Topology and its Applications 50 (1993) 11-33 North-Holland 11

CE equivalence and shape equivalence of LCⁿ compacta

Peter Mrozik

Berliner Str. 11, W-6361 Niddatal 1, Germany

Received 6 May 1991 Revised 9 January 1992

Abstract

Mrozik, P., CE equivalence and shape equivalence of LC^n compacta, Topology and its Applications 50 (1993) 11-33.

It is proved that each connected LC^{n+1} compactum X such that $\pi_1(X)$ is infinite admits a connected LC^n compactum X' which is shape equivalent but not UV^{n+1} equivalent, and a fortiori not CE equivalent, to X.

Keywords: CE equivalence, shape equivalence, UV^k equivalence, locally n-connected compacta.

AMS (MOS) Subj. Class.: 55P55, 54C56.

Introduction

A map of compacta is cell-like (CE) if all point-inverses have trivial shape. The CE maps generate an equivalence relation on the class CM_f of finite-dimensional compacta: $X, Y \in CM_f$ are called CE *equivalent* if there exist spaces $X_1 = X, X_2, \ldots, X_{2s}, X_{2s+1} = Y$ in CM_f and CE maps $X_{2i} \rightarrow X_{2i\pm 1}$, $i = 1, \ldots, s$. It is well known that CE equivalence implies shape equivalence. The converse, however, fails to be true. The first counterexample was given by Ferry who constructed a 1-dimensional compactum which is shape equivalent but CE inequivalent to the circle S^1 (see [6]). In [14] we produced a "universal counterexample" by showing that each connected compactum X such that pro- $\pi_1(X)$ is not pro-finite admits uncountably many compacta X_{α} , dim $X_{\alpha} \leq \max(\dim X, 3)$, which are all shape equivalent to X but pairwise CE inequivalent. However, all these spaces X_{α} , as well as Ferry's counterexample, are *not locally connected*, and therefore it is natural to ask whether shape equivalence implies CE equivalence if the spaces in question have suitable

Correspondence to: Dr. P. Mrozik, Schwälmer Str. 3, W-6000 Frankfurt 90, Germany.

0166-8641/93/\$06.00 © 1993-Elsevier Science Publishers B.V. All rights reserved

"local niceness" properties. For example, if "locally nice" means to be an ANR, then the answer is in the affirmative (see Ferry [8]).

The local niceness property considered in this paper is local n-connectedness. We recall the definition. Let Y be any space. A subset $Y_0 \subset Y$ is said to be a UV^n subset of Y if each neighbourhood U of Y_0 in Y admits a neighbourhood V of Y_0 in U such that each map $f: S^k \to V$ is inessential in U, k = 0, ..., n (we shall later refer to V as a UV^n shrinking of U). Y is called locally n-connected (LCⁿ) if each point $y \in Y$ is a UV^n subset of Y.

Generalizing Ferry's counterexample, Daverman and Venema have constructed LC^n compacta X_n , dim $X_n = n+2$, which are shape equivalent but CE inequivalent to S^1 (see [5]). That is, shape equivalence *does not* imply CE equivalence for finite-dimensional LC^n compacta.

The purpose of this paper is to discuss this phenomenon in a broader context. Let us denote by UV^m equivalence the equivalence relation generated by the UV^m maps on the class CM of all compacta (see [9, 14]). Recall that a compactum is UV^m if it can be embedded as a UV^m subset of an ANR (equivalently, if all embeddings into ANRs yield UV^m subsets), and that a map is UV^m if all point-inverses are UV^m . Clearly, CE equivalence implies UV^m equivalence.

Main Theorem. Let X be a connected LC^{n+1} compactum, $n \ge 0$, such that $\pi_1(X)$ is infinite. Then there exists a connected LC^n compactum X', dim $X' \le \max(\dim X, n+2)$, such that X and X' are shape equivalent but not UV^{n+1} equivalent. In particular, X and X' are not CE equivalent.

We remark that for connected LC¹ compacta, the condition that $\pi_1(X)$ be infinite is *equivalent* to the condition that pro- $\pi_1(X)$ be not pro-finite. See Corollary 4.3. Also observe that we may suppress basepoints since all spaces appearing here are path-connected.

The Main Theorem is best possible in the sense that one can neither drop the condition that $\pi_1(X)$ be infinite nor achieve that X' be LC^{n+1} . This follows from results by Ferry and Chigogidze. In fact, Ferry proved in [9] that if X is a connected compactum with pro- $\pi_1(X)$ pro-finite, then each connected compactum X' which is shape equivalent to X must also be UV^k equivalent to X for any $k \ge 0$, whereas Chigogidze proved in [4] that shape equivalent LC^{n+1} compacta are always UV^{n+1} equivalent (i.e., shape equivalence implies UV^{n+1} equivalence on the class of LC^{n+1} compacta).

The reconstruction of X' in the Main Theorem goes as follows. Choose a map $\varphi:[0,\infty) \to X$ which lifts to a map $\tilde{\varphi}:[0,\infty) \to \tilde{X}$ into some covering space \tilde{X} of X such that $\tilde{\varphi}([0,\infty))$ is not contained in any compact subset of \tilde{X} (see Proposition 4.2). Let a fixed compactum A "slide along φ " to produce copies A_t of A, intersecting X in $\varphi(t)$, such that "diameter $(A_t) \to 0$ as $t \to \infty$ ". This yields a space $X' = X \cup \bigcup_{t \ge 0} A_t$. See Section 3 how this can be made precise. If we take $A = H^{n+1} = (n+1)$ -dimensional Hawaiian earring, we are able to show that X' has the properties required in the Main Theorem. We note that the above-mentioned counterexamples

due to Daverman and Venema arise precisely by such a construction (with $A = S^{n+1}$). Moreover, if we take $A = S^0$, we easily see that X' is obtained from X by adding an *irregular ray* in the sense of [14].

The basic problem in proving results like the Main Theorem is to find *invariants* that are sufficiently fine to detect UV^m inequivalence (or CE inequivalence). The invariants used in this paper are called " UV^m groups"; they are defined in Section 1. Roughly speaking, the kth UV^m group $\pi_k^{(m)}(Y, y_0)$ of a pointed space (Y, y_0) is a modification of the ordinary kth homotopy group $\pi_k(Y, y_0)$ which is forced to be invariant under UV^m equivalence. The proof of the Main Theorem relies on the computation of certain UV^m groups. Not all of them, however, can be expected to be useful for our purposes. In fact, the invariant $\pi_k^{(m)}$ only has a chance to distinguish between shape equivalent LCⁿ compacta when $n < k \le m$. More precisely, we have $\pi_k^{(m)}(Y, y_0) = 0$ for k > m and any space Y (see Proposition 2.8), whereas $\pi_k^{(m)}(Y, y_0)$ is isomorphic to the kth shape group $\check{\pi}_k(Y, y_0)$ provided $k \le n, m$ and Y is an LCⁿ compactum (see Proposition 2.1 and Theorem 2.7).

1. A generalization of homotopy groups

Let \mathcal{M} be a class of nonempty topological spaces having the following properties. (\mathcal{M} 1) \mathcal{M} contains a one-point space *.

(*M*2) If $C_i \in \mathcal{M}$ and $c_i \in C_i$, i = 1, 2, then the one-point union $(C_1, c_1) \lor (C_2, c_2)$ is contained in \mathcal{M} .

(M3) For each $k \ge 1$, each $C \in \mathcal{M}$ and each map $\alpha: S^{k-1} \to C$, \mathcal{M} contains the mapping cylinder $M(\alpha) = (S^{k-1} \times I + C)/(x, 0) \sim \alpha(x)$ of α and the quotient space $C \times I/\alpha$ obtained from $C \times I$ by identifying all fibers $\{y\} \times I$, $y \in \alpha(S^{k-1})$, to points. (M4) There exists a set $\mathcal{M}' \subset \mathcal{M}$ such that each map $\alpha: S^{k-1} \to C$ with $k \ge 1$ and $C \in \mathcal{M}$ admits $C' \in \mathcal{M}'$ and maps $\alpha': S^{k-1} \to C', \gamma': C' \to C$ with $\gamma' \alpha' = \alpha$.

The basic examples in this paper are $\mathcal{M} = CE \approx CE$ compacta and $\mathcal{M} = UV^m = UV^m$ compacta.

For each space X and each $k \ge 1$ we let $\mathcal{M}_k(X)$ denote the class of all triples $\Delta = (C, \alpha, \beta)$ where $C \in \mathcal{M}$ and $\alpha : S^{k-1} \to C, \beta : C \to X$ are maps. Given two such triples $\Delta = (C, \alpha, \beta)$ and $\Delta' = (C', \alpha', \beta')$, we write $\Delta' \ge \Delta$ if there exists a map $\gamma : C' \to C$ such that commutativity holds in

We let \equiv denote the equivalence relation generated by \geq (explicitly, we set $\Delta \equiv \Delta'$ if there exist triples $\Delta_1 = \Delta, \Delta_2, \ldots, \Delta_{2s+1} = \Delta'$ in $\mathcal{M}_k(X)$ such that $\Delta_{2i} \geq \Delta_{2i\pm 1}$, $i = 1, \ldots, s$). We now define

$$\pi_k^{\mathcal{M}}(X) = \mathcal{M}_k(X) / \equiv.$$
(1)

By $(\mathcal{M}4)$, this is a set. The equivalence class of $\Delta = (C, \alpha, \beta)$ in $\pi_k^{\mathcal{M}}(X)$ will be denoted by $[\Delta] = [C, \alpha, \beta]$.

Lemma 1.1. Let $\Delta_i = (C_i, \alpha_i, \beta_i)$, i = 0, 1, and assume $C_0 = C_1 = C$ and $\beta_0 \alpha_0 = \beta_1 \alpha_1 = \Theta$. If there exist homotopies $g : \alpha_0 \simeq \alpha_1$ and $h : \beta_0 \simeq \beta_1$ such that the composed homotopy $h \circ g : \beta_0 \alpha_0 \simeq \beta_1 \alpha_1$ is stationary, then $\Delta_0 \equiv \Delta_1$.

Proof. Case 1: $\alpha_0 = \alpha_1 = \alpha$ and g is stationary. Let $\alpha': S^{k-1} \to C \times I/\alpha, \alpha'(x) = [x, 0]$. Since h must be stationary on $\alpha(S^{k-1})$, it induces a map $h': C \times I/\alpha \to X$ and we obtain a commutative diagram

where $i_t(c) = [c, t]$.

Case 2: General situation. Let $G: (S^{k-1} \times I + C) \times I \to C$, G(x, s, t) = g(x, 1-s+st) for $(x, s) \in S^{k-1} \times I$, G(c, t) = c for $c \in C$. Then $G(x, 0, t) = G(\alpha_1(x), t)$, i.e., G induces a homotopy $G': M(\alpha_1) \times I \to C$. Let $i: S^{k-1} \to M(\alpha_1)$, i(x) = [x, 1]. Then $G'_i i = g_i$, and we infer $\Delta_0 \equiv (M(\alpha_1), i, \beta_0 G'_0)$, $\Delta_1 \equiv (M(\alpha_1), i, \beta_1 G'_1)$. The composed homotopy $h \circ G': \beta_0 G'_0 = \beta_1 G'_1$ satisfies $(h \circ G')_i i = h_i G'_i i = h_i g_i = \Theta$. Using Case 1, we see that $(M(\alpha_1), i, \beta_0 G'_0) \equiv (M(\alpha_1), i, \beta_1 G'_1)$. \Box

To each $\Delta = (C, \alpha, \beta) \in \mathcal{M}_k(X)$ we associate the *total map* $\Theta_{\Delta} = \beta \alpha : S^{k-1} \to X$. It is clear that $\Theta_{\Delta} = \Theta_{\Delta'}$ provided $\Delta \equiv \Delta'$, and we can therefore define $\Theta_{[\Delta]} = \Theta_{\Delta}$ for $[\Delta] \in \pi_k^{\mathcal{M}}(X)$.

