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Abstract 
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50 (1993) 11-33. 

It is proved that each connected LC”+’ compactum X such that n,(X) is infinite admits a 
connected LC” compactum X’ which is shape equivalent but not UV”+’ equivalent, and a fortiori 

not CE equivalent, to X. 
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Introduction 

A map of compacta is cell-like (CE) if all point-inverses have trivial shape. The 

CE maps generate an equivalence relation on the class CM, of finite-dimensional 

compacta: X, YE CM 1 are called CE equivalent if there exist spaces X, = 

X, X*7. . * , X*5 > X2,+, = Y in CM, and CE maps X2, + X2,+, , i = 1,. . . , s. It is well 

known that CE equivalence implies shape equivalence. The converse, however, fails 

to be true. The first counterexample was given by Ferry who constructed a l- 

dimensional compacturn which is shape equivalent but CE inequivalent to the circle 

S’ (see [6]). In [14] we produced a “universal counterexample” by showing that 

each connected compacturn X such that pro-r,(X) is not pro-finite admits uncount- 

ably many compacta X,, dim X, s max(dim X, 3), which are all shape equivalent 

to X but pairwise CE inequivalent. However, all these spaces X,, as well as Ferry’s 

counterexample, are not locally connected, and therefore it is natural to ask whether 

shape equivalence implies CE equivalence if the spaces in question have suitable 

Correspondence to: Dr. P. Mrozik, Schwalmer Str. 3, W-6000 Frankfurt 90, Germany. 

0166.8641/93/$06.00 @ 1993-Elsevier Science Publishers B.V. All rights reserved 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82287132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


12 P. Mrozik 

“local niceness” properties. For example, if “locally nice” means to be an ANR, 

then the answer is in the affirmative (see Ferry [S]). 

The local niceness property considered in this paper is local n-connectedness. We 

recall the definition. Let Y be any space. A subset Y,c Y is said to be a UV” subset 

of Y if each neighbourhood U of Y,, in Y admits a neighbourhood V of Y0 in U 

such that each map f: S” -+ V is inessential in U, k = 0,. . . , n (we shall later refer 

to V as a UV” shrinking of U). Y is called locally n-connected (LC”) if each point 

y E Y is a UV” subset of Y. 

Generalizing Ferry’s counterexample, Daverman and Venema have constructed 

LC” compacta X,,, dim X, = n + 2, which are shape equivalent but CE inequivalent 

to S’ (see [5]). That is, shape equivalence does not imply CE equivalence for 

finite-dimensional LC” compacta. 

The purpose of this paper is to discuss this phenomenon in a broader context. 

Let us denote by UV” equivalence the equivalence relation generated by the UV” 

maps on the class CM of all compacta (see [9, 141). Recall that a compactum is 

UV” if it can be embedded as a UV” subset of an ANR (equivalently, if all 

embeddings into ANRs yield UV” subsets), and that a map is UV” if all point- 

inverses are UV”. Clearly, CE equivalence implies UV”’ equivalence. 

Main Theorem. Let X be a connected LC”+’ compactum, n 2 0, such that T,(X) is 

injinite. Then there exists a connected LC” compacturn X’, dim X’s 

max(dim X, n + 2), such that X and X’ are shape equivalent but not UV”+’ equivalent. 

In particular, X and X’ are not CE equivalent. 

We remark that for connected LC’ compacta, the condition that r,(X) be infinite 

is equivalent to the condition that pro-r,(X) be not pro-finite. See Corollary 4.3. 

Also observe that we may suppress basepoints since all spaces appearing here are 

path-connected. 

The Main Theorem is best possible in the sense that one can neither drop the 

condition that r,(X) be infinite nor achieve that X’ be LC”+‘. This follows from 

results by Ferry and Chigogidze. In fact, Ferry proved in [9] that if X is a connected 

compactum with pro-r,(X) pro-finite, then each connected compactum X’ which 

is shape equivalent to X must also be UVk equivalent to X for any kz0, whereas 

Chigogidze proved in [4] that shape equivalent LC”+’ compacta are always UV”+’ 

equivalent (i.e., shape equivalence implies UV”+’ equivalence on the class of LC”+’ 

compacta). 

The reconstruction of X’ in the Main Theorem goes as follows. Choose a map 

cp : [0, ~0) - X which lifts to a map 6 : [0, ~0) ---, * into some covering space 2 of 

X such that Cp([O, 00)) is not contained in any compact subset of 2 (see Proposition 

4.2). Let a fixed compactum A “slide along cp” to produce copies A, of A, intersecting 

X in p(t), such that “diameter(A,) + 0 as t - CO”. This yields a space X’= X u 

U,ao A,. See Section 3 how this can be made precise. If we take A = IT”+‘= 

(n + 1)-dimensional Hawaiian earring, we are able to show that X’ has the properties 

required in the Main Theorem. We note that the above-mentioned counterexamples 
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due to Daverman and Venema arise precisely by such a construction (with A = S”“). 

Moreover, if we take A = So, we easily see that X’ is obtained from X by adding 

an irregular ray in the sense of 1141. 

The basic problem in proving results like the Main Theorem is to find invariants 

that are sufficiently fine to detect UV” inequivalence (or CE inequivalence). The 

invariants used in this paper are called “UV”’ groups”; they are defined in Section 

1. Roughly speaking, the kth UV’” group xy”( Y, yo) of a pointed space ( Y, yo) is a 

modification of the ordinary kth homotopy group rrk( Y, y,) which is forced to be 

invariant under UV” equivalence. The proof of the Main Theorem relies on the 

computation of certain UV’” groups. Not all of them, however, can be expected to 

be useful for our purposes. In fact, the invariant n:“” only has a chance to distinguish 

between shape equivalent LC” compacta when n < k s m. More precisely, we have 

mp)( Y, y,,) = 0 for k > m and any space Y (see Proposition 2.8), whereas qp’( Y, yo) 

is isomorphic to the kth shape group 7jL( Y, y,,) provided k 5 n, m and Y is an LC” 

compactum (see Proposition 2.1 and Theorem 2.7). 

A generalization of homotopy groups 

Let A be a class of nonempty topological spaces having the following properties. 

(Al) & contains a one-point space *. 

(A2) If Cie.& and CUE Ci, i= 1,2, then the one-point union (C,, c,) v (C2, cz) 

contained in A. 

(~fZ3) For each k 3 1, each C E JH and each map (Y : S” -’ + C, At contains the 

mapping cylinder M(a) = (Sk-’ x Z + C)/(x, 0) - a(x) of (Y and the quotient space 

C x Z/cz obtained from C x Z by identifying all fibers {y} x Z, y E a(Sh-‘), to points. 

(44) There exists a set &l’c AI such that each map cy : S”-’ --+ C with k 2 1 and 

C E & admits C’e A’ and maps cy’: Sk-’ -+ C’, y’: C’+ C with y’~y’= (Y. 

The basic examples in this paper are A = CE = CE compacta and A! = UV”’ = UV’” 

compacta. 

For each space X and each k 3 1 we let &k(X) denote the class of all triples 

A = (C, (Y, p) where C E A and LY : Sk--’ -+ C, /3 : C + X are maps. Given two such 

triples A = (C, a, /3) and A’= (C’, a’, p’), we write A’s A if there exists a map 

y : C’ + C such that commutativity holds in 

We let = denote the equivalence relation generated by 2 (explicitly, we set A = A’ 

if there exist triples A, = A, A,, . . , AZ,+’ = A’ in &/l(X) such that AZ,> A7r*l, 

i=l,..., s). We now define 

r;(X) = &!k(X)/=. (1) 



14 P. Mrozik 

By (&4), this is a set. The equivalence class of A = (C, a, 0) in nf(X) will be 

denoted by [A] = [C, cy, p]. 

Lemma 1.1. Let Ai = (C,, LY;, pi), i = 0,1, and assume C’, = C, = C and &a,, = 

,f3, cr, =z 0. If there exist homotopies g : au = a, and h : PO = /3, such that the composed 

homotopy h 0 g : &,no = /I ,a, is stationary, then A,= A,. 

Proof. Case 1: q, = LY, = a andg is stationary. Let N’: Sk-’ -3 C x Z/a, a’(x) = [x, 01. 

