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Abstract

The protein content of breast milk provides a foundation for estimating protein requirements of infants. Because it serves as a guideline for regulatory
agencies issuing regulations for infant formula composition, it is critical that information on the protein content of breast milk is reliable. We have therefore
carried out a meta-analysis of the protein and amino acid contents of breast milk and how they evolve during lactation. As several bioactive proteins are not
completely digested in the infant and therefore represent “non-utilizable” protein, we evaluated the quantity, mechanism of action and digestive fate of several
major breast milk proteins. A better knowledge of the development of the protein contents of breast milk and to what extent protein utilization changes with age
of the infant will help improve understanding of protein needs in infancy. It is also essential when designing the composition of infant formulas, particularly
when the formula uses a “staging” approach in which the composition of the formula is modified in stages to reflect changes in breast milk and changing
requirements as the infant ages.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Breast milk is an excellent source of protein and the preferred
source of nutrition for infants. Breast-fed infants experience fewer and
shorter infections [1,2], exhibit different growth patterns [2], have
different gut microflora [3], show better cognitive development [4]
and even face differences in the risk of chronic diseases, such as obesity
[5,6], Type 1 and Type 2 diabetes [7–8] and cardiovascular disease
[8,9]. Although the composition of infant formulas has evolved with
increasing knowledge of infant nutrition, differences in outcomes
between breast-fed and formula-fed infants still persist [10]. Efforts to
improve outcomes of formula-fed infants and the composition of
infant formula are complicated by variability in breast milk nutrient
content. Human milk and its key components, including proteins,
change continuously over time [11,12]. Consequently, narrowing the
gap between breast milk and infant formula requires a greater
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understanding how protein quality and quantity in human milk
changes over time.

Milk proteins are classified into three groups: milk fat globule
membrane (MFGM) proteins, caseins and whey proteins. MFGM
proteins contribute only a small percentage of the true protein content
of human milk [13], a percentage that is likely relatively stable over
time [14]. The principal proteins in human milk are caseins and whey
proteins, which include α-lactalbumin, lactoferrin and secretory
immunoglobulin A (sIgA). Concentrations of both casein and whey
change profoundly over the course of lactation. Early in lactation, the
concentration of whey proteins is very high, while casein is virtually
undetectable [15,16]. As infants age, casein synthesis and, conse-
quently, casein concentrations increase, partially due to hormonal
changes in the mother. Because the amino acid contents of whey
proteins and casein differ, milk amino acid content also changes as
infants mature.

The protein intake of breast-fed infants has been used as a model
for infant protein requirements, given that breast milk is typically the
only source of protein before complementary foods are introduced.
Protein content in breast milk can be quantified by directly assessing
the true protein content or quantifying the nitrogen content in breast
milk. True protein can be calculated from the nitrogen content by
subtracting nonprotein nitrogen from the total nitrogen and multi-
plying the difference by a conversion (Kjeldahl) factor [14].
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Table 1
Included studies on true protein content in human milk

First author Year Country Study design

Allen [101] 1991 USA Longitudinal
Andersson [102] 1983 USA Longitudinal
Arnold [103] 1987 Australia Longitudinal
Bauer [104] 2011 Germany Longitudinal
Britton [105] 1986 USA Longitudinal
Butte [106] 1984 USA Longitudinal
Butte [107] 1984 USA Longitudinal
Butte [108] 1990 USA Cross-sectional
Dewey [109] 1983 USA Longitudinal
Gross [110] 1980 USA Longitudinal
Harzer [111] 1986 Germany Longitudinal
Hibberd [112] 1982 UK and Germany Longitudinal
Kunz [16] 1992 USA Longitudinal
Lönnerdal [26] 1976 Sweden Longitudinal
Marquis [32] 2003 Peru Longitudinal
Mitoulas [113] 2002 Australia Longitudinal
Montagne [114] 1999 France Longitudinal
Nagasawa [115] 1973 Japan Cross-sectional
Nagra [34] 1989 Pakistan Longitudinal
Nommsen [116] 1991 USA Cross-sectional
Ronayne de Ferrer [28] 2000 Argentina Longitudinal
Saarela [11] 2005 Finland Longitudinal
Sanchez-Pozo [27] 1986 Spain Longitudinal
Sann [117] 1981 France Longitudinal
Shehadeh [118] 2006 Israel Cross-sectional
Stuff [119] 1989 USA Longitudinal
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Assessments of true protein content using these methods have
reported concentrations of 14 to 16 g/l during early lactation, 8 to
10 g/l at 3 to 4months and 7 to 8 g/l at 6months [14,16,17]. However,
true protein intake does not accurately reflect the amount of utilizable
amino acids in infants because some breastmilk proteins can be found
intact in infant stool [18]. Lactoferrin and sIgA, for example, are found
in relatively high amounts in feces from breast-fed infants.