For $x_0 \in X$, let $\Delta_{x_0} = (*, \text{const}, \text{const}_{x_0}) \in \mathcal{M}_k(X)$. The following is obvious.

Observation 1.2. Let $\Delta = (C, \alpha, \beta) \in \mathcal{M}_k(X)$. If at least one of the maps $\alpha : S^{k-1} \to C$, $\beta : C \to X$ is constant, then $\Delta \equiv \Delta_{x_0}$ where $\{x_0\} = \Theta_{\Delta}(S^{k-1})$.

We are now ready to introduce the *fundamental M-groupoid* of a space X. This is the category $\mathcal{P}^{\mathcal{M}}(X)$ whose objects are the points of X and whose morphisms from x_2 to x_1 are the elements $[\Delta] \in \pi_1^{\mathcal{M}}(X)$ such that $\Theta_{[\Delta]}(1) = x_2$ and $\Theta_{[\Delta]}(-1) = x_1$ (observe $S^0 = \{1, -1\}$). Composition of morphisms is defined as follows. Let $\kappa : S^0 \to (S^0, 1) \vee (S^0, -1), \ \kappa(t) = t \in (S^0, -t) \subset (S^0, 1) \vee (S^0, -1)$. Moreover, for any pointed space (Y, y_0) , let $\nabla : (Y, y_0) \vee (Y, y_0) \to Y$ denote the folding map. Given

14

$$\Delta_{i} = (C_{i}, \alpha_{i}, \beta_{i}) \in \mathcal{M}_{1}(X), \ i = 1, 2, \text{ such that } \beta_{1}\alpha_{1}(1) = \beta_{2}\alpha_{2}(-1) = *, \text{ we define}$$

$$\Delta_{1}\Delta_{2} = ((C_{1}, \alpha_{1}(1)) \lor (C_{2}, \alpha_{2}(-1)), (\alpha_{1} \lor \alpha_{2}) \ltimes, \nabla(\beta_{1} \lor \beta_{2})) \in \mathcal{M}_{1}(X), \quad (2)$$

$$S^{0} \xrightarrow{\kappa} (S^{0}, 1) \lor (S^{0}, -1) \xrightarrow{\alpha_{1} \lor \alpha_{2}} (C_{1}, \alpha_{1}(1)) \lor (C_{2}, \alpha_{2}(-1)),$$

$$(C_{1}, \alpha_{1}(1)) \lor (C_{2}, \alpha_{2}(-1)) \xrightarrow{\beta_{1} \lor \beta_{2}} (X, *) \lor (X, *) \xrightarrow{\nabla} X.$$

It is easy to check that $\Delta_i \equiv \Delta'_i$, i = 1, 2, implies $\Delta_1 \Delta_2 \equiv \Delta'_1 \Delta'_2$. Hence, for $[\Delta_1] \in \mathscr{P}^{\mathscr{M}}(X)(x_3, x_2), [\Delta_2] \in \mathscr{P}^{\mathscr{M}}(X)(x_2, x_1)$, we can define

$$[\Delta_2] \circ [\Delta_1] = [\Delta_1 \Delta_2] \in \mathcal{P}^{\mathcal{M}}(X)(x_3, x_1).$$
(3)

It should be clear that this composition is associative and that the elements $[\Delta_{x_0}]$, $x_0 \in X$, are the identity morphisms. Moreover, an inverse for $[\Delta] = [C, \alpha, \beta] \in \mathcal{P}^{\mathcal{M}}(X)(x_2, x_1)$ is given by $[\Delta^{-1}] \in \mathcal{P}^{\mathcal{M}}(X)(x_1, x_2)$, where $\Delta^{-1} = (C, \alpha \nu, \beta)$ and $\nu : S^0 \to S^0$, $\nu(t) = -t$ (to see this, observe $\nabla(\beta \lor \beta) = \beta \nabla$ and apply Observation 1.2).

Next, for each $k \ge 1$, we shall define the *kth* \mathcal{M} group of a pointed space (X, x_0) . As a set, this is defined by

$$\pi_k^{\mathscr{M}}(X, x_0) = \{ [\Delta] \in \pi_k^{\mathscr{M}}(X) \mid \Theta_{[\Delta]}(S^{k-1}) = \{ x_0 \} \}.$$
(4)

Since $\pi_1^{\mathscr{M}}(X, x_0) = \mathscr{P}^{\mathscr{M}}(X)(x_0, x_0)$, we already have a group structure for k = 1(given by $[\Delta_1][\Delta_2] = [\Delta_2] \circ [\Delta_1] = [\Delta_1 \Delta_2]$). For $k \ge 2$, we proceed as follows. Let $\kappa : S^{k-1} \to (S^{k-1}, *) \lor (S^{k-1}, *)$ denote the usual comultiplication map on the *H*-cogroup S^{k-1} . For $[\Delta_i] = [C_i, \alpha_i, \beta_i] \in \pi_k^{\mathscr{M}}(X, x_0)$, i = 1, 2, we define

$$\begin{bmatrix} \Delta_1 \end{bmatrix} \begin{bmatrix} \Delta_2 \end{bmatrix} = \begin{bmatrix} (C_1, \alpha_1(*)) \lor (C_2, \alpha_2(*)), (\alpha_1 \lor \alpha_2) \kappa, \nabla(\beta_1 \lor \beta_2) \end{bmatrix}$$

$$\in \pi_k^{\mathscr{H}}(X, x_0), \qquad (5)$$

$$S^{k-1} \xrightarrow{\kappa} (S^{k-1}, *) \lor (S^{k-1}, *) \xrightarrow{\alpha_1 \lor \alpha_2} (C_1, \alpha_1(*)) \lor (C_2, \alpha_2(*)),$$

$$(C_1, \alpha_1(*)) \lor (C_2, \alpha_2(*)) \xrightarrow{\beta_1 \lor \beta_2} (X, x_0) \lor (X, x_0) \xrightarrow{\nabla} X.$$

It is again easy to check that this is well defined. A few straightforward computations show that (5) actually defines a group multiplication on $\pi_k^{\mathcal{M}}(X, x_0)$. The neutral element is $[\Delta_{x_0}]$; and inverse for $[\Delta] = [C, \alpha, \beta]$ is given by $[\Delta^{-1}]$, where $\Delta^{-1} = (C, \alpha\nu, \beta)$ and $\nu: S^{k-1} \rightarrow S^{k-1}$ is the usual homotopy inverse on the *H*-cogroup S^{k-1} . The reader who wants explicit proofs is recommended to use Lemma 1.1. Moreover, the group $\pi_k^{\mathcal{M}}(X, x_0)$ is Abelian for $k \ge 2$. This follows from the fact that κ is homotopic to $\tau\kappa$, where τ is the switch map on $(S^{k-1}, *) \vee (S^{k-1}, *)$. Note that this is also true for k = 2 since we do not need the homotopy from κ to $\tau\kappa$ to be basepoint-preserving.

For our basic examples $\mathcal{M} = CE$ and $\mathcal{M} = UV^m$, we obtain the *kth* CE group $\pi_k^{CE}(X, x_0)$ and the *kth* UV^m group $\pi_k^{UV^m}(X, x_0)$ which will be abbreviated by $\pi_k^{(m)}(X, x_0)$.

Each pointed map $f: (X, x_0) \rightarrow (Y, y_0)$ induces a group homomorphism

$$f_* = \pi_k^{\mathcal{M}}(f) : \pi_k^{\mathcal{M}}(X, x_0) \to \pi_k^{\mathcal{M}}(Y, y_0)$$

which is defined by $f_*([C, \alpha, \beta]) = [C, \alpha, f\beta]$.

Proposition 1.3. $\pi_k^{\mathcal{M}}$ is a functor from the pointed homotopy category of pointed spaces to the category of groups when k = 1 respectively Abelian groups when $k \ge 2$.

Proof. Homotopy invariance follows from Lemma 1.1; the functorial properties are obvious. \Box

Next, we shall define a function

 $t_k: \pi_k(X, x_0) \to \pi_k^{\mathcal{M}}(X, x_0).$

The elements of $\pi_k(X, x_0)$ can be regarded as homotopy classes rel S^{k-1} of maps $\beta: D^k \to X$ with $\beta(S^{k-1}) = \{x_0\}$. Hence, we may define (cf. Lemma 1.1)

$$t_k([\beta]) = [D^k, i, \beta].$$
(6)

Here, $i: S^{k-1} \to D^k$ is the inclusion map. Observe that $D^k \in \mathcal{M}$, since it is the mapping cylinder of the constant map $S^{k-1} \to *$. It is easy to verify that t_k is a group homomorphism.

Remark. It is a nice exercise to prove that t_k is an *isomorphism* if all $C \in \mathcal{M}$ are *contractible*. For example, the class of nonempty spaces in which each point is a strong deformation retract satisfies $(\mathcal{M}1)-(\mathcal{M}4)$ and has this property. This shows that the *ordinary kth homotopy group* occurs as a special case of our general construction.

We are now going to study the question how the groups $\pi_k^{\mathscr{M}}(X, x_0)$ depend on the *basepoint* $x_0 \in X$. For that purpose, let us call a space X \mathscr{M} -connected if any two points $x, x' \in X$ admit $C \in \mathscr{M}$ and a map $\gamma: C \to X$ such that $x, x' \in \gamma(C)$. See [14] for the case $\mathscr{M} = UV^m$. Obviously, each path-connected space is \mathscr{M} -connected (recall that $D^1 \in \mathscr{M}$).

Proposition 1.4. If X is *M*-connected, then $\pi_1^{\mathscr{M}}(X, x_1)$ and $\pi_1^{\mathscr{M}}(X, x_2)$ are isomorphic for all $x_1, x_2 \in X$.

Proof. The groupoid $\mathscr{P}^{\mathscr{M}}(X)$ is connected whenever X is \mathscr{M} -connected. \Box

Let us now define an additional condition on \mathcal{M} .

(M5) For each $k \ge 2$, each map $\alpha : S^{k-1} \to C \in \mathcal{M}$ and each map $\lambda : S^0 \to D \in \mathcal{M}$, the adjunction space $M(\alpha, \lambda) = (S^{k-1} \times D + C)/(x, \lambda(-1)) \sim \alpha(x)$ is contained in \mathcal{M} . Note that if λ is the inclusion of S^0 in D^1 , then $M(\alpha, \lambda)$ is nothing but the

mapping cylinder of α . For any λ , C can be regarded as a subspace of $M(\alpha, \lambda)$.

We remark that our above examples $\mathcal{M} = CE$ and $\mathcal{M} = UV^m$ satisfy $(\mathcal{M}5)$. This may be seen as follows. Let $i: S^{k-1} \to D^k$ denote inclusion. Then $\mathrm{Sh}(M(i, \lambda)/D^k) =$ $\mathrm{Sh}(M(i, \lambda))$ because D^k has trivial shape. Moreover, $M(\alpha, \lambda)/C = M(i, \lambda)/D^k$, so that $\mathrm{Sh}(M(\alpha, \lambda)/C) = \mathrm{Sh}(M(i, \lambda))$. In the case $\mathcal{M} = CE$ both C and D have trivial shape; hence $\mathrm{Sh}(M(\alpha, \lambda)) = \mathrm{Sh}(M(\alpha, \lambda)/C)$ and $M(i, \lambda) = S^{k-1} \times D \cup D^k \times$ $\{\lambda(-1)\}$ has trivial shape. This implies that $M(\alpha, \lambda)$ has trivial shape. In case $\mathcal{M} = \mathrm{UV}^m$, both the quotient map $M(\alpha, \lambda) \to M(\alpha, \lambda)/C$ and the canonical retraction $M(i, \lambda) \to D^k$ are UV^m maps; we easily infer that $M(\alpha, \lambda)$ must be a UV^m compactum (see e.g. [14, Section 1]). **Proposition 1.5.** Let $k \ge 2$. If \mathcal{M} satisfies $(\mathcal{M}5)$ and X is \mathcal{M} -connected, then $\pi_k^{\mathcal{M}}(X, x_1)$ and $\pi_k^{\mathcal{M}}(X, x_2)$ are isomorphic for all $x_1, x_2 \in X$.

