¼ 1;2 indicate the values for region-I and
region-II, respectively. ui and v i are the x and y-components of
the velocity vector, mi are the kinematic viscosities, Qi are the
absorption parameters or internal heat generations, Ti are the tem-
peratures, g is the gravitational acceleration, bi are the thermal
expansion coefficients, C is the nanoparticle volume fraction, DT is
the coefficient of thermophoretic diffusion, DB is the coefficient of
Brownian diffusion and s is the heat capacity ratio defined as

s ¼ ðq CpÞp
ðq CpÞf

with ðqCpÞp being heat capacity of the nanoparticle and

ðqCpÞf being the heat capacity of the base fluid.
The velocity, temperature, shear stress, and the heat flux are

supposed to be continuous at the interface [20]. The x-component
of the velocity vanishes for no-slip boundary conditions at the
interface and there exist isothermal boundary conditions at the
temperature. All the above assumptions lead us to the following
boundary conditions:

u1ðyÞ ¼ 0; T1ðyÞ ¼ Tw1 at y ¼ l;

u1ðyÞ ¼ u2ðyÞ; T1ðyÞ ¼ T2ðyÞ; CðyÞ ¼ 0

l1 þ 1
bc

� 	 du1
dy � 1

6b c3
du1
dy

� �3
¼ l2 þ 1

bc

� 	 du2
dy � 1

6b c3
du2
dy

� �3
;

K1
dT1
dy ¼ K2

dT2
dy ;

9>>>>>>>=
>>>>>>>;

at y ¼ 0;

u2ðyÞ ¼ 0; T2ðyÞ ¼ Tw2; CðyÞ ¼ Cw at y ¼ �l

ð10Þ
here Ki represent the thermal conductivities of regions I and II.

2.2. Non-dimensionalization

The fundamental dimensionless quantities are defined as:

y� ¼ y
l
; u�

i ¼
ui

~ui
; Ti ¼ Tw2þðTw1�Tw2ÞhiðyÞ; C¼Cw/ðyÞ;

Pi ¼� l2

li
~ui

@p
@x

; Gri ¼ gbiðTw1�Tw2Þl3
m2i

; Rei ¼
~uil
mi

ð11Þ
here ~ui symbolize the average velocities in regions I and II. Substi-
tuting the above defined non-dimensional similarity variables in
Eqs. (5)–(9) give us the following non-dimensional governing
equations:

Region-I

ð1þM1Þd
2u1

dy2
�M1 c1

du1

dy

� �2 d2u1

dy2
þ P1 þ k1h1 ¼ 0 ð12Þ

1
Pr1

d2h1

dy2
þ Ec ð1þM1Þ du1

dy

� �2

�M1 c1
3

du1

dy

� �4
 !

þ d1h1 ¼ 0 ð13Þ

Region-II

ð1þM2Þd
2u2

dy2
�M2 c2

du2

dy

� �2 d2u2

dy2
þ P2 þ k2h2 ¼ 0 ð14Þ

1
Pr2

d2h2

dy2
þ Ec ð1þM2Þ du2

dy
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�M2 c2
3

du2

dy

� �4
 !

þ Nb
dh2
dy

d/
dy

þ Nt
dh2
dy

� �2

þ d2h2 ¼ 0 ð15Þ

d2/

dy2
þ Nt

Nb

d2h2

dy2
¼ 0 ð16Þ

P1 and P2 are the unknown pressure constants in Eqs. (12) and
(14), therefore, conveniently, we differentiate these two equations
with respect to y to get equations independent of these pressure
constants.

ð1þM1Þd
3u1

dy3
�M1c1 2

du1

dy
d2u1

dy2

 !2

þ du1

dy

� �2 d3u1

dy3

0
@

1
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ð17Þ
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dy3
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 !2
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0
@

1
Aþk2

dh2
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ð18Þ

in Eqs. (12)–(18), Mi ¼ 1
lib c

and ci ¼
~u2
i

2c2 l2
are the rheological

parameters, ki ¼ Gri
Rei

are the mixed convection parameters, Pri ¼ mi
ai

are the Prandtl numbers and di ¼ Qil
2

qiCpmi
are the heat source/sink

parameters in region-I and region-II, respectively, Nb ¼ sDBCw
m2

is

the Brownian motion parameter and Nt ¼ sDT ðTw1�Tw2Þ
m2Tw2

is the ther-

mophoretic parameter in region-II containing nano-Eyring–Powell
fluid.