These proteins— andmany others— have important roles in breast
milk beyond nutritional support. Bioactive proteins likely contribute
to the numerous advantages of breast milk over infant formula.
Bioactive proteins can have enzymatic activity, enhance nutrient
absorption [19], stimulate growth [20], modulate the immune system
[21] and assist in the defense against pathogens [21–24]. Key bioactive
proteins in human milk include lysozyme, α-lactalbumin, κ-casein
and β-casein, as well as lactoferrin and immunoglobulins, especially
sIgA (Table 1) [10,14,24].

The extent to which true protein, amino acid and bioactive protein
content in breast milk changes over time has been evaluated in a
variety of studies using different methodologies. A single reference
that analyzes true protein content, amino acid content and bioactive
protein content, describes their changes throughout the course of
lactation and considers the implications of these changes in infant
development is needed and would be useful to efforts to improve
infant nutrition.

To meet this need, we conducted a meta-analysis and literature
review to evaluate changes in these protein parameters during infants'
first year of life. In this meta-analysis and review, we compiled and
analyzed data on protein and amino acid content in human milk
available in themedical literature.Weused this dataset to estimate the
longitudinal evolution of total protein, amino acid and certain
bioactive protein content in human milk from birth through 1 year.
We also interpreted these changes in the context of the known and
proposed biological functions of the evaluated proteins. It is hoped
that this analysis will provide a reference dataset for changes in
protein content over time, a dataset that can be used to improve our
understanding of the protein and amino acid intake of breast-fed
infants and to enhance the composition, staging and performance of
infant formulas.

2. Methods

2.1. Literature search

To identify all published literature on protein content of breast
milk, we performed literature searches using PubMed, Scopus,
EMBASE and Google Scholar using the following keywords: breast
milk, human milk, protein, true protein, total protein nitrogen, protein
nitrogen, bioactive proteins, whey to casein ratio, lactoferrin, α-
lactalbumin, serum albumin, IgA, lysozyme, IgG, IgM and amino acid.
The most recent search was conducted in March 2015. Reference lists
of the retrieved articles were also reviewed to identify references not
found using electronic search methods. Only data from “normal” or
“healthy”mothers who delivered healthy term infants were included
in this meta-analysis. Studies evaluated mothers who consumed free-
living diets; data from mothers consuming special diets were
excluded. Selected studies provided sufficient information regarding
geographic location, study design, sampling time and procedure,
nature of sample, analyticalmethods andunits. Other variables such as
age, ethnicity, bodyweight, socioeconomic status and seasonwere not
considered. Milk could be obtained with mechanical, electrical and
hand pumps or by manual expression. Samples were transported and
stored in either liquid or freeze-dried form; defatted or whole milk
was used for hydrolysis. Milk samples analyzed were taken from
complete 24-h collections, the entire amount of milk from one or both
breasts at one feeding or pooled or banked milk.
2.2. Data extraction

Data were extracted from studies that reported true protein
content, protein-bound amino acid content and bioactive proteins.
Assessments of bioactive proteins included evaluations of whey-to-
casein ratios and concentrations of lactoferrin, α-lactalbumin, serum
albumin, sIgA, lysozyme, immunoglobulin G (IgG) or immunoglobulin
M (IgM). Total, essential and nonessential amino acid content was
evaluated in available studies. Protein quality was defined as the ratio
of essential to nonessential amino acid concentrations. For protein
content analysis, total nitrogen datawere not considered relevant, and
only true protein data obtained using Kjeldahl (total nitrogen —
nonprotein nitrogen with a 6.25 conversion factor), Lowry, Biuret and
bicinchoninic acid (BCA) kits were extracted. When other conversion
factors (i.e., 6.38)were used to estimate true protein content using the
Kjeldahl method, the data were recalculated using 6.25 as conversion
factor. Data summaries were prepared using the means from original
reports converted into consistent units (g per 100ml,mg per 100ml or
mgperml).Whensampling timewasprovidedas ranges andnot specific
days, sampling time was calculated based on the average lactation day.
Data were categorized by stage of lactation as follows: colostrum (0 to 5
days postpartum), 6 to 15, 16 to 30, 31 to 60, 61 to 90 and 91 to 360 days
postpartum. Means, medians, 25th and 75th percentiles, minima,
maxima and standard deviations were calculated and used to prepare
summary tables and graphical plots. Linear regression of the true protein
dataset was performed using R Version 3.0.1.