Since h must be stationary on N(S~-‘), it induces a map h’: C x I/a - X and we 

obtain a commutative diagram 

where i,(c) = [ c, t]. 

Case 21 General .situation. Let G:(S”-‘xl+C)xl- C, G(x, s, t) = 

g(x,l-s+st) for (x,s)ES~~‘XZ, G(c,t)-c for CEC. Then G(x,O,t)= 

G(LY,(x), t), i.e., G induces a homotopy G’: M(LY,) x I -+ C. Let i: Sh -’ --+ M((Y,), 

i(x)=[x> 11. Then G:i=g,, and we infer A,=(M(cr,), i,&G;), A,= 

(M(cY,): i, P,Gi). The composed homotopy h 0 G’:/?oG~=,3,Gj satisfies (h 0 G’),i= 

h,G:i == h,g, = 8. Using Case 1, we see that (M(a,), i, @“GA) = (M(cY,), i, PIG;). [II 

To each A = (C, (Y, @) E .Mk(X) we associate the total map 0, = /3a : S“-’ - AT. It 

is clear that 0, = O_,, provided 4 = A’, and we can therefore define @,A, = 8, for 

[A] E 7r?(X). 
For X”E X, let A,,, = (*, const, const,,) E A,(X). The following is obvious. 

Observation 1.2. Let A =: (C, cy, ,B) E ./M,(X). If at least one qf the maps (Y : Shm’ + C, 

p : C ---f X is constant, then A = A_ where {x0} r OJ(SkP’). 

We are now ready to introduce the fundamental A-groupoid of a space X. This 

is the category P “(X) whose objects are the points of X and whose morphisms 

from .x2 to x, are the elements [A] E v:(X) such that @t,,(l) =x2 and O,,1(-1) =x, 

(observe S” = (1, -1)). Composition of morphisms is defined as follows. Let 

K:S”-~((S’:1)V(S”,--l). K(t)=tE(S’, -.-t) c (SO, 1) v (S”, -- 1). Moreover, for any 

pointed space ( Y, yo), let V : ( Y, yrJ) v ( Y, yo) -+ Y denote the folding map. Given 
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A,-(c,,ai,PI)‘.~,(X), i-1,2, such that P,a,(l)=fiZ~2(--1)=*r we define 

A’& = ((C’, a,(],) ” cc,, d-l)), ((~1 ” ad’6 VtP, ” Pz)) E h(X), (2) 

s”-qS”,l)v(So,-l)-~=(C,,cu,(l))v(C~,a,(-l)), 

(C’,,a,(l))“(~,?,cu,(--l))~~~(X,*)v(X,*)~ x. 

It is easy to check that Ai=A:, i=l,2, implies A,Az=A:A;. Hence, for [a,]~ 

9 “(X)(x,, x,), [A,] E ,uP “(X)(x,, x,), we can define 

[A,]o[A,]-[A’AJE P”(X)(x,,x,). (3) 

It should be clear that this composition is associative and that the elements [A,,,], 

.x,,I X, are the identity morphisms. Moreover, an inverse for [A] = [C, a, p] E 

F(X)(Xz, x,) is given by [a-‘]~ P,“‘(X)(x,, x,), where A ‘= (C, av, p) and 

11: So + S”, v(t) = --t (to see this, observe V(p v /3) = /3V and apply Observation 1.2). 

Next, for each k 2 1, we shall define the kth ~7 group of a pointed space (X, x0). 

As a set, this is defined by 

n;(X, x,,) = {[A] E n-f( X) jO,&S--‘) = {x,}}. (4) 

Since r,$(X, xc,) = PN(X)(~,‘, x0), we already have a group structure for k = 1 

(given by [A,][Az]=[A,]o[A,] ==[A,A,]). For kz2, we proceed as follows. Let 
K : s“- ’ + (S” -1, *) ” (p ‘, *) denote the usual comultiplication map on the H- 

cogroup Sh ‘. For [A,] = [C’,, a~,/?,]~v~(X,x~~), i-1,2, we define 

[A,lCAJ = ICC,, a,(*!)” (C2, a~(*)), (a, ” a,)% ~(PI ” Pdl 

E rr:‘(X, x0), (5) 

s”-’ -G (S” ‘) *) v (Sh -‘, *)--XL (C,) a,(*)) v (C?, a*(*)), 

(C,,CU,(*))V(CIZ,N,(*))-~~~~(x,X~~)V(X,.~~,)~x. 

It is again easy to check that this is welldejined. A few straightforward computations 

show that (5) actually defines a group multiplication on z-:(X,x,). The neutral 

element is [A,J; and inverse for [A] = [C, (Y, p] is given by [A ‘I, where A-’ = 

(C,av,p) and v:Sh ‘-+S”-’ is the usual homotopy inverse on the H-cogroup 

Sk--‘. The reader who wants explicit proofs is recommended to use Lemma 1.1. 

Moreover, the group nt(X, x0) is Abelian for k 4 2. This follows from the fact that 

K is homotopic to TK, where T is the switch map on (Sk--‘, *) v (,!?I, *). Note that 

this is also true for k = 2 since we do not need the homotopy from K to TK to be 

basepoint-preserving. 

For our basic examples Ju = CE and Jz1 = UV”‘, we obtain the kth CE group 

T~‘(X, .x0) and the kth UV”’ group TTY”“’ (X, x0) which will be abbreviated by 

?Tir”‘(X, X”). 

Each pointed map f: (X, x0) --+ (Y, JJ()) induces a group homomorphism 

f* = r:(f): ~:“CX x0) -+ flk”( y, .vo) 

which is defined by _/I*([(-, q p]) = [C, cy,,fi?]. 
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Proposition 1.3. T,” is a functorfrom the pointed homotopy category of pointed spaces 

to the category of groups when k = 1 respectively Abelian groups when k 3 2. 

Proof. Homotopy invariance follows from Lemma 1.1; the functorial properties are 

obvious. 0 

Next, we shall define a function 

tk : 7&(X, X”) -+ ?Tf(X, X”). 

The elements of r,,(X, x0) can be regarded as homotopy classes rel Sk-’ of maps 

/3:Dk-+X with @(Sk-‘)=(x0}. H ence, we may define (cf. Lemma 1.1) 

tk([pl) = rDk, i, PI. (f-3 

Here, i: Sk-’ + Dk ’ IS the inclusion map. Observe that Dk E Ju, since it is the 

mapping cylinder of the constant map Sk-’ -+ *. It is easy to verify that tk is a group 

homomorphism. 

Remark. It is a nice exercise to prove that tk is an isomorphism if all C E J,Q are 

contractible. For example, the class of nonempty spaces in which each point is a 

strong deformation retract satisfies (Al)-(~%4) and has this property. This shows 

that the ordinary kth homotopy group occurs as a special case of our general 

construction. 

We are now going to study the question how the groups rr$(X, x,,) depend on 

the basepoint x0 E X. For that purpose, let us call a space X A-connected if any two 

points x, X’E X admit C E Jll and a map y : C -+ X such that x, X’E y(C). See [14] 

for the case Ju = UV”. Obviously, each path-connected space is &-connected (recall 

that D’ E A). 

Proposition 1.4. If X is &-connected, then rr,“(X, x,) and m;“(X, x2) are isomorphic 

for all x1, x2 E X. 

Proof. The groupoid P,“(X) is connected whenever X is A-connected. q 

Let us now define an additional condition on Ju. 

(Ju5) For each k a 2, each map a : Sk-’ -+ C E J! and each map A : So- DE Ju, 

the adjunction space M(a, A) = (Sk-’ x D+ C)/(x, A(-1)) - a(x) is contained in Ju. 

Note that if A is the inclusion of So in D’, then M((Y, A) is nothing but the 

mapping cylinder of (Y. For any A, C can be regarded as a subspace of M( (Y, A). 