Proof. Let $[\Delta] = [C, \alpha, \beta] \in \pi_k^{\mathcal{M}}(X, x_1)$ and $[\Omega] = [D, \lambda, \mu] \in \mathcal{P}^{\mathcal{M}}(X)(x_2, x_1)$. Let us define $i_1: S^{k-1} \to M(\alpha, \lambda), i_1(x) = [x, \lambda(1)], \mu * \beta : M(\alpha, \lambda) \to X, \mu * \beta([x, d]) = \mu(d)$ for $(x, d) \in S^{k-1} \times D, \mu * \beta([c]) = \beta(c)$ for $c \in C$. It is then easy to verify that

$$[\Delta] \cdot [\Omega] = [M(\alpha, \lambda), i_1, \mu * \beta] \in \pi_k^{\mathcal{M}}(X, x_2)$$

is well defined and that right multiplication by $[\Omega]$ is a homomorphism from $\pi_k^{\mathcal{M}}(X, x_1)$ to $\pi_k^{\mathcal{M}}(X, x_2)$. Moreover, if $[\Omega'] \in \mathcal{P}^{\mathcal{M}}(X)(x_3, x_2)$, then $([\Delta] \cdot [\Omega]) \cdot [\Omega'] = [\Delta] \cdot ([\Omega] \circ [\Omega'])$. \Box

Remark. If we do not assume (M5), then the conclusion of Proposition 1.5 is nevertheless true for *path-connected* spaces X. In fact, for each equivalence class $[\omega]$ of paths from x_1 to x_2 we can define $[\Delta] \cdot [\omega]$ as in the above proof, using Lemma 1.1 to see that it is well defined. Since *constant* path equivalence classes are readily seen to operate trivially, we are finished.

Finally, we shall call a map $f: X \to Y$ *M*-regular provided for each pullback diagram

$$\begin{array}{ccc} C \longrightarrow X \\ \downarrow & & \downarrow^f \\ D \longrightarrow Y \end{array}$$

the following holds true: If $D \in \mathcal{M}$, then also $C \in \mathcal{M}$.

For example, the hereditary shape equivalences between compacta (which include in particular the CE maps between finite-dimensional compacta) are CE regular and the UV^m maps between compacta are UV^m regular.

Theorem 1.6. Let $f: X \to Y$ be an \mathcal{M} -regular map. Then for each $k \ge 1$ and each $x_0 \in X$, f induces an isomorphism $f_*: \pi_k^{\mathcal{M}}(X, x_0) \to \pi_k^{\mathcal{M}}(Y, f(x_0))$.

Proof. (a) Surjectivity. Let $[\Omega] = [D, \lambda, \mu] \in \pi_k^{\mathcal{M}}(Y, f(x_0))$. Consider the following diagram

Here, α has been inserted using the pullback property. But now $[\Delta] = [C, \alpha, \beta] \in \pi_k^{\mathcal{M}}(X, x_0)$ and $f_*([\Delta]) = [\Omega]$.

(b) Injectivity. Let $[\Delta] \in \ker f_*$, $\Delta = (C, \alpha, \beta)$. This means $f_*\Delta = (C, \alpha, f\beta) \equiv \Delta_{f(x_0)}$. We write $|\Delta| \leq r$ if there exist $\Delta_i = (D_i, \lambda_i, \mu_i) \in \mathcal{M}_k(X)$, $i = 0, \ldots, 2r+1$, such that $\Delta_0 = \Delta_{f(x_0)}$, $\Delta_{2r+1} = f_*\Delta$, $\Delta_{2i} \leq \Delta_{2i+1}$ via a map $\gamma_{2i}: D_{2i+1} \rightarrow D_{2i}$, $i = 0, \ldots, r$, and $\Delta_{2i+2} \leq \Delta_{2i+1}$ via a map $\gamma_{2i+1}: D_{2i+1} \rightarrow D_{2i+2}$, $i = 0, \ldots, r-1$. Clearly, there exists a number r such that $|\Delta| \leq r$. We shall show by induction on $|\Delta|$ that $\Delta \equiv \Delta_{x_0}$. For that purpose let us observe that we may always assume that the following solid arrow square is a pullback diagram.

$$C \xrightarrow{\beta} X$$

$$\gamma_{2\nu} \downarrow \qquad C' \xrightarrow{\beta'} \downarrow f$$

$$D_{2r} \xrightarrow{\gamma_{2\nu}} pullback \qquad Y$$

(Otherwise we can replace Δ by $\Delta' = (C', u\alpha, \beta')$; then $\Delta' \equiv \Delta$ and Δ' has the desired property.)

If $|\Delta| = 0$, we have $D_{2r} = D_0 = *$, so that μ_{2r} and (by the pullback construction) β are injective. Since $\beta \alpha (S^{k-1}) = \{x_0\}$, α is constant, i.e., $\Delta \equiv \Delta_{x_0}$ by Observation 1.2.

Assume that $\Delta \equiv \Delta_{x_0}$ whenever $|\Delta| \le r-1$. If $|\Delta| \le r$, let us consider the following diagram.

Here, α' has been inserted using the pullback property. We have $C' \in \mathcal{M}$. Let $\Delta' = (C', \alpha', \beta v)$. Then $\Delta' \equiv \Delta$ and $\Delta_{2r-2} \leq f_* \Delta'$ via $\gamma_{2r-2} w$, i.e., $|\Delta'| \leq r-1$. This implies $\Delta' \equiv \Delta_{x_0}$. \Box

2. Some properties of LC" spaces

In this section we collect some material on homotopy groups, shape groups and UV^m groups of LCⁿ compacta.

We begin by quoting a result due to Kozlowski and Segal (see [11]).

Proposition 2.1. Let (X, x_0) be a pointed paracompact LC^n space. For each k = 0, ..., n, the shape functor induces an isomorphism from $\pi_k(X, x_0)$ to the kth shape group $\check{\pi}_k(X, x_0)$.

Recall that $\check{\pi}_k(X, x_0)$ consists of all pointed shape morphisms from $(S^k, *)$ to (X, x_0) .

The following result is implicitly contained in [11] and has been explicitly stated by Ferry in [7].

Proposition 2.2. Let (X, x_0) be a pointed LC^n compactum. Then $pro-\pi_k(X, x_0)$ is stable for k = 0, ..., n and Mittag-Leffler for k = n + 1.

Corollary 2.3. Let (X, x_0) be a pointed LC^n compactum. For each k = 0, ..., n, the canonical morphism of pro-groups $\pi_k(X, x_0) \rightarrow \text{pro-}\pi_k(X, x_0)$ is an isomorphism of pro-groups.

Proof. Since pro- $\pi_k(X, x_0)$ is stable, we infer that the canonical morphism of pro-groups $\check{\pi}_k(X, x_0) = \lim_{k \to \infty} \operatorname{pro-} \pi_k(X, x_0) \to \operatorname{pro-} \pi_k(X, x_0)$ is an isomorphism of progroups; cf. [12, Ch.I, § 5, Theorem 2]. Application of Proposition 2.1 yields the corollary. \Box

Corollary 2.4. Let (X, x_0) be a pointed LC^n compactum. Then the homotopy groups $\pi_k(X, x_0), k = 1, ..., n$, are countable.

Proof. Since pro- $\pi_k(X, x_0)$ can be represented by an inverse sequence of kth homotopy groups of finite polyhedra, i.e., of *countable groups*, this is an immediate consequence of Corollary 2.3. \Box

We shall also need the following result on LC^0 spaces.

Lemma 2.5. Let (X, x_0) be a pointed connected LC^0 space.

(a) The canonical morphism of pro-groups $\pi_1(X, x_0) \rightarrow \text{pro-}\pi_1(X, x_0)$ is an epimorphism of pro-groups.

(b) pro- $\pi_1(X, x_0)$ is Mittag-Leffler.

(c) pro- $\pi_1(X, x_0)$ is not pro-finite if and only if there exists a pointed CW-complex (Y, y_0) and a pointed map $f: (X, x_0) \to (Y, y_0)$ such that $f_*(\pi_1(X, x_0))$ is infinite.

Proof. (a) Let $\underline{p} = \{p_{\alpha}\}: (X, x_0) \to \underline{X} = \{(X_{\alpha}, x_{0\alpha}), p_{\alpha\beta}\}_{\alpha \in A}$ be an HPol_{*}-expansion such that all X_{α} are connected CW-complexes (see [12, Ch.I, § 4.3]). We have to prove that $\pi_1(\underline{p}): \pi_1(X, x_0) \to \pi_1(\underline{X})$ is an epimorphism of pro-groups, i.e., that each α admits $\beta \ge \alpha$ such that $(p_{\alpha\beta})_*(\pi_1(X_{\beta}, x_{0\beta})) \subset (p_{\alpha})_*(\pi_1(X, x_0))$; cf. [12, Ch.II, § 2, Theorem 4]. To show this, let $q: (Y, y_0) \to (X_{\alpha}, x_{0\alpha})$ be a covering projection such that $q_*(\pi_1(Y, y_0)) = (p_{\alpha})_*(\pi_1(X, x_0))$. Since X is connected and LC⁰, p_{α} can be lifted to a pointed homotopy class $r: (X, x_0) \to (Y, y_0)$ with $[q]r = p_{\alpha}$. But Y is a CW-complex (cf. e.g. [16]) so that there exist $\gamma \in A$ and a pointed homotopy class $v:(X_{\gamma}, x_{0\gamma}) \to (Y, y_0)$ with $vp_{\gamma} = r$ (cf. [12, Ch.I, § 2, Theorem 1]). We may assume $\gamma \ge \alpha$. Then $[q]vp_{\gamma} = p_{\alpha\gamma}p_{\gamma}$, hence there is $\beta \ge \gamma$ such that $[q]vp_{\gamma\beta} = p_{\alpha\gamma}p_{\gamma\beta} = p_{\alpha\beta}$ (cf. again [12, Ch.I, § 2, Theorem 1]). We infer $(p_{\alpha\beta})_*(\pi_1(X_{\beta}, x_{0\beta})) \subset q_*(\pi_1(Y, y_0)) = (p_{\alpha})_*(\pi_1(X, x_0))$.

(b) Each pro-group \underline{H} which admits an epimorphism of pro-groups $G \to \underline{H}$, where G is a group, is easily seen to be Mittag-Leffler.

(c) pro- $\pi_1(X, x_0)$ is not pro-finite if and only if $\pi_1(X)$ is not pro-finite. It is easy to see that this is equivalent to the following condition: There exists $\alpha_0 \in A$ such that $(p_{\alpha_0\beta})_*(\pi_1(X_\beta, x_{0\beta}))$ is infinite for all $\beta \ge \alpha_0$. If this condition is satisfied, we know that $(p_{\alpha_0})_*(\pi_1(X, x_0))$ must be infinite; see the proof of (a). Conversely, if we are given a pointed map $f: (X, x_0) \to (Y, y_0)$ as in (c), we find $\alpha_0 \in A$ and a pointed homotopy class $u: (X_{\alpha_0}, x_{0\alpha_0}) \to (Y, y_0)$ such that $up_{\alpha_0} = [f]$ (cf. [12, Ch.I, § 2, Theorem 1]). Hence, $(p_{\alpha_0})_*(\pi_1(X, x_0))$ if infinite. Since $(p_{\alpha_0\beta})_*(\pi_1(X_\beta, x_{0\beta})) \supset$ $(p_{\alpha_0\beta})_*(p_\beta)_*(\pi_1(X, x_0)) = (p_{\alpha_0})_*(\pi_1(X, x_0))$ for each $\beta \ge \alpha_0$, we see that the above condition is satisfied. \Box

In the lemma below we need the concept of an *approaching map*; the reader is referred to [3] or [15] for details.