3. Results

Separate analyses were conducted for each evaluated endpoint. A
total of 43 original articles published between 1953 and 2011 were
included in at least one analysis.

3.1. True protein

In our evaluation of true protein content, we considered 34 original
articles published between 1973 and 2011. Eight of these papers were
excluded due to unreliable analytical methodologies, leaving 26
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articles for inclusion (Table 1). These 26 articles provided 130 data
points during the first year after birth. Seventy percent of the data
included in the analyseswere collected less than90days after the birth
of the infant.

Fig. 1 demonstrates that true protein content in human milk
consistently declines over time. A linear regression was performed on
the true protein dataset to better characterize the dynamic evolution
of the true protein concentration over time. As the protein data exhibit
a logarithmic decay, a linear regression model was fitted to the data
and specified as true protein = β0 + β1 * month +β2 *log(-
month) + ε, in which β0=1.407, β1=0.026, β3=−0.279 and
ε ~ N(0,1). The percentage of variation explained by the model
(adjusted R2) was 0.581. To take into account the variation of the
data, the lower and upper confidence bands — represented as dashed
lines — have been constructed using the same regression models but
considering the lower and upper limits as input data, respectively.
Then, the lower 95% CI limit has been displayed for the lower band,
whereas the upper 95% CI limit has been used for the upper band.
Median true protein content in milk expressed between 16 and 30
days after delivery was 24% lower compared with true protein in milk
expressed 0 to 5 days after delivery (1.57 g/100 ml vs. 2.06 g/100 ml).
True protein content continued to decrease throughout the first year
but at substantially lower rates than those observed in the first weeks
(Supplemental Fig. 1). By 90 to 360 days, true protein content in
human breast milk was 47% lower compared to 0 to 5 days after
delivery (1.10 g/100 ml). Fig. 2 also superimposes estimated protein
requirements in infants over time as calculated by Dewey et al. [25].
Changes in true protein content closely parallel changes in infant
protein requirements (Fig. 2).

3.2. Amino acids

Fourteen articles published between 1976 and 2009 that evaluated
amino acid content were selected for analysis (Table 2). Total and
essential amino acid content decreased over time (Supplemental Fig.
2). The largest decreases in amino acid content occurred betweenmilk
expressed 0 to 5 days after delivery and milk expressed 6 to 15 days
after delivery, as shown in Table 3. In fact, total amino acid content in
breast milk expressed 16 to 30 days after delivery was less than half of
that observed in colostrum. Total, essential and nonessential amino
acid content stabilized in samples collected after 2 weeks after
delivery. Although changes in total, essential and nonessential amino
acid content were observed, essential to total amino acids ratios were
stable over time.

Fig. 3 illustrates changes in two essential amino acids, lysine and
tryptophan, over time. Changes in lysine and tryptophan content
paralleled changes in total amino acid and essential amino acid
content, with substantial decreases between colostrum and milk
collected between 16 and 30 days after delivery.

3.3. Bioactive proteins

Twelve articles published between 1972 and 2003 were identified
and included in the analysis (Table 4) [16,17,26–35]. All studies did
not evaluate all endpoints, and data on some endpoints were not
available for all time points (e.g., IgA, lysozyme, IgG and IgM).

3.3.1. Whey-to-casein ratio
Five studies evaluated concentrations of whey and casein and

reported data that could be used to calculate whey-to-casein ratios
[16,29,30,33,34]. Estimates ofwhey-to-casein ratios and their changes
over time are presented in Table 5 and Supplemental Fig. 3. Whey-to-
casein ratios were highest in breast milk collected in the first 5 days
after delivery and declined over time. In the colostrum, the median
whey-to-casein ratio was 89:11, a ratio that dropped to 65:35 in milk
collected 6 to 15 days after delivery. At all subsequent time periods
(days 16 through 360), the ratio stabilized to approximately 60:40
(ranging from 59:41 to 61:39).

3.3.2. Lactoferrin
Lactoferrin concentrations in breast milk in the first year after

delivery were evaluated in nine studies [17,26–28,30–33,35]. As
shown in Table 5 and Supplemental Fig. 4, the greatest concentrations
of lactoferrin were observed in colostrum (5.05 mg/ml). Median
lactoferrin concentrations declined to 3.30 mg/ml in milk expressed 6
to 15 days after delivery and continued to decrease over time. In milk
collected 91 to 360 days after delivery, median lactoferrin concentra-
tions were 1.44 mg/ml.