We remark that our above examples & = CE and Ju = UV” satisfy (A.5). This 

may be seen as follows. Let i : Sk-’ --+ Dk denote inclusion. Then Sh(M( i, A)/ Dk) = 

Sh(M(i, A)) because Dk has trivial shape. Moreover, 1M(cu, A)/C = M(i, A)/Dk, SO 

that Sh(M(cu, A)/C) = Sh(M(i, A)). In the case JR = CE both C and D have trivial 

shape; hence Sh(M(a,A))=Sh(M(a,A)/C) and M(i,A)=SkP’XDuDkX 

{A(-1)) has trivial shape. This implies that M((Y, A) has trivial shape. In case 

Ju = UV”, both the quotient map M((Y, A) -+ M(a, A)/C and the canonical retrac- 

tion M(i, A) -+ Dk are UV” maps; we easily infer that M(cu, A) must be a UV” 

compactum (see e.g. [14, Section 11). 
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Proposition 1.5. Let k 2 2. If JA satisjies (JUS) and X is J&connected, then T~(X, x,) 

and 7~f(X, x2) are isomorphic for all x, , x2 E X. 

Proof. Let [A]=[C,cu,p]~~f(X,x,) and [.n]=[D,h,~]~E,~(X)(x~,x,). Let us 

define i, : Sk-’ -+ M(o, A), i,(x) = [x, A(l P * P : M(a, A) - X P * P([x, 4) = 
p(d) for (x, d) E Sk-’ x D, P * p([c]) = p(c) f or c E C. It is then easy to verify that 

[Al. LoI= [M(Q, A), 4, P * PIE dCX, -4 
is well defined and that right multiplication by [O] is a homomorphism 