The corresponding boundary conditions in Eq. (10) are defined
in dimensionless form as:

u1ðyÞ¼0; h1ðyÞ¼1 at y¼1;

u1ðyÞ¼u2ðyÞ; h1ðyÞ¼ h2ðyÞ; /ðyÞ¼0;

ð1þM1Þdu1dy �M1 c1
3

du1
dy

� �3
¼ 1

l ð1þM2Þdu2dy �M2 c2
3 ðdu2dy Þ

3� �
;

dh1
dy ¼ 1

K
dh2
dy ;

9>>>>>>>=
>>>>>>>;

at y¼0;

u2ðyÞ¼0; h2ðyÞ¼0; /ðyÞ¼1at y¼�1
ð19Þ

where l ¼ l1
l2

and K ¼ K1
K2
.



Table 1
Numerical values of local skin friction coefficient Cf and the local Nusselt number Nu

for physical parameters M1;Nb;Nt in region-I.

M Nb Nt Re
1
2 Cf

���
y¼0

Re
1
2 Cf

���
y¼1

Re�
1
2 Nu

���
y¼0

Re�
1
2 Nu

���
y¼1

0.0 0.019 2.982 0.782 2.589
0.2 0.1 0.1 0.024 3.249 0.791 0.144
0.4 0.137 3.309 0.805 0.421

0.01 0.156 2.310 0.691 2.438
0.2 0.1 0.1 0.224 2.288 0.684 2.207

0.3 0.262 2.259 0.679 2.194

0.01 0.156 2.310 0.682 2.388
0.2 0.1 0.1 0.157 2.315 0.823 2.250

0.3 0.159 2.321 0.999 2.072
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The mass flux conservation relations at two different cross sec-
tions in the channel are considered as the boundary conditions and
are given as:

Z 1

0
u1ðyÞdy ¼

Z 0

�1
u2ðyÞdy ¼ 1 ð20Þ

The most significant physical quantities of practical and engi-
neering interests are the local skin friction coefficient Cf , the local
Nusselt number Nu and the local Sherwood number Sh are defined
as

ðCf ;Nu; ShÞ ¼ Cw

qi~u
2
i

;
xqw

KiðTw1 � Tw2Þ ;
xMw

DBCw

� �����
y¼�1; 0; 1

ð21Þ

where the local wall shear stress Cw, local surface heat flux qw and
the local mass flux Mw are given from the following definitions

ðCw;qw;MwÞ¼ miþ 1
qibc

� �
dui

dy
� 1
2qibc3

dui

dy

� �3

; �Ki
dTi

dy
; �DB

dC
dy

 !�����
y¼�1; 0; 1

ð22Þ
using above definitions in Eq. (21) give the local skin friction coef-
ficient Cf , the local Nusselt number Nu and the local Sherwood
number Sh as:

Re
1
2
xCf ;Re

�1
2

x Nu;Re
�1

2
x Sh

� �

¼ ð1þMiÞdui

dy
�Mici

3
dui

dy

� �3
�����
y¼�1;0;1

;�dhi
dy

����
y¼�1;0;1

;�d/i

dy

����
y¼0;1

0
@

1
A ð23Þ

where Rei ¼ ~uil
mi
are the local Reynolds numbers.

3. Analytical approximation by means of HAM

The homotopy analysis method (HAM) first presented by Liao
[22,23] is used to obtain the analytical solutions. HAM is very pow-
erful to find analytical solutions as it provides huge flexibility to
choose the convergence region with the help of the convergence
control parameter �h and several interesting problems have been
solved by this method [24–26]. An efficient analytical optimal
homotopy analysis method (OHAM) by BVPh2.0 Mathematica
package will also be used to calculate some optimal solutions,
the residual errors and convergence control parameters of the ser-
ies solutions. OHAM based on HAM was proposed by Liao [27] and
is an efficient analytic tool to solve ordinary differential equations
and even some partial differential equations.