3.3.3. α-lactalbumin
Seven studies evaluated α-lactalbumin concentrations in breast

milk in the first year after delivery [17,26,27,29,30,31,35]. Concentra-
tions of α-lactalbumin were highest in colostrum (4.30 mg/ml), as
shown in Table 5 and Supplemental Fig. 5. However, α-lactalbumin
concentrations decreased more gradually than did lactoferrin, true
protein content or amino acid content. In fact, α-lactalbumin
concentrations in milk expressed 6 to 15 days after delivery were
similar to those seen in colostrum (4.20 mg/ml). α-Lactalbumin
concentrations began to decrease in samples collected 16 to 30 days
(to 3.30 mg/ml) and continued to decrease over time to 2.6 mg/ml in
samples collected between 91 to 360 days.

3.3.4. Secretory IgA (sIgA)
Three studies that evaluated sIgA concentrations were identified

and included in the analysis [30–32]. Median sIgA concentrations
decreased from 5.45 mg/ml in samples collected 0 to 5 days after
delivery to 1.50 mg/ml in samples collected 6 to 15 days after delivery
(Table 5 and Supplemental Fig. 6). sIgA concentrations in samples
collected between 16 days and 90 days (the last time period during
which sIgA data were available) ranged from 1.0 to 1.3 mg/ml.

3.3.5. IgG and IgM
IgG and IgM concentrations in breast milk were evaluated in two

studies [17,26]. However, data on IgG or IgM content in the colostrum
or in humanmilk collected between31 and60days after deliverywere
not available in either study. IgG concentrations at the remaining time
points (days 6 to 15, 16 to 30, 61 to 90 and 90 to 360) were low and
ranged from 0.03 mg/ml at days 61 to 90 to 0.05 at days 6 to 15, as
shown in Table 5 and Supplemental Fig. 7. IgM concentrations
decreased from 0.12 in milk collected 6 to 15 days after delivery to
0.05 in milk collected 16 to 30 days after delivery.

3.3.6. Lysozyme
Four studies evaluated lysozyme concentrations in human milk

and their changes over time [27,30–32]. No clear trends in lysozyme
concentrations were apparent between samples collected 0 to 5
days after delivery and samples collected 61 to 90 days after delivery
(Table 5 and Supplemental Fig. 8). Median concentrations of lysozyme
were 0.32 mg/ml in colostrum, peaked at 1.10 mg/ml at 31 to 60 days
and declined to 0.85 mg/ml at 61 to 90 days. No data on lysozyme
concentrations were available after day 90.

3.3.7. Serum albumin
Five studies analyzed changes in serum albumin content over time

[17,26,27,29,35]. Serumalbumin levels appeared to slightly increase in
thefirst 60 days after delivery (from0.56mg/ml in samples collected 0
to 5 days after delivery to 0.72 mg/ml in samples collected 31 to 60
days after delivery) and decrease thereafter (to 0.44mg/ml in samples
collected 91 to 360 days after delivery), as shown in Table 5 and
Supplemental Fig. 9.



Fig. 1. Linear regression analysis (solid line) of the true protein dataset in g per 100 ml over the first year of lactation (lower and upper confidence bands are represented by the dashed
lines). Data points correspond to mean values and error bars to +/− standard deviations.
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4. Discussion

Quantifying the total (true) protein, amino acid and bioactive
protein content of human milk at various stages of lactation may
provide a useful guide to understanding the changing nature of
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Table 2
Included studies on protein bound amino acid content in human milk

First author Year Country Study design

Britton [105] 1986 USA Longitudinal
Chavalittamrong [120] 1981 Thailand Cross-sectional
Darragh [121] 1998 New Zealand One time point
Davis [122] 1994 USA Not documented
Feng [123] 2009 Australia, Canada, Chile, China,

Japan, Mexico, Philippines, UK, USA
Cross-sectional

Janas [124] 1986 USA Longitudinal
Janas [125] 1987 USA Longitudinal
Lauber [126] 1979 Ivory Cost Longitudinal
Lönnerdal [26] 1976 Sweden Longitudinal
Sarwar [127] 1996 Canada One time point
Svanberg [128] 1977 Ethiopia and Sweden Cross-sectional
Villalpando [129] 1998 Mexico Cross-sectional
Wu [130] 2000 Taiwan Cross-sectional
Yamawaki [131] 2005 Japan Cross-sectional
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month of delivery. For example, true protein content in samples
collected ~60 days after delivery was nearly 40% less than that seen in
colostrum. While protein content was greatest in colostrum, colos-
trum also exhibited the greatest variability in protein content. The
variance in protein content decreased with age. Despite the reduction
in protein over time, the nutritional value of protein in breast milk, as
measured by the ratio of essential amino acids to total amino acids,
appears to be consistent over time. These changes correlate well with
the evolving needs of the growing infant.