from rrf(X, x,) to T~(X, x2). Moreover, if [O’] E ~“‘“(X)(X,, x,), then 

~~~l~~~l~~~~‘l=~~l~~~~l”~~‘l~. 0 

Remark. If we do not assume (.&5), then the conclusion of Proposition 1.5 is 

nevertheless true for path-connected spaces X. In fact, for each equivalence class 

[w] of paths from x, to x2 we can define [A] . [w] as in the above proof, using 

Lemma 1.1 to see that it is well defined. Since constant path equivalence classes are 

readily seen to operate trivially, we are finished. 

Finally, we shall call a map f: X + Y JU-regular provided for each pullback 

diagram 

C---+X 

D-Y 

the following holds true: If DE J& then also C E .4. 

For example, the hereditary shape equivalences between compacta (which include 

in particular the CE maps between finite-dimensional compacta) are CE regular 

and the UV” maps between compacta are UV” regular. 

Theorem 1.6. Let f: X + Y be an &-regular map. Then for each k > 1 and each x,, E X, 

f induces an isomorphism f,: v$(X, x0) * T$( Y, f(xJ). 

Proof. (a) Surjectivity. Let [a] = [D, A, ~1 E T:‘( Y, f(xJ). Consider the following 

diagram 

Here, (Y has been inserted using the pullback property. But now [A] = [C, a, p] E 

m:(X, x0) and f,([Al) = [aI. 
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(b) Injectivity. Let [A] E kerf,, A =z (C, a, ,5). This means f,A = (C, a,f@) = 

Am . We write [AIS r if there exist Ai = (Q, A,, pj) E J&(X), i = 0,. . . ,2r + 1, such 

that A0 = Ate,,), Azl.i.l =f,A, Azi s Ali+, via a map 3/2i: L;)7i+, --;r 4,) i = 0, . . . , r, and 

AIi+2 s A,i+i via a map hi+, : D2,+l --+ D2,+z, i = 0, . . . , r - 1. Clearly, there exists a 

number r such that IA 1 c r. We shall show by induction on (Al that A = A,,. For that 

purpose let us observe that we may always assume that the following solid arrow 

square is a pullback diagram. 

P 
C-------X 

%_ ..u .a 
‘A 

Y2r 1 , c, .--;, / 

,+$‘pullback 

D2r --- Y 7, 

(Otherwise we can replace A by A’= (C’, UCY, p’); then A’= A and A’ has the desired 

property.) 

If IAl = 0, we have & = U0 = *, so that pLZr and (by the pullback construction) p 

are injective. Since pa ( Shm ‘) = {x,}, a is constant, i.e., A = A,, by Observation 1.2. 

Assume that A = A,, whenever IA ( G r - 1. If IA I s r, let us consider the following 

diagram. 

Sk- I u B 
-c-----+x 

Dzr- I -----+ DZr - Y 
YZ, 1 p:, 

Here, (Y’ has been inserted using the pullback property. We have C’E A. Let 

A’=(C’, a’,pv). Then A'= A and A,,..,sff,A’ via ~J~~-~w, i.e., [A’lsr-1. This 

implies A’= A,,. 0 

2. Some properties of LC” spaces 

In this section we collect some material on homotopy groups, shape groups and 

UV” groups of LC” compacta. 

We begin by quoting a result due to Kozlowski and Segal (see [ll]). 
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Proposition 2.1. Let (X, x,,) be a pointed paracompuct LC” space. For each k == 

0 .., n, the shape functor induces an isomorphism from 7rk(X, x,) to rhe kth shape 

g&up +ii, (X, X”). 

Recall that 7ji(X, x,?) consists of all pointed shape morphisms from (Sh, *) to 

(X, X”). 
The following result is implicitly contained in [I l] and has been explicitly stated 

by Ferry in [7]. 

Proposition 2.2. Let (X, x,,) be a pointed LC” compactum. Then pro-rr,(X, x0) is 

stable ,for k = 0, . . . , n and Mittag-Leffler for k = n -t 1. 

Corollary 2.3. Let (X, x,,j be a pointed LC” compacturn. For each k =: 0, . . . , n, the 

canonical morphism of pro-groups T~(X, x,,) -+ pro-$=rk(X, x0) is an isomorphism of 

pro-groups. 

Proof. Since pro.-?rk(X, x,,) is stable, we infer that the canonical morphism of 

pro-groups ijk (X, x,) = lim pro-flk (X, -*J - *.- pro-,rrk( X, JC(,) is an isomorphism of pro- 

groups; cf. [12, Ch.1, 0 5, Theorem 21. Application of Proposition 2.1 yields the 

corollary. El 

Corollary 2.4. Let (X, .x0) be u pointed LC” compactum. Then the homotopy groups 

nk(X, x0), k = 1, . . . , n, ure countable. 

Proof. Since pro-rk(X, x,) can be represented by an inverse sequence of kth 

homotopy groups of finite polyhedra, i.e., of countable groups, this is an immediate 

consequence of Corollary 3.3. 0 

We shall also need the following result on LC” spaces. 

Lemma 2.5. Let (X, x0) be a pointed connected LCO space. 

(a) The canonical morphism of pro-groups T,(X, x0) + pro-n,(X, x0) is an epi- 

morphism of pro-groups. 

(b) pro-v, (X, x,) is Mittag-LefJ[er. 

(c) pro-r,(X, x0) is not pro-jinite if and only if there exists a pointed CW-complex 

( Y, y,) and a pointed map f: (X, x0) -* ( Y, yo) such thutf.(7r,( X, x0)) is injnite. 

Proof. (a) Let p = {p,}: (X, x0) -+ X = {(X,, x0,,), pnB}ui4 be an HPol,-expansion 

such that all X, are connected CW-complexes (see [12, Ch.1, 9 4.31). We have to 

prove that z-,(p): n,(X, x0)---z v,(&‘) is an epimorphism of pro-groups, i.e., that 

each (Y admits- /3 3 a such that ( P~,~)~(~~~X~, ~0~)) c ( P,,,)*(T,(~, xd); cf. 1% 

Ch.11, § 2, Theorem 41. To show this, let q : ( Y, yO) -9 (X,, x,,) be a covering projec- 

tion such that q*(n,( Y, yO)) = ( pc2).+(7r,(X1 x0)). Since X is connected and LC?, pu 

can be lifted to a pointed homotopy class r : (X, x0) -+ ( Y, y,) with [ q]r = p<?. But 
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Y is a CW-complex (cf. e.g. [16]) so that there exist y E A and a pointed homotopy 

class u: (X,, xoy) -+ (Y, yO) with tip’pv = r (cf. [12, Ch.1, 5 2, Theorem 11). We may 

assume y 2 LY. Then [q]vp, =pnvpy, hence there is /3 1 y such that [q]vp,,,i =pnvpvp = 

pup (cf. again [12, Ch.1, § 2, Th eorem 11). We infer (~~~)*(7r,(X~, x,~)) c 

q*(n*(Y, Yo)) = (P&(T!(X, x0)). 
(b) Each pro-group H which admits an epimorphism of pro-groups G --) u, 

where G is a group, is easily seen to be Mittag-Leffler. 

(c) pro-n,(X, x0) is not pro-finite if and only if v,(X) is not pro-finite. It is easy 

to see that this is equivalent to the following condition: There exists LYME A such 

that (~,,~)*(ri(X~, xoa)) is infinite for all p 2 a(,. If this condition is satisfied, we 

know that (p,&+ol(X1 xJ) must be infinite; see the proof of (a). Conversely, if we 

are given a pointed map f: (X, x0) -+ (Y, y,J as in (c), we find Q~E A and a pointed 

homotopy class u : (X,,, xoCV,,) -+ ( Y, y,) such that up,, = [_/“I (cf. [12, Ch.1, § 2, 

Theorem 11). Hence, (pn,,).Jn,(X, x0)) if infinite. Since (P~,~)*(~,(X~, x,,~)) 3 

(P,,,~)~(P~LJ~~(X 4) = (P,,),(~,(X xd) for each P 2 ao, we see that the above 

condition is satisfied. 0 

In the lemma below we need the concept of an approaching map; the reader is 

referred to [3] or [ 151 for details. 

Lemma 2.6. Let X be a UV”’ compactum contained in an AR M, and let f: S”-’ -+ X 

be a map, where 1 d k d m. There exists an approaching map cp : D” x [0, 00) + M 

from Dk to X which extendsA i.e., C+CJ(X, s) =f(x) for all XE S”-’ and s E [0, a). 

Proof. There exist open neighbourhoods U,, of X in M such that nz=;=, U,, =X, 

cl( lJ,,+,) c U,,, and such that each map g: S’ + U,,, , 0 s i s m, is inessential in U,. 

This allows us to find extensionsf, : D” -+ U,,,, off (notef( S”) = X c U,,,,). Define 

g,:D”x{n,n+l}uS”~‘x[n,n+l]-+ U,,,,, g,(x, t) =fn(x) for t = n, g,(x, t) = 
fn+,(x) for t = n + 1 and g,(x, t) =f(x) for x E Sk-‘. There is an extension (P,, : Dk x 

[n, n + l] 3 U,, of g,. The maps (P,, determine a map cp : DA x [0, ~0) * M which is 

by construction an approaching map from D“ to X. 0 

Remark. As an application of Lemma 2.6 one can show that two points x0, xi of 

a compacturn X are joinable (cf. [12, Ch.11, 9 8.21) if there exist a UV’ compactum 

C and a map y: C ---z X such that xc,, x, E y(C). Details are left to the reader. Note 

that the converse fails (there exist joinable compacta which are not UV’ connected; 

an example is Ferry’s compact spiral [6] which is not UV’ connected by [14]). 