We select the auxiliary linear operators, L1½ui�; L2½ðhi;/Þ� as

ðL1½ui�; L2½ðhi;/Þ�Þ ¼ d3ui

dy3
;
d2ðhi;/Þ

dy2

 !
ð24Þ

The auxiliary linear operators defined in Eq. (24) satisfy the fol-
lowing properties

ðL1½ui�; L2½ðhi;/Þ�Þ ¼ L1 c1y2 þ c2yþ c3

 �

; L2½c4yþ c5�
� 	 ¼ 0 ð25Þ

where c1; c2; :::; c5 are the constants to be determined.
HAM gives us the freedom to choose the initial guess. All the

initial guesses must satisfy the boundary conditions and the two
supplementary constraints defined in Eqs. (15) and (17)–(20). We
chose the initial approximations satisfying the above mentioned
conditions as:

ðui;0ðyÞ; h1;0ðyÞ; h2;0ðyÞ;/0ðyÞÞ

¼ 3
2
ð1� y2Þ; 1

K
yþ 1� 1

K

� �
y2; yþ y2;

1
2
yþ 3

2
y2

� �
ð26Þ
4. Optimal convergence-control parameters

It is noted that in HAM the terms ui;mðyÞ, hi;mðyÞ and /mðyÞ
(where m is the order of approximation) contain the unknown
convergence-control parameters �hu1 ; �hu2 ; �hh1 ; �hh2 and �h/ which
determine the convergence region and rate of the homotopy-
series solutions. To determine the optimal values of these parame-
ters we use the so called average squared residual error defined by
Liao [22,23].

Eu1
m ðyÞ ¼ 1

r þ 1

Xr
j¼0

N1

Xm
i¼0

u1;iðyÞ;
Xm
i¼0

h1;iðyÞ
 !

y¼jDy

2
4

3
5

2

dy; ð27Þ

Eu2
m ðyÞ ¼ 1

r þ 1

Xr
j¼0

N2

Xm
i¼0

u2;iðyÞ;
Xm
i¼0

h2;iðyÞ
 !

y¼�1þjDy

2
4

3
5

2

dy; ð28Þ

Eh1
m ðyÞ ¼ 1

r þ 1

Xr
j¼0

N3

Xm
i¼0

u1;iðyÞ;
Xm
i¼0

h1;iðyÞ
 !

y¼jDy

2
4

3
5

2

dy; ð29Þ

Eh2
m ðyÞ ¼ 1

r þ 1

Xr
j¼0

N4

Xm
i¼0

u2;iðyÞ;
Xm
i¼0

h2;iðyÞ;
Xm
i¼0

/iðyÞ
 !

y¼�1þjDy

2
4

3
5

2

dy;

ð30Þ

E/
mðyÞ ¼

1
r þ 1

Xr
j¼0

N5

Xm
i¼0

/iðyÞ;
Xm
i¼0

h2;iðyÞ
 !

y¼�1þjDy

2
4

3
5

2

dy; ð31Þ

and

Et
mðyÞ ¼ Eu1

m ðyÞ þ Eu2
m ðyÞ þ Eh1

m ðyÞ þ Eh2
m ðyÞ þ E/

m ð32Þ
where Et

mðyÞ is the total squared residual error, Dy ¼ 0:5 and r ¼ 20 .
We have computed the average squared residual errors at 40th

order of approximation by using the optimal convergence control
parameters corresponding to the 2nd order of approximation for
a particular case with k1 ¼ Pri ¼ h ¼ 1 , Nt ¼ 0:01 , Nb ¼ di ¼
Ec ¼ ci ¼ Mi ¼ 0:1 and l ¼ K ¼ 0:5 . The results obtained from
Eqs. (15) and (17)-(20) are substituted in Eqs. (14) and (16) to
determine the values of unknown pressure constants P1 and P2

at the interface. For the convergence control parameters
ð�hu1 ;�hu2 ;�hh1 ;�hh2 ;�h/Þ ¼ ð�0:956;�1:063;�0:933;�0:928;�0:887Þ,
the average squared residuals are ðEu1

m ðyÞ;Eu2
m ðyÞ;Eh1

m ðyÞ;Eh2
m ðyÞ;

E/
mðyÞÞ ¼ ð5:33 � 10�31; 8:27 � 10�32; 2:15 � 10�31; 4:42 � 10�31;

1:64� 10�32Þ and the total squared residual error is
Et
mðyÞ ¼ 8:53� 10�31 and the pressure constants are

ðP1; P2Þ ¼ ð578:6;561:8Þ.



Table 2
Numerical values of local skin friction coefficient Cf , local Nusselt number Nu and the local Sherwood Sh number for physical parameters M2 ;Nb;Nt in region-II.