Lemma 2.6. Let X be a UV^m compactum contained in an AR M, and let $f: S^{k-1} \to X$ be a map, where $1 \le k \le m$. There exists an approaching map $\varphi: D^k \times [0, \infty) \to M$ from D^k to X which extends f, i.e., $\varphi(x, s) = f(x)$ for all $x \in S^{k-1}$ and $s \in [0, \infty)$.

Proof. There exist open neighbourhoods U_n of X in M such that $\bigcap_{n=0}^{\infty} U_n = X$, $cl(U_{n+1}) \subset U_n$, and such that each map $g: S^i \to U_{n+1}, 0 \le i \le m$, is inessential in U_n . This allows us to find extensions $f_n: D^k \to U_{n+1}$ of f (note $f(S^k) \subset X \subset U_{n+2}$). Define $g_n: D^k \times \{n, n+1\} \cup S^{k-1} \times [n, n+1] \to U_{n+1}, g_n(x, t) = f_n(x)$ for $t = n, g_n(x, t) = f_{n+1}(x)$ for t = n+1 and $g_n(x, t) = f(x)$ for $x \in S^{k-1}$. There is an extension $\varphi_n: D^k \times [n, n+1] \to U_n$ of g_n . The maps φ_n determine a map $\varphi: D^k \times [0, \infty) \to M$ which is by construction an approaching map from D^k to X. \Box

Remark. As an application of Lemma 2.6 one can show that two points x_0 , x_1 of a compactum X are *joinable* (cf. [12, Ch.II, § 8.2]) if there exist a UV¹ compactum C and a map $\gamma: C \to X$ such that $x_0, x_1 \in \gamma(C)$. Details are left to the reader. Note that the converse fails (there exist joinable compact which are not UV¹ connected; an example is Ferry's compact spiral [6] which is not UV¹ connected by [14]).

Theorem 2.7. Let (X, x_0) be a pointed LC^n compactum. Then the natural homomorphism $t_k : \pi_k(X, x_0) \to \pi_k^{(m)}(X, x_0)$ defined by (6) is an isomorphism provided $k \le m, n$.

Proof. (1) Surjectivity. Let $[C, \alpha, \beta] \in \pi_k^{(m)}(X, x_0)$. Choose a compact AR M containing the UV^m compactum C. By Lemma 2.6, there exists an approaching map

 $\varphi: D^k \times [0, \infty) \to M$ from D^k to C which extends α . Let C' denote the mapping cylinder of φ (concerning this concept see [15]). Here are the properties of C' that are important for the present discussion (see [15]).

- (a) C' is a compactum containing a copy of C;
- (b) C' and C are shape equivalent; in particular, C' is a UV^m compactum;

(c) there exists a homeomorphism $h: D^k \times [0, \infty) \to C' \setminus C$ such that $C'' = C \cup h(S^{k-1} \times [0, \infty))$ is a copy of the ordinary mapping cylinder of α (where of course $h(S^{k-1} \times \{0\})$ is the "top").

Let $r: C'' \to C$ be the canonical retraction; then $\beta r: C'' \to X$ extends β . Since X is LC^n and $\dim(C' \setminus C'') \leq k+1 \leq n+1$, there is an extension $\omega: U \to X$ of βr on an open neighbourhood U of C'' in C' (see e.g. [2, Ch.III, Theorem (9.1)]). But U must contain $C' \setminus h(D^k \times [0, a]) = C \cup h(D^k \times [a, \infty))$ for some a > 0. There is a retraction $\rho: C' \to C'' \cup h(D^k \times [a, \infty))$ (induced by a retraction $D^k \times [0, a] \cup D^k \times \{a\}$), and we define $\beta': C' \to X$, $\beta'(c) = \omega \rho(c)$. This is an extension of βr . Let $\alpha': S^{k-1} \to C'$, $\alpha'(x) = h(x, 0)$, and $\gamma: D^k \to C'$, $\gamma(x) = h(x, 0)$. We obtain the following commutative diagram (where $\iota: C \to C'$ denotes inclusion).

By Lemma 1.1, $(C', \iota\alpha, \beta') \equiv (C', \alpha', \beta')$, and we infer $[C, \alpha, \beta] = [D^k, \operatorname{incl}, \beta'\gamma] \in \operatorname{im} t_k$.

(2) Injectivity. Let $[\beta] \in \ker t_k$, where $\beta : D^k \to X$ with $\beta(S^{k-1}) = \{x_0\}$. We have to show that $\beta \simeq \operatorname{const}_{x_0}$ rel S^{k-1} . But $[\beta] \in \ker t_k$ means $(D^k, \operatorname{incl}, \beta) \equiv$ $(D^k, \operatorname{incl}, \operatorname{const}_{x_0})$; cf. Observation 1.2. Hence we can find $\Delta_i = (C_i, \alpha_i, \beta_i)$, i = $1, \ldots, 2r+1$, such that $\Delta_1 = (D^k, \operatorname{incl}, \beta)$, $\Delta_{2r+1} = (D^k, \operatorname{incl}, \operatorname{const}_{x_0})$ and $\Delta_{2i} \leq \Delta_{2i\pm 1}$ via a map $\gamma_{(i,\pm 1)} : C_{2i\pm 1} \to C_{2i}$, $i = 1, \ldots, r$.

Our first step is to show that we may assume that each $\alpha_i : S^{k-1} \to C_i$ is an embedding. Let C'_i denote the mapping cylinder of $\alpha_i, \rho_i : C'_i \to C_i$ the canonical retraction onto the base and $\alpha'_i: S^{k-1} \to C'_i$ the canonical embedding into the top. Of course, C'_i is a UV^m compactum. Moreover, we can easily find $\gamma'_{(i,\pm1)}: C'_{2i\pm1} \to C'_{2i}$ such that $\rho_{2i}\gamma'_{(i,\pm1)} = \gamma_{(i,\pm1)}\rho_{2i\pm1}$ and $\gamma'_{(i,\pm1)}\alpha'_{2i\pm1} = \alpha'_{2i}$. Let $\Delta'_i = (C'_i, \alpha'_i, \beta_i\rho_i)$. Then $\Delta'_{2i} \leq \Delta'_{2i\pm1}$ via $\gamma'_{(i,\pm1)}$. If we identify C'_1 and C'_{2r+1} in the obvious way with D^k , we see that $\Delta'_1 = (D^k, \operatorname{incl}, \beta')$, where $\beta' \approx \beta$ rel S^{k-1} , and $\Delta'_{2r+1} = (D^k, \operatorname{incl}, \operatorname{const}_{x_0})$.

Our second step is to show that we may assume that each $\gamma_{(i,\pm1)}: C_{2i\pm1} \rightarrow C_{2i}$ is an embedding. Let $M_i = (C_{2i-1} \times I_{-1} + C_{2i} + C_{2i+1} \times I_{+1})/\sim$, where $I_{-1} = [-1, 0], I_{+1} =$ [0, 1] and ~ is the equivalence relation generated by $(x, 0) \sim \gamma_{(i,\pm 1)}(x)$ for $x \in C_{2i\pm 1}$; i.e., M_i is obtained by sewing together the two mapping cylinders $M(\gamma_{(i,\pm 1)})$ along their common base C_{2i} . Of course, M_i is a compactum. There are canonical embeddings $e_{(i,\pm 1)}: C_{2i\pm 1} \to M_i$, $e_{(i,\pm 1)}(x) = [x,\pm 1]$, and $e_i: C_{2i} \to M_i$, $e_i(x) = [x]$, and $\mu_i: S^{k-1} \times [-1, 1] \to M_i, \ \mu_i(x, s) = [\alpha_{2i \pm 1}(x), s] \text{ for } (x, s) \in S^{k-1} \times I_{\pm 1} \text{ (recall that the } I_{\pm 1})$ α_i are embeddings after the first step). Moreover, there is a canonical retraction $\rho_i: M_i \to C_{2i}, \ \rho_i([x, s]) = \gamma_{(i,\pm 1)}(x) \text{ for } (x, s) \in C_{2i\pm 1} \times I_{\pm 1}, \ \rho_i([x]) = x \text{ for } x \in C_{2i}.$ Finally, let us define $H_i: M_i \times I \rightarrow M_i$, $H_i([x, s], t) = [x, st]$ for $[x, s] \in C_{2i \pm 1} \times I_{\pm 1}$, $H_i([x], t) = [x]$ for $x \in C_{2i}$. We have $H_i: e_i \rho_i \approx id$. Let C'_{2i} denote the quotient space obtained from M_i by identifying all fibers $\mu_i(\{x\} \times [-1, 1]), x \in S^{k-1}$, to points. The quotient map $q_i: M_i \rightarrow C'_{2i}$ is easily seen to be a closed map, hence C'_{2i} is again a compactum. The maps $\gamma'_{(i,\pm 1)} = q_i e_{(i,\pm 1)}$ and the maps $\alpha'_{2i} : S^{k-1} \to C'_{2i}, \alpha'_{2i}(x) =$ $q_i\mu_i(x, 0)$, are embeddings; we have $\gamma'_{(i,\pm 1)}\alpha_{2i\pm 1} = \alpha'_{2i}$. There exist unique maps $\beta'_{2i}: C'_{2i} \to X$ such that $\beta_{2i}\rho_i = \beta'_{2i}q_i$; they satisfy $\beta'_{2i}\gamma'_{(i,\pm 1)} = \beta_{2i\pm 1}$. Finally, let $\lambda_i =$ $q_i e_i$ which embeds C_{2i} into C'_{2i} . There exist unique maps $\rho'_i: C'_{2i} \to C_{2i}$ such that $\rho_i = \rho'_i q_i$ and $H'_i: C'_{2i} \times I \to C'_{2i}$ such that $q_i H_i = H'_i (q_i \times 1_I)$. Then $\rho'_i \lambda_i = id$ and $\lambda_i \rho'_i \simeq id$ via H'_i , i.e., C'_{2i} has the same homotopy type as C_{2i} , and is therefore a UV^m compactum.

Our *third step* is to show that we may assume r = 1, i.e., that there is a commutative diagram

where C is a UV^m compactum. In fact, when r > 1, we can shorten the sequence $\Delta_1, \ldots, \Delta_{2r+1}$ as follows. Let P be the pushout of $C_{2r-2} \xleftarrow{\gamma_{(r-1,+1)}} C_{2r-1} \xrightarrow{\gamma_{(r-1)}} C_{2r}$, given together with maps $u: C_{2r-2} \rightarrow P$ and $v: C_{2r} \rightarrow P$. Then P is a compactum and u, v are embeddings, i.e., we may assume $C_{2r-2} \cap C_{2r} = C_{2r-1}, C_{2r-2} \cup C_{2r} = P$. The quotient map $C_{2r-2} \rightarrow C_{2r-2}/C_{2r-1}$ is a UV^m map, hence C_{2r-2}/C_{2r-1} is a UV^m compactum (see e.g. [14, Section 1]). But P/C_{2r} is homeomorphic to C_{2r-2}/C_{2r-1} , so that P/C_{2r} is a UV^m compactum. Since the quotient map $P \rightarrow P/C_{2r}$ is a UV^m map, we infer that P is a UV^m compactum. By the pushout property, there is a

unique map $\pi: P \to X$ such that $\pi u = \beta_{2r-2}$ and $\pi v = \beta_{2r}$. Let $\Delta_{2r-2}^* = (P, u\alpha_{2r-2}, \pi)$. Then $\Delta_{2r-2}^* \leq \Delta_{2r+1}$ via the embedding $v\gamma_{(r,+1)}$ and $\Delta_{2r-2}^* \leq \Delta_{2r-3}$ via the embedding $u\gamma_{(r,-1,-1)}$.