Theorem 2.7. Let (X, x0) be a pointed LC” compactum. Then the natural homomorph- 

ism tl, : rk (X, x0) --+ ni”‘)(X, x0) defined by (6) is an isomorphism provided k< m, n. 

Proof. (1) Surjectivity. Let [C, a, p] E nk ““(X x0). Choose a compact AR M contain- , 

ing the UV” compacturn C. By Lemma 2.6, there exists an approaching map 
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9: Dh x [0, co) -+ M from Dk to C which extends (Y. Let C’ denote the mapping 

cylinder of cp (concerning this concept see [15]). Here are the properties of C’ that 

are important for the present discussion (see [15]). 

(a) C’ is a compacturn containing a copy of C; 

(b) C’ and C are shape equivalent; in particular, C’ is a UV” compactum; 

(c) there exists a homeomorphism h : Dk x [0, a) -+ C’\C such that C”= C u 

h(Skm’ x [0, a)) is a copy of the ordinary mapping cylinder of (Y (where of course 

h(S“-’ x (0)) is the “top”). 

Let r: C”-+ C be the canonical retraction; then /3r: C”-, X extends p. Since X 

is LC” and dim( C’\C”j s k + 1 G n + 1, there is an extension w : .!I + X of pr on 

an open neighbourhood U of C” in C’ (see e.g. [2, Ch.111, Theorem (9.1)]). But U 

must contain C’\h(D”~[O,a))=Cuh(D~x[a,oo)) for some a>O. There is a 

retraction p:C’--, C”uh(Dkx[a,oo)) (induced by a retraction Dk x 

[0, a] + S”-’ x [0, a] u Dh x {a}), and we define p’: C’- X, p’(c) = up(c). This is 

an extension of pr. Let a’: Sk-’ --$ C’, Q’(X) = h(x, 0), and y: Dk + C’, y(x) = 

h(x, 0). We obtain the following commutative diagram (where L: C ---$ C’ denotes 

inclusion). 

By Lemma 1.1, (C’, ~cz, p’) - (C’, LY’, p’), and we infer [C, cu, p] = [Dk, incl, P’-y] E 

im tk. 

(2) Injectivity. Let [p] E ker tk, where p : Dk + X with p(S”-‘) = {x0}. We have 

to show that /3 =constq, rel Sk-‘. But [p] E ker tk means (Dk, incl, p)- 

( Dk, incl, const,,,); cf. Observation 1.2. Hence we can find A, = (C,, cr,, p,), i = 

1 ,...> 2r+ 1, such that A, = ( Dk, incl, p), A,,.,, = (D”, incl, const,,,) and Azi s A,,*, 

via a map y~i,*,): CZitl + C,,, i = 1,. . . , r. 

Ourfirst step is to show that we may assume that each a, : S’-’ -+ C, is an embedding. 

Let Cl denote the mapping cylinder of (Y~, pi : C: ---f Ci the canonical retraction onto 
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the base and LY!. S”-’ -+ C: the canonical embedding into the top. Of course, C’: is 

a UV’” compaknn. Moreover, we can easily find y;i,l,,: Ci,*, - C& such that 
I 

P2iY(,,*,,= 3/(i,~ll~zi~1 and Yij,rljaii-tl = ai;. Let Ai=(Ci, ai,&p,). Then Aii~Ai,,, 

via y[,,i,,. If we identify C; and Ci,.,, in the obvious way with D”, we see that 

A { = ( Dk, incl, p’), where /3’ = ,!3 rel Sk- ,, and A;,,. , = (Ok, incl, const,J. 

Our second step is to show that we rnaJ> assume that each Y(,,~ ,,: C,,,, --, C‘,, is an 

embedding. Let M, = (C,,_, x I_, + C2i + Czi,, x Zi.l)/-,, where I_, = [---l,O], I,., = 

[O, 1 J and - is the equivalence relation generated by ix, 0) - y,i,+_, ,(.a~) for x E C2,+, ; 

i.e., A4, is obtained by sewing together the two mapping cylinders M(y(,, ,,) along 

their common base C2i. Of course, M, is a compactum. There are canonical embed- 

dings e,,%,): C,,,, -+ Mi, eci ,+,, (x) = [x, k-11, and e, : Czi + M,, e,(x) = [xl, and 

pi : S”-m’ i [-1, I] + M,, pL,(x, s) = [azi,,(x), s] for (x, s) E Sk-’ x I,, (recall that the 

ai are embeddings after the first step). Moreover, there is a canonical retraction 

Pi:Mi-t Cz,, p,([x, ~l)=~c,,t,,(x) for (X7 3)~ C21zlX~51, PiCLXI)=X for .XE Gi. 
Finally, let us define Hi : M, x I -+ M,, H,( [x, s], t) = [x, st] for [x, 91 E CziL, >: I_, ) 

H,([x], t) = [x] for x E C,, . We have H, : e,pi = id. Let Cii denote the quotient space 

obtained from Mi by identifying all fibers pi({x} x [--I, 1 J), x E Sk-,, to points. The 

quotient map 4,: M, -+ Ci, is easily seen to be a closed map, hence C’:i is again a 

compactum. The maps Y/~,~,, = q,e(,,,,, and the maps a&: Sk-’ -+ C;,, a&(x) = 

qipi(x, 0), are embeddings; we have y;,,I,,cyzzI, = a;;. There exist unique maps 

/3$8 : C’ii -+ X such that p2, pi = piiqi; they satisfy p;iy;i9k,, = ,f$,*, . Finally, let A, = 

qiei which embeds C,, into Cii. There exist unique maps pi: Ci, -3 C’>i such that 

pi = p:qi and H: : C;, x I -+ C’ 2i such that q,Hi = H((qi x I,). Then p:Ai = id and 

Aipl=id via H:, i.e., Cli has the same homotopy type as C,,, and is therefore a 

LJV” compacturn. 

Our third step is to show that we may assume r = 1, i.e., that there is a commutative 

diagram 

where C is a UV” compacturn. In fact, when r > 1, we can shorten the sequence 

A,, . . . , &+I as follows. Let P be the pushout of C2r-2 *% C2r-, 9 C,,, given 

together with maps u : CzrP2 --j. P and v : C,, -j F? Then P is a compactum and u, u 

are embeddings, i.e., we may assume CZr-2 n C,,. = Czl_, , C2r__2~ C,, = P. The 

quotient map C2r_2 -+ Czl-JCzr-, is a UV” map, hence C21-_2/CZr_, is a UV” 

compactum (see e.g. [14, Section 11). But P/C,, is homeomorphic to C2r_2/C2r_, , 

so that P/C,, is a UV” compactum. Since the quotient map P --+ P/C,, is a UV” 

map, we infer that P is a UV” cornpactum. By the pushout property, there is a 



unique map r : P -+ X such that rru = /3?, z and TV = /I%,.. Let d$r.., = (P, u(Y?, _?, n). 

Then d:?_,=~&~, , via the embedding vy,,., ,) and 3$._ 1 < &_l via the embedding 

UYI, _I,_,,~ 
Now, given a commutative diagram as above, we define y : Sh ---t C by ylupper 

hemisphere = yT, y(lower hemisphere = y_. Similarly, let /I3* : S“ ---f X be defined 

by putting together p and constYO; then WY=@*. We wish to show that p* is 

inessential. This clearly implies p = const Y(, rel S”. ‘. Kecalling Corollary 2.3, we see 

that rk(X, x,,) -+ pro-rk(X, x,,) is an isomorphism, and a fortiori a monomorphism, 

of pro-groups. Choose ANRs M 2 C and N 3 X. Then pro-rr,(X, x,,) is represented 

by (z-~( U,, x0), (ihA,)*}, where {U,} is the set of open neighbourhoods of X in N 

and i,,,: li,. -+ U,, denotes inclusion (cf. [12, Ch.1, 0 4, Theorem 41). By the charac- 

terization of monomorphisms in [12, Ch.11, 5 2, Theorem 21, we infer that the 

inclusions i, : X ----f U, induce monomorphisms (i, )* : rrk( X, x0) ---$ T~( fJ,, , x0) for 

A~h,.ForA~A,,, choose an extension w’: V -)- U,, of i,w to some open neighbour- 

hood V of C in M. Since C is UV”‘, ivy is inessential where iv : C -+ V denotes 

inclusion. This implies (ih),([p*]) = [ihwy] = [ w’ivy]=O, and we infer [p*] =0 

in ~Q(X, x0). 0 

Remark. The proof of Theorem 2.7 can easily be modified to show that for each 

pointed LC” compacturn (X, x,,), fk : TV (X, xc,) * T;‘( X, x0) is an isomorphism pro- 

vided k s n and ,d = CE. 

Let us close this section by showing that the functors rrp’ are trivial when m < k. 

Proposition 2.8. Let m < k. Then T :‘“‘(X, x,)) = 0 for every pointed space (X, x0). 

Proof. Let [A] E TT\“‘)(X, x,), A = (C, a, ,3). We may assume that (Y : Sk-’ ---z C is an 

embedding; cf. the proof of Theorem 2.7. Let C’ = C/cu(S“.-I). Then the quotient 

map rr: C - C’ is a LJV” ’ map, in particular a UV”‘-’ map. Hence in induces 

isomorphisms of pro-groups up to dimension m - 1 and an epimorphism in 

dimension m. This shows that C’ is again a UV” compactum. Let d’= (C’, TCY, p’), 

where p’: C’- X is the unique map with p’r = p. Then A 3 A’ via r, and A’= A,,, 

by Observation 1.2. n 

3. The basic construction 

Let X be a compactum, cp: [0, a) -+ X be a map and (A, a,,) be a pointed 
compacturn. The reduced cone of (A, a,,) is the quotient space C(A, aO) = 

Ax [O, a]/(A x {a} u {a,,} x [O, co]); it is again a compacturn. For s E [0, co], let 

A, =p(Ax{s}), where p:Ax[O,co] ---f C(A, ao) is the quotient map. Clearly, A, is 
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a copy of A when s < 00, whereas A, = {*}. Let us define a subspace X,(A, a,) of 