M Nb Nt Re
1
2 Cf

���
y¼0

Re
1
2 Cf

���
y¼�1

Re�
1
2 Nu

���
y¼0

Re�
1
2 Nu

���
y¼�1

Re�
1
2 Sh
���
y¼0

Re�
1
2 Sh
���
y¼�1

0.0 0.038 2.946 0.782 3.422 1.798 0.782
0.2 0.1 0.1 0.024 3.222 0.791 0.708 36.01 0.791
0.4 0.080 3.400 0.695 0.269 38.50 0.695

0.01 0.046 2.377 0.691 3.325 2.982 0.691
0.2 0.1 0.1 0.048 2.304 0.694 3.104 3.249 0.694

0.3 0.092 2.258 0.679 3.280 2.309 0.679

0.01 0.046 2.377 0.682 3.263 2.310 0.682
0.2 0.1 0.1 0.043 2.380 0.823 2.695 2.288 0.823

0.3 0.042 2.384 0.999 2.051 2.259 0.999

Fig. 2. Influence of buoyancy parameter k1 on velocity uðyÞ.

Fig. 3. Influence of non-Newtonian fluid parameter ci on velocity uðyÞ.

Table 3
Comparison between the values of velocity components of viscous fluid and a special
case of Eyring–Powell fluid ðM ¼ Ec ¼ 0Þ at the interface and right boundary wall of
region-I.

Nt Nb Viscous fluid Eyring–Powell fluid
ðM ¼ Ec ¼ 0Þ

� du1
dy ð0Þ � du1

dy ð1Þ � du1
dy ð0Þ � du1

dy ð1Þ

0.01 10.8294 14.9014 10.8294 14.9015
0.01 0.1 10.7782 14.8107 10.7782 14.8108

0.3 10.7658 14.8011 10.7658 10.7659

0.1 0.01 10.8283 14.8992 10.8283 14.8992
0.3 0.01 10.8259 14.8943 10.8259 14.8944

Table 4
Comparison between the values of velocity components of the viscous fluid and a
special case of Eyring–Powell fluid ðM ¼ Ec ¼ 0Þ at the interface and left boundary
wall of region-II.

Nt Nb Viscous fluid Eyring–Powell fluid
ðM ¼ Ec ¼ 0Þ

� du1
dy ð0Þ � du1

dy ð�1Þ � du1
dy ð0Þ � du1

dy ð�1Þ

0.01 5.4147 6.2677 5.4147 6.2677
0.01 0.1 5.3891 6.1780 5.3891 6.1780

0.3 5.3829 6.1684 5.3829 6.1684

0.1 0.01 5.4141 6.2656 5.4141 6.2656
0.3 0.01 5.4129 6.2611 5.4129 6.2611
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5. Results and discussion

This section explains the effects of significant parameters of the
fluid and nanoparticle volume fraction on velocity, heat, and mass
transfer in two regions of a vertical channel. One region was filled
with clear Eyring–Powell fluid and the other with nano-
Eyring–Powell fluid. For the conciseness of the study, the fluid
parameters in the region-I and region-II are considered as
ðn1; d1;M1; c1Þ ¼ ðn2; d2;M2; c2Þ and for these substantial parame-
ters, magnitude of the numerical values of different physical
parameters such as local skin friction coefficients Cf , local Nusselt
number Nu and the local Sherwood number Sh are presented in
Tables 1 and 2 for region-I and region-II, respectively.

The skin friction is given by Re
1
2
xCf which is mathematically pre-

sented in Eq. (23). Since dui
dy is negative which is being multiplied by

ð1þMiÞ greater than 1 and the second term �ðduidy Þ
3
is positive

which is multiplied by a fraction Mici
3 less than 1 which makes the

magnitude of the skin friction coefficient increase with an increase
in Mi. In Tables 1 and 2, with an increase in the parameters
Mi;Nb; and Nt , the local skin friction coefficient Cf is observed to
be increasing at the interface and the boundary walls but opposite
behavior for local Nusselt number Nu and the local Sherwood num-
ber Sh is observed. A very slight alteration in these physical quan-
tities is observed with an increase in Eyring–Powell parameters,
Brownian motion parameter and thermophoretic parameter in
the region-I and II. Tables 3 and 4 present the comparison between
the values of velocity components of the viscous fluid and a special
case of Eyring–Powell fluid ðM ¼ Ec ¼ 0Þ at the interface and the
boundary walls of region-I and II keeping k1 ¼ 150, Pr1 ¼ 2,
Pr2 ¼ 7, ci ¼ h ¼ 1, Mi ¼ 0:2, di ¼ 0:0, and l ¼ K ¼ 0:5. The
obtained results show a remarkable agreement which validates
the fluid model.