Now, given a commutative diagram as above, we define $\gamma: S^k \to C$ by $\gamma|$ upper hemisphere = γ_+ , $\gamma|$ lower hemisphere = γ_- . Similarly, let $\beta^*: S^k \to X$ be defined by putting together β and const_{x0}; then $\omega \gamma = \beta^*$. We wish to show that β^* is inessential. This clearly implies $\beta \simeq \text{const}_{x0}$ rel S^{k-1} . Recalling Corollary 2.3, we see that $\pi_k(X, x_0) \to \text{pro-}\pi_k(X, x_0)$ is an isomorphism, and a fortiori a monomorphism, of pro-groups. Choose ANRs $M \supset C$ and $N \supset X$. Then $\text{pro-}\pi_k(X, x_0)$ is represented by $\{\pi_k(U_\lambda, x_0), (i_{\lambda\lambda'})_*\}$, where $\{U_\lambda\}$ is the set of open neighbourhoods of X in N and $i_{\lambda\lambda'}: U_{\lambda'} \to U_{\lambda}$ denotes inclusion (cf. [12, Ch.I, § 4, Theorem 4]). By the characterization of monomorphisms in [12, Ch.II, § 2, Theorem 2], we infer that the inclusions $i_{\lambda}: X \to U_{\lambda}$ induce monomorphisms $(i_{\lambda})_*: \pi_k(X, x_0) \to \pi_k(U_{\lambda}, x_0)$ for $\lambda \ge \lambda_0$. For $\lambda \ge \lambda_0$, choose an extension $\omega': V \to U_{\lambda}$ of $i_{\lambda}\omega$ to some open neighbourhood V of C in M. Since C is UV^m , $i_V\gamma$ is inessential where $i_V: C \to V$ denotes inclusion. This implies $(i_{\lambda})_*([\beta^*]) = [i_{\lambda}\omega\gamma] = [\omega' i_V \gamma] = 0$, and we infer $[\beta^*] = 0$ in $\pi_k(X, x_0)$. \Box

Remark. The proof of Theorem 2.7 can easily be modified to show that for each pointed LCⁿ compactum $(X, x_0), t_k : \pi_k(X, x_0) \to \pi_k^{\mathcal{M}}(X, x_0)$ is an isomorphism provided $k \leq n$ and $\mathcal{M} = CE$.

Let us close this section by showing that the functors $\pi_k^{(m)}$ are trivial when m < k.

Proposition 2.8. Let m < k. Then $\pi_k^{(m)}(X, x_0) = 0$ for every pointed space (X, x_0) .

Proof. Let $[\Delta] \in \pi_k^{(m)}(X, x_0)$, $\Delta = (C, \alpha, \beta)$. We may assume that $\alpha : S^{k-1} \to C$ is an embedding; cf. the proof of Theorem 2.7. Let $C' = C/\alpha(S^{k-1})$. Then the quotient map $\pi: C \to C'$ is a UV^{k-2} map, in particular a UV^{m-1} map. Hence π induces isomorphisms of pro-groups up to dimension m-1 and an epimorphism in dimension m. This shows that C' is again a UV^m compactum. Let $\Delta' = (C', \pi\alpha, \beta')$, where $\beta': C' \to X$ is the unique map with $\beta' \pi = \beta$. Then $\Delta \ge \Delta'$ via π , and $\Delta' \equiv \Delta_{x_0}$ by Observation 1.2. \Box

3. The basic construction

Let X be a compactum, $\varphi:[0,\infty) \to X$ be a map and (A, a_0) be a pointed compactum. The *reduced cone* of (A, a_0) is the quotient space $C(A, a_0) = A \times [0,\infty]/(A \times \{\infty\} \cup \{a_0\} \times [0,\infty])$; it is again a compactum. For $s \in [0,\infty]$, let $A_s = p(A \times \{s\})$, where $p: A \times [0,\infty] \to C(A, a_0)$ is the quotient map. Clearly, A_s is a copy of A when $s < \infty$, whereas $A_{\infty} = \{*\}$. Let us define a subspace $X_{\varphi}(A, a_0)$ of $X \times C(A, a_0)$ by the following.

$$X_{\varphi}(A, a_0) = X \times A_{\infty} \cup \bigcup_{s \in [0, \infty)} \{\varphi(s)\} \times A_s.$$
(7)

Each pointed map $f:(A, a_0) \to (B, b_0)$ of pointed compacta induces a canonical map $C(f): C(A, a_0) \to C(B, b_0)$, and it is obvious that $1_X \times C(f)$ restricts to a map $f^*: X_{\varphi}(A, a_0) \to X_{\varphi}(B, b_0)$. Similarly, each pointed homotopy $F:(A, a_0) \times I \to (B, b_0)$ induces a homotopy $F^*: X_{\varphi}(A, a_0) \times I \to X_{\varphi}(B, b_0)$. Moreover, if there is no danger of confusion, we simply write $X_{\varphi} = X_{\varphi}(A, a_0)$. It can be readily verified that X_{φ} is closed in $X \times C(A, a_0)$; hence, X_{φ} is a *compactum*. Moreover, there is a canonical retraction $r_{\varphi}: X_{\varphi} \to X$ (where X has been identified with $X \times A_{\infty} \subset X_{\varphi}$); of course, $r_{\varphi}(x) = c^*(x)$ with the constant pointed map $c: (A, a_0) \to (A, a_0)$.

For technical purposes, we shall also need the following map.

$$i_{\varphi}: A \times [0, \infty) \to X_{\varphi}, \, i_{\varphi}(a, s) = (\varphi(s), \, p(a, s)).$$
(8)

Obviously, each $i_{\varphi}(A \times \{s\})$ is a copy of A such that $i_{\varphi}(A \times \{s\}) \cap X = \{\varphi(s)\}$. Moreover, $r_{\varphi}i_{\varphi}(a, s) = \varphi(s)$ for all $(a, s) \in A \times [0, \infty)$. It is important to notice the following.

Observation 3.1. diam $i_{\varphi}(A \times \{s\}) \to 0$ as $s \to \infty$.

Here, "diam" denotes the diameter with respect to a fixed metric d_{φ} on the space X_{φ} . Note that Observation 3.1 is evident if we choose d_{φ} to be a metric of the form $d_{\varphi}((x, c), (x', c')) = d_X(x, x') + d_C(c, c')$, where d_X is a metric on X and d_C a metric on $C(A, a_0)$. But then Observation 3.1 must be true for any d_{φ} because all metrics on compact spaces are uniformly equivalent. Finally, a routine verification yields the following.

Observation 3.2. i_{φ} maps $(A \setminus \{a_0\}) \times [0, \infty)$ homeomorphically onto $X_{\varphi} \setminus X$.

We are now ready to study X_{ω} .

Proposition 3.3. X is a shape strong deformation retract of X_{φ} (cf. [3]). In particular, X and X_{φ} have the same shape.

Proof. By [3], we have to prove the following: Each map $f: X \to P$ into an ANR P has an extension $f': X_{\varphi} \to P$, and any two extensions $f'_0, f'_1: X_{\varphi} \to P$ of f are homotopic relative to X. Since X is a retract of X_{φ} , the first part is obvious. Now let us consider f'_0, f'_1 as above. Define $F: X_{\varphi} \times \{0, 1\} \cup X \times I \to P$ by F(x, t) = f(x) for $x \in X$ and $F(x, i) = f'_i(x)$ for i = 0, 1. There is an extension of F to an open $U \subset X_{\varphi} \times I$. Let V be an open neighbourhood of X in X_{φ} such that $V \times I \subset U$. Since $X_{\varphi} \setminus V$ is a compact subset of $X_{\varphi} \setminus X$, there exists $r \in [0, \infty)$ such that $X_{\varphi} \setminus V \subset i_{\varphi}((A \setminus \{a_0\}) \times [0, r))$; cf. Observation 3.2. Then $X' = X_{\varphi} \setminus i_{\varphi}((A \setminus \{a_0\}) \times [0, r)) = X \cup i_{\varphi}(A \times [r, \infty))$ is a closed subset of X_{φ} with $X \subset X' \subset V$, and F has an extension

 $\begin{array}{l} H: X_{\varphi} \times \{0, 1\} \cup X' \times I \to P. \text{ Consider the map } g: (A \times \{0, 1\} \cup \{a_0\} \times I) \times [0, r] \cup \\ A \times I \times \{r\} \to P, g(a, t, s) = H(\alpha(a, s), t); \text{ it has an extension } G: A \times I \times [0, r] \to P. \\ \text{Since } \beta: A \times I \times [0, r] \to i_{\varphi}(A \times [0, r]) \times I, \ \beta(a, t, s) = (i_{\varphi}(a, s), t), \text{ is a closed map} \\ (a \text{ fortiori a quotient map}) \text{ and } G\beta^{-1} \text{ is single-valued, there is a unique map} \\ H': i_{\varphi}(A \times [0, r]) \times I \to P \text{ such that } G = H'\beta. \text{ By construction, } H \text{ and } H' \text{ can be} \\ \text{pasted to a continuous } H'': X_{\varphi} \times I \to P \text{ which extends } F. \quad \Box \end{array}$

Remark. If a_0 has a closed neighbourhood $C \subseteq A$ which admits a homeomorphism $h: (bd C) \times [0, 1) \to C \setminus \{a_0\}$ such that h(a, 0) = a for all $a \in bd C$ (=topological boundary of C in A), then X is even a cylinder base of X_{φ} (cf. [15]). In fact, $X_{\varphi} \setminus X \approx Z \times (0, 1]$ with $Z = (A \setminus int C) \cup h((bd C) \times [0, \frac{1}{2}]).$

Theorem 3.4. Let X and A be LCⁿ, and let A be n-connected. Then X_{φ} is LCⁿ.

Proof. There is a relatively simple proof for n = 0; however, we shall not treat this case separately. The general proof is lengthy and will be divided in two steps.

Step 1. Assume that there exists an open embedding $h:[0,1) \rightarrow A$ such that $h(0) = a_0$.