X x C(A, a,) by the following. 

X,(A,4=XxA,u U {ds))xA,. (7) 
ri=[O,rn) 

Each pointed map f: (A, a,J - (I?, b,) of pointed compacta induces a canonical 

map C(f) : C(A, a,) + C(B, b,), and it is obvious that lx x C(f) restricts to a map 

f* : X,(A, aO> -+ X,( B, b,). Similarly, each pointed homotopy F : (A, aO) x 

I -+ (B, b,) induces a homotopy F* : X,(A, a,) x I -+ X,(B, b,). Moreover, if there 

is no danger of confusion, we simply write X, = X, (A, a,). It can be readily verified 

that X, is closed in X x C(A, a,); hence, X, is a compuctum. Moreover, there is a 

canonical retraction rq : X, -+ X (where X has been identified with X x A, c X,); 

of course, rV(x) = c*(x) with the constant pointed map c: (A, a,) -+ (A, a,). 

For technical purposes, we shall also need the following map. 

i, :A x [O, 00) -+ X,, &(a, s) = (P(S), ~(a, s)). (8) 

Obviously, each i,(A X(S)) is a copy of A such that i,(Ax{s})nX = {q(s)}. 

Moreover, r&(u, s) = q(s) for all (u, s) E A x [0, CO). It is important to notice the 

following. 

Observation 3.1. diam i,(A x {s}) + 0 us s + co. 

Here, “diam” denotes the diameter with respect to a fixed metric d, on the space 

X,. Note that Observation 3.1 is evident if we choose d, to be a metric of the form 

d,((x, c), (x’, c’)) = dx (x, x’) + d&c, c’), where dx is a metric on X and dc a metric 

on C(A, a,). But then Observation 3.1 must be true for any d, because all metrics 

on compact spaces are uniformly equivalent. Finally, a routine verification yields 

the following. 

Observation 3.2. i, maps (A\(Q)) x [O,oo) homeomorphicully onto X,\X. 

We are now ready to study X,. 

Proposition 3.3. X is a shape strong deformation retract of X, (cJ [3]). In particular, 

X and X, have the same shape. 

Proof. By [3], we have to prove the following: Each map f: X -+ P into an ANR 

P has an extension f I: X, + P, and any two extensions f;, f; : X, + P of f are 

homotopic relative to X. Since X is a retract of X,, the first part is obvious. NOW 

let us consider j-4, f; as above. Define F: X, x (0, l}u X x I ---z P by F(x, t) = f(x) 
for x E X and F(x, i) = f,!(x) for i = 0,l. There is an extension of F to an open 

U c X, x I. Let V be an open neighbourhood of X in X, such that VX I c U. Since 

X,\V is a compact subset of X,\X, there exists YE [0, ~0) such that X,\Vc 

i,((A\{u,}) x [0, r)); cf. Observation 3.2. Then X’= X,\i,((A\{u,}) x [0, r)) =X u 

i,(A x [r, 00)) is a closed subset of X, with X c X’c V, and F has an extension 
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H:X,x{O,l}uX’xl+P. Consider the map g:(Ax{O,l}u{a,}xl)x[O,r]u 

A x I x {r} + P, g(u, t, s) = H(cu(a, s), t); it has an extension G: A x f x [0, r] -+ I? 

Since p : A x I x [0, r] + &(A x [0, r]) x Z, /3(a, t, s) = (i+(u, s), t), is a closed map 

(a fortiori a quotient map) and GP-’ is single-valued, there is a unique map 

H’: &(A x [0, r]) x I + P such that G = H’P. By construction, H and H’ can be 

pasted to a continuous H”: X, x I + P which extends F. 0 

Remark. If a, has a closed neighbourhood C c A which admits a homeomorphism 

h : (bd C) x [0, 1) + C\{a,,} such that h(u, 0) = a for all a E bd C (=topological 

boundary of C in A), then X is even a cylinder base of X, (cf. [15]). In fact, 

X,\X -Z x (0, l] with 2 = (A\int C) u h((bd C) x [O,;]). 

Theorem 3.4. Let X and A be LC”, and let A be n-connected. Then X, is LC”. 

Proof. There is a relatively simple proof for n = 0; however, we shall not treat this 

case separately. The general proof is lengthy and will be divided in two steps. 

Step 1. Assume that there exists an open embedding h: [0, 1) - A such that 

h(0) = a,. 

Let xc, E X, and U be an open neighbourhood of x,, in X,. We have to construct 

a UV” shrinking Vc U in X, (cf. Introduction). Since this is trivial for xo g 

cl cp([O, CO)), we only consider X,,E cl cp([O, cc)). Here, “cl” denotes closure. Let 

U,= I/n X. This is an open neighbourhood of xg in X, hence there is a UV” 

shrinking V, of LJ, in X. We may assume that V, is compact. Recalling Observation 

3.1, we find s,~[O,co) such that i,(Ax{s})c U for s~cp~‘(V~)n[s~,~~). We now 

choose a compact neighbourhood W, of x0 in X such that W,,c int, V,. For each 

m, cpP’(intx V,) is an open neighbourhood of cp-‘( W,,) n [m, m + 11; since the latter 

is compact, it can be covered by jinitely many compact intervals J,,! c cpm’(intx V,,). 

LetJ*=U.,,iJ,,i;thencp-‘(Wo)cJ*ccp-’ ( V,). Moreover, let Jo = J” n [0, so] and 

J = J* n [so, ~0). By construction, J,, is compact and J is a closed locally contractible 

subset of [0, CO). Since {u,,}xJ,c i;’ (U), there is a neighbourhood L of a,, in A 

such that i9( L x Jo) c U. We may assume that L = h([O, 01) for some 0 > 0. Let 

V= V,u i,(LxJ,,)u i,(AxJ). Then rG’( W,,)\i,((A\h([O, O)))xJ,,)c Vc U; in 

particular, V is a neighbourhood of x0 in X,. We shall show that V is a UV” 

shrinking of U in X,. Let f: Sh + V be any map, k = 0,. . . , n. To prove that f is 

inessential in U, it sufices to showf= rJin U (since r&S”) c V,). For this purpose, 

we proceed as follows. Let r: A * A be the map defined by r(u) = a for a E L and 

r(u) = h( 0) for a E L; moreover, we choose a homotopy H : A x f -+ A such that 

H(h(O’), t)= h(tO’) for all O’E[O, 01 (observe that the inclusion L+ A is a 

cofibration). We obtain an induced map r*: X, - X,+, and an induced homotopy 

H*:X,xI-tX,. Note that r*(V) = Vou i,(LxJ*)c U and that H*(r*fx 1,) is 

a homotopy from rJ to r*f in r*(V); hence r*f= r,f in U. It therefore sufJices to 

show f = r*f in U. Since XL = X u i,( L x [0, a)) is compact (use Observation 3.2), 
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V\X,_ is open in V and P=f-‘( V\X,) is open in S”. Let A’=A\h([O, 0)). Then 

A’ is a retract of A, hence n-connected and LC”. We shall construct a homotopy 

F:Pxl-+i,(A’xJ)c U from.flp to r*fl P and compact C,,, c P such that C, = 

int CQn +i , lJz=, C,,,= P and diam F({x}~l)<l/m for XEP\C,. This clearly 

proves f- r*f in U (simply extend F by the stationary homotopy from flSh‘,,, to 

r*.f I s”\,p)_ To construct F, triangulate P by an infinite simplicial complex K. Choose 

compact subpolyhedra P, c P, triangulated by finite subcomplexes K,, c K, such 

that P, c int P,,, and I,_‘:=, P,, = P. Moreover, choose F, >O such that 

diamf(A4) < l/m for each A4 c Sk with diam A4 < F,,. There are only finitely many 

k-simplices V’ E K with diam ak > E, ; we may assume that they are already con- 

tained in K,,,. This implies 

diamf(u)<i forcrc K\K,. (*) 

Similarly, it is no restriction to assume 

d,(,f(x), r*J’(x)) <’ for x E P\P,,. (**) 
m 

Let K’” denote the i-skeleton of K and Pci’ c P the underlying polyhedron. We 

shall now inductively show the following. 

For each i, there exist a strictly increasing function Ai : N - N and a map F;“’ : P x 

(0, 1) u P”’ x I -4 &(A x J) such that 

(ai) F”‘(x, 0) =f(x), F”‘(.x, 1) = r*.f‘(.x) for .X E P, 

(bi) diam Fci’(vx I)< l/m for (TE Kci’\Kh,,,,,). 

It is then clear that F = F”’ . IS a homotopy with the desired properties (take 

C,, = Pn,c,,). 
The induction starts with i = -1; nothing has to be shown in this case. 

Next, we show how to construct F”~+” and A,+, if F”’ and A, are already given. 

For each VE K(‘+‘)\K”), F”’ restricts to a map gcr:a(ax I)+ i,(A’xJ), where 

d(~ x I) denotes the boundary of the topological (i+2)-ball v x 1. Observe that 

diam g,,(&u x I)) <3/m when a& Kh,(,,,) (use (*), (**) and (bi)). Moreover, let 

J,, c [0, 00) denote the projection of i,‘g7(a(a x I)) onto the second factor; it is a 

compact interval or a singleton (for i = -1, this follows from (a,)). Clearly, J,, c J. 

Since i,(A’xJ,) is an n-connected space containing the image of g,,, we see that 