Fig. 9. Behavior of concentration profiles /ðyÞ for thermophoretic parameter Nt in
region-II.

Fig. 7. Behavior of concentration profiles /ðyÞ for Eyring–Powell fluid parameterM2

in region-II.
Fig. 4. Behavior of temperature profiles hðyÞ for non-Newtonian fluid parameters ci .

Fig. 8. Behavior of temperature profiles hðyÞ for Brownian parameter Nb .

Fig. 6. Behavior of temperature profiles hðyÞ for Eyring–Powell fluid parameter Mi .

Fig. 5. Influence of Eyring–Powell parameters Mi and velocity uðyÞ comparison for
viscous fluid (Mi ¼ 0) and Eyrin–Powell fluid.
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Figs. 2–10 present the behavior of velocity uðyÞ , temperature
profiles h ðyÞ and the concentration profiles / ðyÞ for different fluid
parameters, ki ¼ Gri

Rei
the mixed convection parameters, Mi the Eyr-

ing–Powell parameters, ci the non-Newtonian parameters, Pri the
Prandtl numbers, di the heat source/sink parameters, Nb the Brow-
nian motion parameter and Nt the thermophoretic parameter,
while keeping k1 ¼ 5, ci ¼ Pri ¼ 5;h ¼ 1, Mi ¼ 0:2, Nb ¼ di ¼ 0:1,
Nt ¼ 0:01 and l ¼ K ¼ 0:5.

Fig. 2 shows the behavior of velocity for mixed convection
parameter k1, also known as the buoyancy parameter. The velocity
profile shows increasing behavior for the forced convection i.e.



Fig. 10. Behavior of temperature profiles hðyÞ for Prandtl numbers Pri .
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k1 ! 0 and reaches to its maximum value uðyÞ ¼ 2:39 at the inter-
face. The reversed behavior of the velocity profiles is observed for
free convection i.e. k1 ! 1, the fluid flow reverses its direction for
large values of the buoyancy parameter and it changes the direc-
tion at y ¼ 0:45 in region-I and at y ¼ �0:45 in region-II. Figs. 3
and 4 depict the effect of non-Newtonian parameters ci on velocity
and temperature profiles respectively. Fig. 3 shows that the veloc-
ity of the fluid increases in both the regions but decreases at the
interface and it is observed in Fig. 4 that the heat transfer decreases
as the non-Newtonian parameter increases. Figs. 5–7 illustrate the
effect of fluid parameters Mi on velocity, temperature and concen-
tration profiles. For sufficiently large buoyancy parameter
k1 ¼ 100, a comparison in velocity profiles of viscous fluid Mi ¼ 0
and Eyring–Powell fluid for Mi ¼ 0:4 is presented in Fig. 5. Viscous
fluid shows high velocity profiles in both the regions and because
of the high buoyancy ratio, both the fluids reversed their direction
at y ¼ 0:4 in region-I and at y ¼ �0:4 in region-II. Fig. 6 demon-
strates that the increase inMi increases the heat transfer but oppo-
site behavior for mass transfer is observed in Fig. 7.

In Figs. 8 and 9, the influence of Brownian motion parameter Nb

on heat transfer, and thermophoretic parameter Nt on mass trans-
fer is presented respectively, and it is noted that the heat transfer
of the fluid is reduced when the Brownian motion is increased and
the mass transfer in the fluid is reduced when the thermophoresis
is increased. Increase in Prandtl numbers Pri increases the heat
transfer phenomena in the fluid as depicted in Fig. 10.

6. Conclusion

In this study, the two-layer Eyring–Powell fluid flow in a verti-
cal channel along with nanoparticles, termed as nano-Eyring–Pow-
ell fluid has been investigated. The vertical channel was divided
into two regions out of which one was filled with clear viscous
fluid and other with nano-Eyring–Powell fluid and width of the
regions was assumed to be equal. More or less significant and
interesting findings of the investigation are listed below

1. Sufficiently large buoyancy parameter or free convection can
reverse the flow.

2. Flow changes its direction in the interval ½�0:45;0:45�
3. Eyring–Powell parameter reduces the fluid flow, heat and mass

transfer.
4. Increase in Brownian motion parameter reduces the heat trans-
fer in the flow.

5. Mass transfer in the fluid reduces as the thermophoretic param-
eter increases.

6. Increase in Pri increases the temperature profiles.
7. Comparison of the results validates the fluid model.
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