Let $x_0 \in X_{\varphi}$ and U be an open neighbourhood of x_0 in X_{φ} . We have to construct a UVⁿ shrinking $V \subseteq U$ in X_{φ} (cf. Introduction). Since this is trivial for $x_0 \notin U$ cl $\varphi([0,\infty))$, we only consider $x_0 \in cl \varphi([0,\infty))$. Here, "cl" denotes closure. Let $U_0 = U \cap X$. This is an open neighbourhood of x_0 in X, hence there is a UVⁿ shrinking V_0 of U_0 in X. We may assume that V_0 is compact. Recalling Observation 3.1, we find $s_0 \in [0, \infty)$ such that $i_{\varphi}(A \times \{s\}) \subset U$ for $s \in \varphi^{-1}(V_0) \cap [s_0, \infty)$. We now choose a compact neighbourhood W_0 of x_0 in X such that $W_0 \subset int_X V_0$. For each $m, \varphi^{-1}(\operatorname{int}_X V_0)$ is an open neighbourhood of $\varphi^{-1}(W_0) \cap [m, m+1]$; since the latter is compact, it can be covered by *finitely many* compact intervals $J_{m,i} \subset \varphi^{-1}(\operatorname{int}_X V_0)$. Let $J^* = \bigcup_{m,i} J_{m,i}$; then $\varphi^{-1}(W_0) \subset J^* \subset \varphi^{-1}(V_0)$. Moreover, let $J_0 = J^* \cap [0, s_0]$ and $J = J^* \cap [s_0, \infty)$. By construction, J_0 is compact and J is a closed locally contractible subset of $[0,\infty)$. Since $\{a_0\} \times J_0 \subset i_{\varphi}^{-1}(U)$, there is a neighbourhood L of a_0 in A such that $i_{\varphi}(L \times J_0) \subset U$. We may assume that $L = h([0, \Theta])$ for some $\Theta > 0$. Let $V = V_0 \cup i_{\varphi}(L \times J_0) \cup i_{\varphi}(A \times J).$ Then $r_{\varphi}^{-1}(W_0) \setminus i_{\varphi}((A \setminus h([0, \Theta))) \times J_0) \subset V \subset U;$ in particular, V is a neighbourhood of x_0 in X_{φ} . We shall show that V is a UVⁿ shrinking of U in X_{φ} . Let $f: S^k \to V$ be any map, $k = 0, \ldots, n$. To prove that f is inessential in U, it suffices to show $f \simeq r_{\alpha} f$ in U (since $r_{\alpha} f(S^k) \subset V_0$). For this purpose, we proceed as follows. Let $r: A \rightarrow A$ be the map defined by r(a) = a for $a \in L$ and $r(a) = h(\Theta)$ for $a \notin L$; moreover, we choose a homotopy $H: A \times I \to A$ such that $H(h(\Theta'), t) = h(t\Theta')$ for all $\Theta' \in [0, \Theta]$ (observe that the inclusion $L \to A$ is a cofibration). We obtain an induced map $r^*: X_{\varphi} \to X_{\varphi}$ and an induced homotopy $H^*: X_{\varphi} \times I \to X_{\varphi}$. Note that $r^*(V) = V_0 \cup i_{\varphi}(L \times J^*) \subset U$ and that $H^*(r^*f \times 1_I)$ is a homotopy from $r_{\varphi}f$ to r^*f in $r^*(V)$; hence $r^*f \approx r_{\varphi}f$ in U. It therefore suffices to show $f \simeq r^* f$ in U. Since $X_L = X \cup i_{\varphi}(L \times [0, \infty))$ is compact (use Observation 3.2),

 $V \setminus X_L$ is open in V and $P = f^{-1}(V \setminus X_L)$ is open in S^k . Let $A' = A \setminus h([0, \Theta))$. Then A' is a retract of A, hence *n*-connected and LCⁿ. We shall construct a homotopy $F: P \times I \rightarrow i_{\varphi}(A' \times J) \subset U$ from $f|_P$ to $r^*f|_P$ and compact $C_m \subset P$ such that $C_m \subset I$ int $C_{m+1}, \bigcup_{m=1}^{\infty} C_m = P$ and diam $F(\{x\} \times I) < 1/m$ for $x \in P \setminus C_m$. This clearly proves $f \simeq r^*f$ in U (simply extend F by the stationary homotopy from $f|_{S^k \setminus P}$ to $r^*f|_{S^k \setminus P}$). To construct F, triangulate P by an infinite simplicial complex K. Choose compact subpolyhedra $P_m \subset P$, triangulated by finite subcomplexes $K_m \subset K$, such that $P_m \subset Int P_{m+1}$ and $\bigcup_{m=1}^{\infty} P_m = P$. Moreover, choose $\varepsilon_m > 0$ such that diam f(M) < 1/m for each $M \subset S^k$ with diam $M < \varepsilon_m$. There are only finitely many k-simplices $\sigma^k \in K$ with diam $\sigma^k \ge \varepsilon_m$; we may assume that they are already contained in K_m . This implies

diam
$$f(\sigma) < \frac{1}{m}$$
 for $\sigma \in K \setminus K_m$. (*)

Similarly, it is no restriction to assume

$$d_{\varphi}(f(x), r^*f(x)) < \frac{1}{m} \quad \text{for } x \in P \setminus P_m.$$
(**)

Let $K^{(i)}$ denote the *i*-skeleton of K and $P^{(i)} \subset P$ the underlying polyhedron. We shall now inductively show the following.

For each *i*, there exist a strictly increasing function $\lambda_i : \mathbb{N} \to \mathbb{N}$ and a map $F^{(i)} : P \times \{0, 1\} \cup P^{(i)} \times I \to i_{\mathfrak{c}}(A' \times J)$ such that

(a_i) $F^{(i)}(x, 0) = f(x), F^{(i)}(x, 1) = r^* f(x)$ for $x \in P$,

(b_i) diam $F^{(i)}(\sigma \times I) < 1/m$ for $\sigma \in K^{(i)} \setminus K_{\lambda_i(m)}$.

It is then clear that $F = F^{(k)}$ is a homotopy with the desired properties (take $C_m = P_{\lambda_k(m)}$).

The induction starts with i = -1; nothing has to be shown in this case.

Next, we show how to construct $F^{(i+1)}$ and λ_{i+1} if $F^{(i)}$ and λ_i are already given. For each $\sigma \in K^{(i+1)} \setminus K^{(i)}$, $F^{(i)}$ restricts to a map $g_{\sigma}: \partial(\sigma \times I) \to i_{\varphi}(A' \times J)$, where $\partial(\sigma \times I)$ denotes the boundary of the topological (i+2)-ball $\sigma \times I$. Observe that diam $g_{\sigma}(\partial(\sigma \times I)) < 3/m$ when $\sigma \notin K_{\lambda_i(m)}$ (use (*), (**) and (b_i)). Moreover, let $J_{\sigma} \subset [0, \infty)$ denote the projection of $i_{\varphi}^{-1}g_{\sigma}(\partial(\sigma \times I))$ onto the second factor; it is a compact interval or a singleton (for i = -1, this follows from (a_i)). Clearly, $J_{\sigma} \subset J$. Since $i_{\varphi}(A' \times J_{\sigma})$ is an *n*-connected space containing the image of g_{σ} , we see that $\delta(\sigma) = \inf\{\text{diam } \psi(\sigma \times I) | \psi: \sigma \times I \to i_{\varphi}(A' \times J) \text{ extends } g_{\sigma}\}$ is a well-defined positive number. We choose an extension g'_{σ} of g_{σ} with diam $g'_{\sigma}(\sigma \times I) < 2\delta(\sigma)$. Now $F^{(i)}$ and the g'_{σ} , $\sigma \in K^{(i+1)} \setminus K^{(i)}$, can be pasted to a map $F^{(i+1)}: P \times \{0, 1\} \cup P^{(i+1)} \times I \to i_{\varphi}(A' \times J)$ which satisfies (a_{i+1}) . We wish to show that $\delta(\sigma) \leq 1/(2m)$ for $\sigma \notin K_{\mu(m)}$ with some sufficiently large $\mu(m)$; it is then obvious that we can construct $\lambda_{i+1}: \mathbb{N} \to \mathbb{N}$ such that (b_{i+1}) is fulfilled. Let $s_m \in [0, \infty)$ such that diam $i_{\varphi}(A \times \{s\}) < 1/(6m)$ for $s \geq s_m$ (cf. Observation 3.1), and let Δ_m be the distance between the sets $i_{\varphi}(A' \times (J \cap [0, s_m]))$ and $(A' \times (J \cap [s_m+1,\infty)))$. Note that the second one is *closed* in $i_{\varphi}(A' \times J)$; hence $\Delta_m > 0$. Finally, for each $x \in Z_m = i_{\varphi}(A' \times (J \cap [0, s_m + 1]))$ let $U(x) = \{x' \in Z_m | d_{\varphi}(x', x) < 1/(4m)\}$. But Z_m is an LCⁿ space (recall the definitions of J and A'), and we can choose a UVⁿ shrinking V(x) of U(x) in Z_m . Let $\delta_m > 0$ be a Lebesgue number for the open cover $\{\text{int } V(x)\}_{x \in M}$ of M, and let $\mu(m)$ be an integer such that diam $g_{\sigma}(\partial(\sigma \times I)) < \min(\Delta_m, \delta_m, 1/(6m))$ for $\sigma \notin K_{\mu(m)}$. We now consider a fixed $\sigma \notin K_{\mu(m)}$.

Case 1: $J_{\sigma} \subset [s_m, \infty)$. Let $\psi: \sigma \times I \to i_{\varphi}(A' \times J_{\sigma}) \subset i_{\varphi}(A' \times J)$ be an arbitrary extension of g_{σ} . Then $\delta(\sigma) \leq \text{diam } i_{\varphi}(A' \times J_{\sigma}) \leq \text{diam } g_{\sigma}(\partial(\sigma \times I)) + 2 \sup\{\text{diam}(A \times \{s\}) | s \in J_{\sigma}\} < 1/(6m) + 2(1/(6m)) = 1/(2m).$

Case 2: $J_{\sigma} \not\subset [s_m, \infty)$. Since diam $g_{\sigma}(\partial(\sigma \times I)) < \Delta_m$, we infer $g_{\sigma}(\partial(\sigma \times I)) \subset Z_m$. But $g_{\sigma}(\partial(\sigma \times I))$ has diameter $<\delta_m$, thus it is contained in some V(x) and there exists an extension $\psi: \sigma \times I \to U(x) \subset i_{\varphi}(A' \times J)$. Then $\delta(\sigma) \leq \text{diam } U(x) \leq 1/(2m)$.

This completes the proof.

Step 2. General case of the theorem.

Let $A' = \{(a, t) \in A \times I \mid t = 1 \text{ or } a = a_0\} \subset A \times I$, $a'_0 = (a_0, 0)$; A' is the one-point union of A and I, and it is again *n*-connected and LC^{*n*}. But now (A', a'_0) satisfies the assumption in Step 1, whence $X_{\varphi}(A', a'_0)$ is LC^{*n*}. Consider the map $\rho: (A', a'_0) \to (A, a_0)$, $\rho(a, t) = a$; it induces a surjective map $\rho^*: X_{\varphi}(A', a'_0) \to X_{\varphi}(A, a_0)$. It is easy to see that the nondegenerate point-inverses of ρ^* are contractible (note that they are homeomorphic to the nondegenerate point-inverses of the canonical retraction $X_{\varphi}(I, 0) \to X$). Hence, ρ^* is a CE map, and CE images of LC^{*n*} compacta are LC^{*n*} (see e.g. [1, Corollary 2.1.2(ii)]). \Box

4. Unbounded rays

Let X be an arbitrary space. A map $\varphi:[0,\infty) \to X$ is called an *unbounded ray in* X if there exists a covering projection $p: \tilde{X} \to X$ and a lift $\tilde{\varphi}:[0,\infty) \to \tilde{X}$ of φ such that no compact subset of \tilde{X} contains $\tilde{\varphi}([0,\infty))$. The importance of this concept comes from the following result.

Theorem 4.1. Let $\varphi : [0, \infty) \to X$ be an unbounded ray in a connected LC^0 compactum X and let (A, a_0) be a pointed connected LC^0 compactum. Let $x_0 = \varphi(0) \in X \subset X_{\varphi}(A, a_0)$, and let $i : (A, a_0) \to (X_{\varphi}(A, a_0), x_0)$, $i(a) = i_{\varphi}(a, 0)$ (cf. (8)). Then the homomorphism $i_* : \pi_k^{(m)}(A, a_0) \to \pi_k^{(m)}(X_{\varphi}(A, a_0), x_0)$ is injective for all $k, m \ge 1$.