6((~)=inf{diam (cI((~xI)(~:vxZ - i, (A’ x J) extends g,,} is a well-defined positive 

number. We choose an extension gb of g,, with diam gb(q x I) < 26(a). Now F”’ 

and the g&, (TE K(‘+‘)\K”‘, can be pasted to a map F(‘+‘): P x (0, 1)u 

P(‘+“x I + i,(A’xJ) which satisfies (aid,). We wish to show that ~((T)C 1/(2m) 

for aE Kwcmj with some sufficiently large p(m); it is then obvious that we can 

construct hi+,:RJ-+ N such that (b,,,) is fulfilled. Let s,, E[O,~O) such that 

diam &(A x {s}) < 1/(6m) for s 2 s, (cf. Observation 3.1), and let A,,, be the distance 

between the sets i,(A’x (J n [0, s,,])) and (A’x (J n [s,, + 1, CO))). Note that the 
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second one is closed in &(A’ r: J); hence A,,, > 0. Finally, for each x E Z,, = 

i,(A’x(Jn[O,s,+l])) let Lr(x)={x’~Z,,Id,( x’, x) < 1/(4m)}. But Z,,, is an L/C” 

space (recall the definitions of J and A’), and we can choose a UV” shrinking V(x) 

of U(x) in Z,,,. Let 6,,, > 0 be a Lebesgue number for the open cover {int V(x)},,,, 

of M, and let p(m) be an integer such that diam g,(a(o x I)) < min(A,,, 6,, 1/(6m)) 

for aG K&,(,,. We now consider a fixed u g K,, ,,Ij. 

Case 1: J, = l.cn, a). Let $:a~1 -+ i,(A’xJ,)c i,(A’xJ) be an 

arbitrary extension of g,. Then 6((r) s diam i,(A’xJ,) d diam gC7(d(ar: I))+ 

2 sup{diam(A x {s)) 1 SEJ,,}< 1/(6m)t 2(1/(6m)) = 1/(2m). 

Case 2: J, Ft [s,,, a). Since diam g,,(d(rr x I)) <A,,,, we infer g,r(a(a x I)) c Z,,,. 

Rut gN(a(ox I)) has diameter KS,,,, thus it is contained in some V(x) and there 

exists an extension $ : u x I ---$ I/(x) c i,(A’x J). Then 8(c) 5 diam U(x) G 1/(2m). 

This completes the proof. 

Sfep 2. General case of the theorem. 

Let A’ - {(a, t) E A x I 1 t = 1 or a = aO} c Ax Z, a,!, = (a,, 0); A’ is the one-point 

union of A and Z, and it is again n-connected and LC”. But now (A’, a&) satisfies 

the assumption in Step 1, whence Xq(A’, a[)) is LC”. Consider the map 

p : (A’, ah) - (A, a,,), p(a, t) = a; it induces a surjective map p*: ,~,(A’, a;) --+ 

X,(,4, a,]). It is easy to see that the nondegenerate point-inverses of p* are contract- 

ible (note that they are homeomorphic to the nondegenerate point-inverses of the 

canonical retraction X,( Z, 0) -+ X). Hence, p* is a CE map, and CE images of LC” 

compacta are LC’! (see e.g. [l. Corollary 2.1.2(ii)]). U 

4. Unbounded rays 

Let X be an arbitrary space. A map (r : [0, a) -+ X is called an unbounded ray in 

X if there exists a covering projection p : 2 
* 

-+ X and a lift $ : [0, 00) - X of q such 

that no compact subset of 2 contains Cp([O, co)). The importance of this concept 

comes from the following result. 

Theorem 4.1. Let q : [0, co) --+ X be an unbounded ray in a connected LC” compactum 

X and let (A, a,) be a pointed connected LC” compactum. Let x0= ~(0) E 

X = X,(A, a,), and let i: (A, a,) + (X,(A, a,), x,,), i(a) = &(a, 0) (c$ (8)). Then the 

homomorphism i, : TT:““( A, ao) + rrr’ (X,(A, a,), x0) is injective for all k, m 1 1. 

Proof. Let [A ] E ker i, , A =(C, a,@). This means that i,A =(C, a, $)=A,,,; i.e., 

there exist A,=(C,,cu,,&), j=l,..., 2r+l, such that A,=i,A, A2r+,=Axo and 

A,i G A,j+, via a map Y(~,~~,: C2;+, - Czi, j = 1, . . . , r (the C, are of course UV” 

compacta). Let us fix a covering projection p : 2 + X and a lift 6: [0, co) -+ ?? of 

cp such that no compact subset of 2 contains $([O, a)). We set Y = .&(A, a,) and 
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form the pullback 

to obtain a covering projection q: ? - Y. Observe that ? must be metrizable (see 

[ 171). Since rq is a retraction, we may assume that _% c ? and that F9 is a retraction. 

Let {@h]htL denote the set of all lifts of cp. Clearly, (Pho = 6 for some ho. Using the 

pullback property, we see that there is a unique lift i, : A x [0, CO) + ? of i, : A x 

[0, 00) --, Y such that FVih = G,,m, where r: A x [0, co) -+ [0, co) denotes projection. 

Each i,+ maps (A\{a,}) x [0, ~0) homeomorphically onto the open subset lJh = 

i,((A\{a,}) x[O, 00)) of Y (recall Observation 3.2 and observe that any lift of an 

open map is again an open map). The U, must be pairwise disjoint. To see this, 

consider A, A’E L and (a, s), (a’, s’) E (A\{a,]}) x [0, co) such that i,(u, s) = I\(u’, s’). 

Since qi, = qi,,, = iP, we infer (a, s) = (a’, s’); hence i,, = i,,, by connectedness. This 

yields (Pl,, = (PA’, i.e., A = h’. Moreover, we have ?\g = lJ,, L U,. This can be shown 

as follows. First, we see that q-‘( Y\X) = ?\%, by the pullback construction. Next, 

let FE p\g. Then q(y) = i,(G, J) with a unique (2, 5) E (A\{u,}) x [0, a). Define 

Cc, : [0, ~0) + Y, I/J(S) = &(a, s). This map has a unique lift I_$: [0, 00) -+ ? such that 

$(s”) = y. Obviously iP& is a lift of cp, i.e., * ;,(c, = (Ph for some A E L. However, 

(cl* : [0, ~0) -+ ?, (cl,,(s) = ih (a, s), is also a lift of II, with F&h = (P,, , and the pullback 

property implies 4 = (cl*. Hence y” E U,. Let us now define Z = J? u U,,; this is a 

closed subset of ? (the reader can show that 2 can be naturally identified with 

_&(A, a,), but here we do not need this fact). There is a retraction p : ? + 2 which 

agrees with F’ on _? u U,, f-h0 U,. By Theorem 3.4, Y is a connected LC” compactum; 

therefore q: t-2 Y is an overlay in the sense of Fox (see [lo, Theorem 31). This 

means in particular that q can be extended to a covering projection q’: I@--+ W 

where I@ 3 ? and W 3 Y are ANRs; cf. [lo, Theorem 131. We infer that all 

pj : C, ---f Y can be uniquely lifted to maps fij : C, -+ ? such that bj~,(*) = zo, where 

z. = i,,,(a,, 0) and * is a fixed basepoint of Sk-‘. This is true by Fox’s lifting theorem 

(see Theorem 17’ in [lo]), or can be shown directly by considering q’: 6’+ W. The 

crucial point is that pro-?r,( C,, a,(*)) = 0 because $‘, is a UV” compactum, m 2 1. 

By uniqueness of liftings we obtain Bljr( ,,*,) = &,*, , j = 1, . . . , r. The set K = 

rq(lJ, p;(C’)) c _? is compact and thus does not contain (i;([O, 00)). We can therefore 

find so, s, E [0, oo), s,< s, such that @((so, s,)) n K = 0. Let 2, = 2 u iho(A x [0, so]) u 

i,,,(Ax[s,,a))cZ. Clearly, we have ppj(C,)cZo. Define /-L:Z~--+ A by /J(Z)=% 

for z E 2 u iho(A x [s, , co)) and p( i,,(u, s)) = a for (a, s) E A x [0, so]. This is a well- 

defined continuous map (note that both pieces on which p has been defined are 

closed in 2,). It is therefore possible to define pi: Cj + A, p;(x) = /1( pbj(c)). Then 

PiJCj,+CJ= PSj*l, j=l,. . .Y r. Hence, if we define Ai = (C,, a,, /?j), we see that 
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A;zA;?+,. But now it is obvious that A;,, , = AzC, since C,,,, is a one-point space. 

Moreover, we show that A; = A. Define i’: A - Y, i’(a) = i,,,(a, 0). Then i’/3 : C -+ ? 

is a lift of p, = i/3 such that i’P(o(*)) = X,,, thus p, = i’p. The above construction 

shows that /3’, = p as required. We have now shown that [A] = OE x:‘“‘(A, a,,) which 

completes the proof. 0 

The next result provides information about the existence of unbounded rays in 

LC” compacta. 

Proposition 4.2. Let (X, x,) be a pointed connected LC” compacturn. The following 

are equivalent. 

(i) There exists a pointed connected semilocally 1 -connected LC” space ( Y, yo) 

and a pointed map f: (X, x,,) - ( Y, y,)) such that f,( r,(X, x,,)) is infinite. 

(ii) There exists an unbounded ray in X. 

(iii) pro-rr,(X, x0) is not pro-&rite. 

Proof. (i) * (ii) Sincef,(7r(X, x0)) is infinite, there exists a sequence b(,, b,, b2,. . 

inf,(n(X, x0)) such that bi . . . b, f neutral element for all 0 < i ~j (i.e., an irreducible 

sequence in the sense of [14]). It is easy to construct a map cp : [0, ~0) + X such that 

cp(n) =x0 andfq/I,,,,,+I) represents b, for all n = 0, 1,2, . . . We shall show that cp is 

an unbounded ray. Let q : ? ---) Y be the universal covering. We form the pullback 

X-Y t 

and obtain a covering projection p:% + X. Let (p : [0, CO) -+ 2 be any lift of cp. 

Assume that $([O, co)) is contained in a compact subset of 2. Then T+([O, co)) must 

be contained in a compact subset C of ?. But now&(N) is a subset of C n q- ‘(y,,) 

and must therefore be a finite set (recall that the fibre q-‘(y,)) is discrete). Choose 

m, n EN such that m < n and &(m) =7;(n). Then f@(,m,nI is a closed path in ?, 

hence q?@][,,,,,i =f~],ol[,n,,II represents the neutral element in r,( Y, y,,). On the other 

hand, fq([,n,nI represents b,, . . . b,_, , a contradiction. 

(ii) 3 (iii) Let cp be an unbounded ray in X and let p: X * X be an associated 

covering projection as in the definition of unbounded rays. Since X is LC”, we can 

assume that ?? is connected and that p extends to a covering projection q : i? + W, 

where 6’1 X and W 2 X are ANRs (see again [lo]). Let i: X ---z W denote 
inclusion. Choose 1, E 2 with p(&) = x0. Then G = p.+( r, (X,2,,)) has infinite index 

in z-,(X, x0), since p must have infinitely many sheets. Moreover, it is easy to see 

that ker i, c G, where i, : n,(X, x0) -+ n,( W, x0) (cf. [13, Proposition 11.11). Hence, 
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im i, = n,(X, xJ/ker i, is infinite. Now ( W, x0) has the pointed homotopy type of 

a pointed CW-complex, so that pro-rr,(X, x0) is not pro-finite by Lemma 2.5(c). 

(iii) =+ (i) This follows from Lemma 2.5(c). q 

Corollary 4.3. Let (X, x0) be a pointed connected semilocally 1 -connected LC* compac- 

turn. Then pro-r, (X, x0) is pro-finite zf and only if rr, (X, x0) is finite. 

Proof. This follows from Lemma 2.5(c) and Proposition 4.2. Cl 

Remark. If (X, x0) is a pointed connected LC’ compactum, then the conclusion of 

Corollary 4.3 can be derived more easily from Corollary 2.3. 

5. Proof of the Main Theorem 

We begin with an elementary observation. 

Observation 5.1. Let (X, x0) and ( Y, y,,) be two path-connected UV” equivalent 

compacta. Then TV “n’(X x0) and T:““( Y, y,J are isomorphic for each k 2 1. , 

In fact, this follows easily from Propositions 1.4, 1.5 and Theorem 1.6. 

The next result seems to be well known. We shall nevertheless supply a proof 

since we did not succeed to find a reference. 

Lemma 5.2. Let H” denote the n-dimensional Hawaiian earring (i.e., H” = Uz, S:, 

where Sr c R”+’ is a sphere with radius l/i and center (0, , . . , 0, (l/i) - 1)). 7hen H” 

is an (n - I)-connected LC”-’ compacturn. 

Proof. Let exp : [0, Co) -+ S’, exp(s) = eirr’. By Theorem 3.4, the space Y = S&,(S”, *) 

is LC”-‘. Since U = exp((O, 1)) is open in S’, we see that U’= r,;‘,(U) is open in 

Y and therefore an LC”-’ space. Since H” is homeomorphic to a retract of U’ 

(observe that U’-(0, 1)x H”), we infer that H” is LC”-‘. In particular, x0= 

(0,. . . , 0, -1) E H” has a neighbourhood V such that each map f: Sk - V, k = 

0, . . . , n - 1, is inessential in H”. We may assume V= IJE,, Sr for some iO. Then 

V is a retract of H” and we conclude that V is (n - l)-connected. Since V= H”, 

we are finished. 0 

Lemma 5.3. vLm’( H”) is uncountable for each m 2 n. 

Proof. Let ri: H” ---, Sy denote the retraction sending each Sy, j # i, to x0. A 

homomorphism p: n,(H”) -+ fly:, GT(S:) is defined by p(a) = ((r,)*(a)). Similarly, 

we obtain a homomorphism ptm): r!,““( H”) + fl’y=;“=, g,,(Sr), where we have used 

Theorem 2.7 to identify rr’,m’(Sy) with ,,,(Sr). Clearly, p(‘“)t, = p with 



Equivalence of LC” compacra 31 

t, : ?T,(H”) + rrTT, (m’(H”) (cf. (6)). Hence, it suffices to show to im p is uncountable. 

We observe that H”-’ c D”, where D” is the standard closed ball in R” with radius 

1 and center 0. By identifying D” with the lower hemisphere of S”, we obtain a 

natural embedding H”-’ c S”. Then H” is obviously homeomorphic to the quotient 

space S”/ H n-‘, and we let p : (S”, x0) + (H ‘, x0) denote the “quotient map”. For 

each McN, letf~:(H”,x,)+(H”,x,) be defined byf,((x)=x for XEU;,,S: 

and f,,(x) = x0 otherwise. Then we obtain uncountably many maps g, = 

&p: (S”, x0) --$ (H”, x,), and by construction we have p([g,,,]) = p([gM,]) if and 

only if M = M’. 0 

Remark. The above proof shows also that r,(H”) is uncountable. 

The general strategy to construct connected LC” compacta that are shape 

equivalent but UV ‘+’ inequivalent is this. 

Assume we are given a connected LC” compacturn X such that pro-rr,(X) is not 

pro-finite (n 2 0). By Theorem 4.1, there exists an unbounded ray cp : [0, ~0) -+ X. 

Let us consider a pointed n-connected LC” compacturn (A, a,). Then X’ = X, (A, ao) 

is a connected LC” compacturn which is shape equivalent to X; see Section 3. 

Moreover, dim X’ = max(dim X, 1 + dim A) (this follows from standard theorems 

in dimension theory; in case A = {a”} the equation holds because dim X b 1 by the 

assumption on pro-T,(X)). 

Proposition 5.4. Assume that X’ is UV” equivalent to X. Then, for each k 2 1, the 

following condition is satisjied. 

(CL”‘) There exists a split epimorphism F : rrLm’(X, (p(O)) -+ nJim)(X, q(O)) such that 

ker F contains a subgroup isomorphic to ry’(A, a,,). 

Remarks. (1) An epimorphism is split if it has a right inverse. 

(2) It is useful to observe that (C’,“‘) implies the following weaker condition 

(WC!?) 7T(km)(X, P(0)) contains a subgroup isomorphic to ni”“(A, a,). 

Proof of Proposition 5.4. Let r : X ’ -+ X be the canonical retraction. Then, for each 

k 2 1, we obtain a split short exact sequence of groups 

O* ker r* ---$ ~jim’(X’, p(O)) I* 7i-im)(X, P(O)) ---z o 

(a canonical splitting is given by the homomorphism induced by the inclusion 

X + X’). We obviously have im i, c ker r*, where i : (A, a,,) * (X’, p(O)), is the 

map defined in Theorem 4.1. Since i, is a monomorphism by Theorem 4.1, the 

proposition follows easily from Observation 5.1. 0 
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We are now ready to prove the Main Theorem. 

If X is a connected LC”+’ compactum such that r,(X) is infinite (i.e., pro-r,(X) 

is not pro-finite by Corollary 4.3), we can choose (A, a,) = (ET”+‘, x0) and the above 

construction yields a connected LC” compacturn X’ which is shape equivalent to 

X and whose dimension is max(dim X, n +2). Since rr !,‘+:“(X, p(O)) is a countable 

group (cf. Theorem 2.7 and Corollary 2.4), the condition (WC’,“,:“) is not satisfied 

(recall Lemma 5.3). Hence X’ and X are not UV”+’ equivalent. 

Corollary 5.5. Let X be a connected compactum such that pro-rrk(X) is stable for 

k s n + 1 and Mittag-Lefler for k = n +2. If pro-r,(X) is not pro-jinite, there exists 

a connected LC” compactum X’ which is shape equivalent but UV”+’ inequivalent 

to x. 

Proof. By Ferry [7], X is shape equivalent to a connected LC”+’ compactum X”. 

If X” is UV”+’ inequivalent to X, we are finished; otherwise we apply the Main 

Theorem to X”. 0 

Let us finally consider an example due to Daverman and Venema; see [5]. The 

map exp : [0, 00) --f S’ considered in the proof of Lemma 5.2 is an unbounded ray 

in the circle S’. Hence, XL = S&,(S”+‘, *) is a connected LC” compactum of 

dimension n +2 which is shape equivalent to S’. In [5] it was shown that XL is not 

UV”+’ equivalent to S’. Using the results of this paper, this can be seen as follows. 

For n = 0, condition (C’,“) is not satisfied. In fact, &“)(S’) = Z by Theorem 2.7, and 

the kernel of any epimorphism E : r\“(S’) + rirj”(S’) is trivial. For n > 1 not even 

condition (WC’,“:“) is satisfied since r’,“,:“(S’) = 0 and rr~,~“‘)(S”+‘) = Z. Moreover, 

it should be clear that similar examples are obtained if S”” is replaced by any 

n-connected compact CW complex A such that n,,+,(A) f 0. 
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