Proof. Let $[\Delta] \in \ker i_*$, $\Delta = (C, \alpha, \beta)$. This means that $i_*\Delta = (C, \alpha, i\beta) \equiv \Delta_{x_0}$; i.e., there exist $\Delta_j = (C_j, \alpha_j, \beta_j)$, j = 1, ..., 2r+1, such that $\Delta_1 = i_*\Delta$, $\Delta_{2r+1} = \Delta_{x_0}$ and $\Delta_{2j} \leq \Delta_{2j\pm 1}$ via a map $\gamma_{(j,\pm 1)} : C_{2j\pm 1} \to C_{2j}$, j = 1, ..., r (the C_j are of course UV^m compacta). Let us fix a covering projection $p: \tilde{X} \to X$ and a lift $\tilde{\varphi} : [0, \infty) \to \tilde{X}$ of φ such that no compact subset of \tilde{X} contains $\tilde{\varphi}([0, \infty))$. We set $Y = X_{\varphi}(A, a_0)$ and form the pullback

$$\begin{array}{ccc} \widetilde{Y} & \xrightarrow{\widetilde{r}_{\varphi}} & \widetilde{X} \\ q \\ \downarrow & & \downarrow^{p} \\ Y & \xrightarrow{r_{\varphi}} & X \end{array}$$

to obtain a covering projection $q: \tilde{Y} \to Y$. Observe that \tilde{Y} must be metrizable (see [17]). Since r_{α} is a retraction, we may assume that $\tilde{X} \subset \tilde{Y}$ and that \tilde{r}_{α} is a retraction. Let $\{\tilde{\varphi}_{\lambda}\}_{\lambda \in L}$ denote the set of all lifts of φ . Clearly, $\tilde{\varphi}_{\lambda_0} = \tilde{\varphi}$ for some λ_0 . Using the pullback property, we see that there is a unique lift $i_{\lambda}: A \times [0, \infty) \to \tilde{Y}$ of $i_{\varphi}: A \times$ $[0,\infty) \to Y$ such that $\tilde{r}_{\varphi}i_{\lambda} = \tilde{\varphi}_{\lambda}\pi$, where $\pi : A \times [0,\infty) \to [0,\infty)$ denotes projection. Each i_{λ} maps $(A \setminus \{a_0\}) \times [0, \infty)$ homeomorphically onto the open subset $U_{\lambda} =$ $i_{\lambda}((A \setminus \{a_0\}) \times [0, \infty))$ of \tilde{Y} (recall Observation 3.2 and observe that any lift of an open map is again an open map). The U_{λ} must be pairwise disjoint. To see this, consider $\lambda, \lambda' \in L$ and $(a, s), (a', s') \in (A \setminus \{a_0\}) \times [0, \infty)$ such that $i_{\lambda}(a, s) = i_{\lambda'}(a', s')$. Since $qi_{\lambda} = qi_{\lambda'} = i_{\varphi}$, we infer (a, s) = (a', s'); hence $i_{\lambda} = i_{\lambda'}$ by connectedness. This yields $\tilde{\varphi}_{\lambda} = \tilde{\varphi}_{\lambda'}$, i.e., $\lambda = \lambda'$. Moreover, we have $\tilde{Y} \setminus \tilde{X} = \bigcup_{\lambda \in L} U_{\lambda}$. This can be shown as follows. First, we see that $q^{-1}(Y \setminus X) = \tilde{Y} \setminus \tilde{X}$, by the pullback construction. Next, let $\tilde{y} \in \tilde{Y} \setminus \tilde{X}$. Then $q(\tilde{y}) = i_{\omega}(\tilde{a}, \tilde{s})$ with a unique $(\tilde{a}, \tilde{s}) \in (A \setminus \{a_0\}) \times [0, \infty)$. Define $\psi:[0,\infty) \to Y, \ \psi(s) = i_{\varphi}(a,s)$. This map has a unique lift $\tilde{\psi}:[0,\infty) \to \tilde{Y}$ such that $\tilde{\psi}(\tilde{s}) = \tilde{y}$. Obviously $\tilde{r}_{\omega}\tilde{\psi}$ is a lift of φ , i.e., $\tilde{r}_{\omega}\tilde{\psi} = \tilde{\varphi}_{\lambda}$ for some $\lambda \in L$. However, $\psi_{\lambda}:[0,\infty)\to \tilde{Y}, \psi_{\lambda}(s)=i_{\lambda}(a,s)$, is also a lift of ψ with $\tilde{r}_{\varphi}\psi_{\lambda}=\tilde{\varphi}_{\lambda}$, and the pullback property implies $\tilde{\psi} = \psi_{\lambda}$. Hence $\tilde{y} \in U_{\lambda}$. Let us now define $Z = \tilde{X} \cup U_{\lambda_0}$; this is a closed subset of \tilde{Y} (the reader can show that Z can be naturally identified with $\tilde{X}_{\tilde{\varphi}}(A, a_0)$, but here we do not need this fact). There is a retraction $\rho: \tilde{Y} \to Z$ which agrees with \tilde{r}_{φ} on $\tilde{X} \cup \bigcup_{\lambda \neq \lambda_0} U_{\lambda}$. By Theorem 3.4, Y is a connected LC⁰ compactum; therefore $q: \tilde{Y} \to Y$ is an overlay in the sense of Fox (see [10, Theorem 3]). This means in particular that q can be extended to a covering projection $q': \tilde{W} \to W$ where $\tilde{W} \supset \tilde{Y}$ and $W \supset Y$ are ANRs; cf. [10, Theorem 13]. We infer that all $\beta_j: C_j \to Y$ can be uniquely lifted to maps $\tilde{\beta}_j: C_j \to \tilde{Y}$ such that $\tilde{\beta}_j \alpha_j(*) = \tilde{x}_0$, where $\tilde{x}_0 = i_{\lambda_0}(a_0, 0)$ and * is a fixed basepoint of S^{k-1} . This is true by Fox's lifting theorem (see Theorem 17⁰ in [10]), or can be shown directly by considering $q': \tilde{W} \to W$. The crucial point is that pro- $\pi_1(C_i, \alpha_i(*)) = 0$ because C_i is a UV^m compactum, $m \ge 1$. By uniqueness of liftings we obtain $\tilde{\beta}_{2j}\gamma_{(j,\pm 1)} = \tilde{\beta}_{2j\pm 1}$, j = 1, ..., r. The set K = $\tilde{r}_{\varphi}(\bigcup_{i} \tilde{\beta}_{i}(C_{i})) \subset \tilde{X}$ is compact and thus does not contain $\tilde{\varphi}([0,\infty))$. We can therefore find $s_0, s_1 \in [0, \infty), s_0 < s_1$ such that $\tilde{\varphi}((s_0, s_1)) \cap K = \emptyset$. Let $Z_0 = \tilde{X} \cup i_{\lambda_0}(A \times [0, s_0]) \cup I$ $i_{\lambda_0}(A \times [s_1, \infty)) \subset Z$. Clearly, we have $\rho \tilde{\beta}_i(C_i) \subset Z_0$. Define $\mu: Z_0 \to A$ by $\mu(z) = a_0$ for $z \in \tilde{X} \cup i_{\lambda_0}(A \times [s_1, \infty))$ and $\mu(i_{\lambda_0}(a, s)) = a$ for $(a, s) \in A \times [0, s_0]$. This is a welldefined continuous map (note that both pieces on which μ has been defined are closed in Z_0). It is therefore possible to define $\beta'_j: C_j \to A, \ \beta'_j(x) = \mu(\rho \tilde{\beta}_j(c))$. Then $\beta'_{2j}\gamma_{(j,\pm 1)} = \beta'_{2j\pm 1}, j = 1, \dots, r$. Hence, if we define $\Delta'_j = (C_j, \alpha_j, \beta'_j)$, we see that $\Delta'_1 \equiv \Delta'_{2r+1}$. But now it is obvious that $\Delta'_{2r+1} = \Delta_{a_0}$ since C_{2r+1} is a one-point space. Moreover, we show that $\Delta'_1 = \Delta$. Define $i': A \to \tilde{Y}$, $i'(a) = i_{\lambda_0}(a, 0)$. Then $i'\beta: C \to \tilde{Y}$ is a lift of $\beta_1 = i\beta$ such that $i'\beta(\alpha(*)) = \tilde{x}_0$, thus $\tilde{\beta}_1 = i'\beta$. The above construction shows that $\beta'_1 = \beta$ as required. We have now shown that $[\Delta] = 0 \in \pi_k^{(m)}(A, a_0)$ which completes the proof. \Box

The next result provides information about the *existence* of unbounded rays in LC^0 compacta.

Proposition 4.2. Let (X, x_0) be a pointed connected LC^0 compactum. The following are equivalent.

(i) There exists a pointed connected semilocally 1-connected LC^0 space (Y, y_0) and a pointed map $f: (X, x_0) \rightarrow (Y, y_0)$ such that $f_*(\pi_1(X, x_0))$ is infinite.

- (ii) There exists an unbounded ray in X.
- (iii) pro- $\pi_1(X, x_0)$ is not pro-finite.

Proof. (i) \Rightarrow (ii) Since $f_*(\pi(X, x_0))$ is infinite, there exists a sequence b_0, b_1, b_2, \ldots in $f_*(\pi(X, x_0))$ such that $b_i \ldots b_j \neq$ neutral element for all $0 \le i \le j$ (i.e., an *irreducible* sequence in the sense of [14]). It is easy to construct a map $\varphi : [0, \infty) \rightarrow X$ such that $\varphi(n) = x_0$ and $f\varphi|_{[n,n+1]}$ represents b_n for all $n = 0, 1, 2, \ldots$. We shall show that φ is an unbounded ray. Let $q: \tilde{Y} \rightarrow Y$ be the universal covering. We form the pullback

$$\begin{array}{ccc} \tilde{X} & \xrightarrow{\tilde{f}} & \tilde{Y} \\ \downarrow_{p} & & \downarrow_{q} \\ \chi & \xrightarrow{f} & Y \end{array}$$

and obtain a covering projection $p: \tilde{X} \to X$. Let $\tilde{\varphi}: [0, \infty) \to \tilde{X}$ be any lift of φ . Assume that $\tilde{\varphi}([0, \infty))$ is contained in a compact subset of \tilde{X} . Then $\tilde{f}\tilde{\varphi}([0, \infty))$ must be contained in a compact subset C of \tilde{Y} . But now $\tilde{f}\tilde{\varphi}(\mathbb{N})$ is a subset of $C \cap q^{-1}(y_0)$ and must therefore be a *finite* set (recall that the fibre $q^{-1}(y_0)$ is discrete). Choose $m, n \in \mathbb{N}$ such that m < n and $\tilde{f}\tilde{\varphi}(m) = \tilde{f}\tilde{\varphi}(n)$. Then $\tilde{f}\tilde{\varphi}|_{[m,n]}$ is a closed path in \tilde{Y} , hence $q\tilde{f}\tilde{\varphi}|_{[m,n]} = f\varphi|_{[m,n]}$ represents the neutral element in $\pi_1(Y, y_0)$. On the other hand, $f\varphi|_{[m,n]}$ represents $b_m \dots b_{n-1}$, a contradiction.

(ii) \Rightarrow (iii) Let φ be an unbounded ray in X and let $p: \tilde{X} \to X$ be an associated covering projection as in the definition of unbounded rays. Since X is LC⁰, we can assume that \tilde{X} is connected and that p extends to a covering projection $q: \tilde{W} \to W$, where $\tilde{W} \supset \tilde{X}$ and $W \supset X$ are ANRs (see again [10]). Let $i: X \to W$ denote inclusion. Choose $\tilde{x}_0 \in \tilde{X}$ with $p(\tilde{x}_0) = x_0$. Then $G = p_*(\pi_1(\tilde{X}, \tilde{x}_0))$ has infinite index in $\pi_1(X, x_0)$, since p must have infinitely many sheets. Moreover, it is easy to see that ker $i_* \subset G$, where $i_*: \pi_1(X, x_0) \to \pi_1(W, x_0)$ (cf. [13, Proposition 11.1]). Hence,

im $i_* \approx \pi_1(X, x_0)/\ker i_*$ is infinite. Now (W, x_0) has the pointed homotopy type of a pointed CW-complex, so that pro- $\pi_1(X, x_0)$ is not pro-finite by Lemma 2.5(c). (iii) \Rightarrow (i) This follows from Lemma 2.5(c).

Corollary 4.3. Let (X, x_0) be a pointed connected semilocally 1-connected LC⁰ compactum. Then pro- $\pi_1(X, x_0)$ is pro-finite if and only if $\pi_1(X, x_0)$ is finite.

Proof. This follows from Lemma 2.5(c) and Proposition 4.2. \Box

Remark. If (X, x_0) is a pointed connected LC¹ compactum, then the conclusion of Corollary 4.3 can be derived more easily from Corollary 2.3.

5. Proof of the Main Theorem

We begin with an elementary observation.

Observation 5.1. Let (X, x_0) and (Y, y_0) be two path-connected UV^m equivalent compacta. Then $\pi_k^{(m)}(X, x_0)$ and $\pi_k^{(m)}(Y, y_0)$ are isomorphic for each $k \ge 1$.

In fact, this follows easily from Propositions 1.4, 1.5 and Theorem 1.6.

The next result seems to be well known. We shall nevertheless supply a proof since we did not succeed to find a reference.

Lemma 5.2. Let H^n denote the n-dimensional Hawaiian earring (i.e., $H^n = \bigcup_{i=1}^{\infty} S_i^n$, where $S_i^n \subset \mathbb{R}^{n+1}$ is a sphere with radius 1/i and center $(0, \ldots, 0, (1/i) - 1)$). Then H^n is an (n-1)-connected LC^{n-1} compactum.

Proof. Let $\exp:[0, \infty) \to S^1$, $\exp(s) = e^{i\pi s}$. By Theorem 3.4, the space $Y = S_{\exp}^1(S^n, *)$ is LC^{n-1} . Since $U = \exp((0, 1))$ is open in S^1 , we see that $U' = r_{\exp}^{-1}(U)$ is open in Y and therefore an LC^{n-1} space. Since H^n is homeomorphic to a retract of U' (observe that $U' \approx (0, 1) \times H^n$), we infer that H^n is LC^{n-1} . In particular, $x_0 = (0, \ldots, 0, -1) \in H^n$ has a neighbourhood V such that each map $f: S^k \to V$, $k = 0, \ldots, n-1$, is inessential in H^n . We may assume $V = \bigcup_{i=i_0}^{\infty} S_i^n$ for some i_0 . Then V is a retract of H^n and we conclude that V is (n-1)-connected. Since $V \approx H^n$, we are finished. \Box

Lemma 5.3. $\pi_n^{(m)}(H^n)$ is uncountable for each $m \ge n$.

Proof. Let $r_i: H^n \to S_i^n$ denote the retraction sending each S_j^n , $j \neq i$, to x_0 . A homomorphism $\rho: \pi_n(H^n) \to \prod_{i=1}^{\infty} \pi(S_i^n)$ is defined by $\rho(a) = ((r_i)_*(a))$. Similarly, we obtain a homomorphism $\rho^{(m)}: \pi_n^{(m)}(H^n) \to \prod_{i=1}^{\infty} \pi_n(S_i^n)$, where we have used Theorem 2.7 to identify $\pi_n^{(m)}(S_i^n)$ with $\pi_n(S_i^n)$. Clearly, $\rho^{(m)}t_n = \rho$ with

 $t_n: \pi_n(H^n) \to \pi_n^{(m)}(H^n)$ (cf. (6)). Hence, it suffices to show to im ρ is uncountable. We observe that $H^{n-1} \subset D^n$, where D^n is the standard closed ball in \mathbb{R}^n with radius 1 and center 0. By identifying D^n with the lower hemisphere of S^n , we obtain a natural embedding $H^{n-1} \subset S^n$. Then H^n is obviously homeomorphic to the quotient space S^n/H^{n-1} , and we let $p:(S^n, x_0) \to (H^n, x_0)$ denote the "quotient map". For each $M \subset \mathbb{N}$, let $f_M: (H^n, x_0) \to (H^n, x_0)$ be defined by $f_M(x) = x$ for $x \in \bigcup_{i \in M} S_i^n$ and $f_M(x) = x_0$ otherwise. Then we obtain uncountably many maps $g_M = f_M p: (S^n, x_0) \to (H^n, x_0)$, and by construction we have $\rho([g_M]) = \rho([g_{M'}])$ if and only if M = M'. \Box

Remark. The above proof shows also that $\pi_n(H^n)$ is uncountable.

The general strategy to construct connected LC'' compact that are shape equivalent but UV^{n+1} inequivalent is this.

Assume we are given a connected LCⁿ compactum X such that $\operatorname{pro-}\pi_1(X)$ is not pro-finite $(n \ge 0)$. By Theorem 4.1, there exists an unbounded ray $\varphi:[0,\infty) \to X$. Let us consider a pointed *n*-connected LCⁿ compactum (A, a_0) . Then $X' = X_{\varphi}(A, a_0)$ is a connected LCⁿ compactum which is shape equivalent to X; see Section 3. Moreover, dim $X' = \max(\dim X, 1 + \dim A)$ (this follows from standard theorems in dimension theory; in case $A = \{a_0\}$ the equation holds because dim $X \ge 1$ by the assumption on $\operatorname{pro-}\pi_1(X)$).

Proposition 5.4. Assume that X' is UV^m equivalent to X. Then, for each $k \ge 1$, the following condition is satisfied.

 $(C_k^{(m)})$ There exists a split epimorphism $\varepsilon : \pi_k^{(m)}(X, \varphi(0)) \to \pi_k^{(m)}(X, \varphi(0))$ such that ker ε contains a subgroup isomorphic to $\pi_k^{(m)}(A, a_0)$.

Remarks. (1) An epimorphism is split if it has a right inverse.

(2) It is useful to observe that $(C_k^{(m)})$ implies the following weaker condition. $(WC_k^{(m)}) \ \pi_k^{(m)}(X, \varphi(0))$ contains a subgroup isomorphic to $\pi_k^{(m)}(A, a_0)$.

Proof of Proposition 5.4. Let $r: X' \to X$ be the canonical retraction. Then, for each $k \ge 1$, we obtain a split short exact sequence of groups

$$0 \to \ker r_* \to \pi_k^{(m)}(X', \varphi(0)) \xrightarrow{r_*} \pi_k^{(m)}(X, \varphi(0)) \to 0$$

(a canonical splitting is given by the homomorphism induced by the inclusion $X \to X'$). We obviously have im $i_* \subset \ker r_*$, where $i:(A, a_0) \to (X', \varphi(0))$, is the map defined in Theorem 4.1. Since i_* is a monomorphism by Theorem 4.1, the proposition follows easily from Observation 5.1. \Box

We are now ready to prove the Main Theorem.

If X is a connected LCⁿ⁺¹ compactum such that $\pi_1(X)$ is infinite (i.e., pro- $\pi_1(X)$ is not pro-finite by Corollary 4.3), we can choose $(A, a_0) = (H^{n+1}, x_0)$ and the above construction yields a connected LCⁿ compactum X' which is shape equivalent to X and whose dimension is max(dim X, n+2). Since $\pi_{n+1}^{(n+1)}(X, \varphi(0))$ is a countable group (cf. Theorem 2.7 and Corollary 2.4), the condition (WC⁽ⁿ⁺¹⁾) is not satisfied (recall Lemma 5.3). Hence X' and X are not UVⁿ⁺¹ equivalent.

Corollary 5.5. Let X be a connected compactum such that $\operatorname{pro-}\pi_k(X)$ is stable for $k \leq n+1$ and Mittag-Leffler for k = n+2. If $\operatorname{pro-}\pi_1(X)$ is not pro-finite, there exists a connected LCⁿ compactum X' which is shape equivalent but UV^{n+1} inequivalent to X.

Proof. By Ferry [7], X is shape equivalent to a connected LC^{n+1} compactum X". If X" is UV^{n+1} inequivalent to X, we are finished; otherwise we apply the Main Theorem to X". \Box

Let us finally consider an example due to Daverman and Venema; see [5]. The map exp: $[0, \infty) \rightarrow S^1$ considered in the proof of Lemma 5.2 is an unbounded ray in the circle S^1 . Hence, $X'_n = S^1_{exp}(S^{n+1}, *)$ is a connected LCⁿ compactum of dimension n + 2 which is shape equivalent to S^1 . In [5] it was shown that X'_n is not UV^{n+1} equivalent to S^1 . Using the results of this paper, this can be seen as follows. For n = 0, condition $(C_1^{(1)})$ is not satisfied. In fact, $\pi_1^{(1)}(S^1) \approx \mathbb{Z}$ by Theorem 2.7, and the kernel of any epimorphism $\varepsilon : \pi_1^{(1)}(S^1) \rightarrow \pi_1^{(1)}(S^1)$ is trivial. For $n \ge 1$ not even condition $(WC_{n+1}^{(n+1)})$ is satisfied since $\pi_{n+1}^{(n+1)}(S^1) = 0$ and $\pi_{n+1}^{(n+1)}(S^{n+1}) \approx \mathbb{Z}$. Moreover, it should be clear that similar examples are obtained if S^{n+1} is replaced by any *n*-connected compact CW complex A such that $\pi_{n+1}(A) \ne 0$.

References

- [1] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 380 (1988).
- [2] K. Borsuk, Theory of Retracts, Monografie Matematyczne 44 (PWN, Warsaw, 1967).
- [3] F.W. Cathey, Strong shape theory, in: S. Mardešić and J. Segal, eds., Shape Theory and Geometric Topology, Lecture Notes in Mathematics 870 (Springer, Berlin, 1981) 215-238.
- [4] A. Ch. Chigogidze, On UVⁿ-equivalent compacta, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 104 (1989) 33-35.
- [5] R.J. Daverman and G.A. Venema, CE equivalence and shape equivalence of 1-dimensional compacta, Topology Appl. 26 (1987) 131-142.
- [6] S. Ferry, Shape equivalence does not imply CE equivalence, Proc. Amer. Math. Soc. 80 (1980) 154-156.
- [7] S. Ferry, A stable converse to the Vietoris-Smale theorem with applications to shape theory, Trans. Amer. Math. Soc. 261 (1980) 369-386.
- [8] S. Ferry, Homotopy, simple homotopy, and compacta, Topology 19 (1980) 101-110.
- [9] S. Ferry, UV^k-equivalent compacta, in: S. Mardešić and J. Segal, eds., Geometric Topology and Shape Theory, Lecture Notes in Mathematics 1283 (Springer, Berlin, 1987) 88-114.

- [10] R.H. Fox, Shape theory and covering spaces, in: R.F. Dickman Jr and P. Fletcher, eds., Topology Conference Virginia Polytechnic Institute 1973, Lecture Notes in Mathematics 375 (Springer, Berlin, 1974) 71-90.
- [11] G. Kozlowski and J. Segal, Local behavior and the Whitehead and Vietoris theorems in shape theory, Fund. Math. 99 (1978) 213-225.
- [12] S. Mardešić and J. Segal, Shape Theory (North-Holland, Amsterdam, 1982).
- [13] W. S. Massey, Algebraic Topology (Harcourt, Brace & World, New York, 1967).
- [14] P. Mrozik, Continua that are shape equivalent but not UV¹ equivalent, Topology Appl. 30 (1988) 199-210.
- [15] P. Mrozik, Mapping cylinders of approaching maps and strong shape, J. London Math. Soc. (2) 41 (1990) 159-174.
- [16] H. Schubert, Topologie (Teubner, Stuttgart, 1971).
- [17] A. Zabrodsky, Covering spaces of paracompact spaces, Pacific J. Math. 14 (1964) 1489-1503.