Results of recent meta-analyses and systematic reviews of breast
milk nutrient content are consistent with our findings [12,36]. A
systematic review and meta-analysis comparing the nutrient content
of preterm and termhumanmilk reported higher true protein content
in preterm milk than in term milk, although these differences had
dissipated by postnatal day 3 andwere no longer apparent byweek 10
to 12. In both preterm and term milk, colostrum had the highest
protein content. Protein content in colostrumwas nearly twice as high
as that seen inmilk collected 3 to 4weeks after delivery, a pattern that
was observed in preterm and term milk.

Similarly, a systematic review of the longitudinal changes in amino
acid profiles in term and preterm human milk reported that total
amino acid contentwas highest in the colostrum, declined in the first 2
months of lactation and then remained stable [36]. The authors did
note that this pattern did not hold for all free amino acids when they
were individually analyzed. This review also noted significant regional
differences for certain amino acids, indicating the importance of
including samples from a variety of geographic regions. Our analyses
included data frommore than 20 different countries across the globe.

4.1. Changes in bioactive proteins

It has been suggested that the higher protein content of colostrum
and early breast milk may represent nondigestible bioactive proteins
[12,37,38]. While changes in true protein and amino acid content of
humanmilk have been described in several publications [12,36], less is
Table 3
Median values of the total, essential, nonessential and essential to total amino acids
(AA) ratio in human milk

Time (days) Total AA Essential AA Nonessential AA Essential to total AA ratio

mg per 100 ml %

0–5 2240.3 893.4 1346.9 39.9
6–15 1623.2 687.9 935.2 41.5
16–30 1111.0 491.0 620.0 44.2
31–60 1143.0 487.5 655.5 43.6
61–90 1026.0 436.0 590.0 40.1
91–360 1008.1 423.9 584.2 42.7
known about longitudinal changes in bioactive proteins. Many
proteins in human milk have demonstrated roles beyond nutrition,
providing enzymatic activity, enhancing nutrient absorption, stimu-
lating growth, modulating the immune system and defending against
pathogens (Table 6). Whey proteins, such as lactoferrin, α-
lactalbumin, immunoglobulins and lysozyme, and caseins are among
the most thoroughly characterized.

4.1.1. Whey-to-casein ratio
The whey-to-casein ratio significantly affects the bioactivity of

milk proteins. For example, early milk contains a very high proportion
of whey proteins, especially lactoferrin and sIgA, which may be
particularly important for immunity and protection against infection
during the newborn period, whereas caseins become more predom-
inant in later lactation, possibly providing bioactivities that are more
important in later infancy.

Several studies have demonstrated thatwhey-to-casein ratios vary
significantly over the course of lactation [15,16]. Early in lactation,
whey concentrations are high, and casein is virtually undetectable. At
the start of lactation, whey-to-casein ratios of approximately 80:20
have been reported [16,24]. Our analysis confirmed these findings but
revealed an even greater disparity between whey and casein
concentrations early in lactation. In our study, the median whey-to-
casein ratio was nearly 90:10 in colostrum and dropped to 65:35 by
week 2. Whey protein contains lactoferrin, α-lactalbumin and
immunoglobulins, all of which promote immunomodulation, a critical
function in newborn infants with an immature immune system. These
findings reinforce the need for lower casein levels in formulas
developed for newborn infants.

4.1.2. Caseins
Key caseins in human milk include β-casein and κ-casein. The αs1

casein subunit is present in very low concentrations in human milk,
unlike in cow's milk. When β-casein is digested, smaller casein
phosphopeptides and caseomorphins are formed [24]. Negatively
charged casein phosphopeptides can chelate Ca2+ and may facilitate
calcium absorption. Although Teucher et al. have shown that bovine
caseinphosphopeptides do not enhance calcium absorption in adults
[39], the presence of such peptides in infantsmay help to keep calcium
in solution and thereby improve net calcium absorption. The presence
of casein phosphopeptides in human milk may explain, in part, the
more effective uptake of calcium from breast milk than from formula
[39]. Caseomorphins have structures similar to opioid peptides [40]
and may thus affect infant sleep–wake patterns and psychomotor
development [41]. β-casein may also exhibit antimicrobial activity
towards Haemophilus influenza [42] and streptococci [43,44].

κ-casein inhibits bacterial adhesion, including the adhesion of
Heliobacter pylori [45]. In fact, H. pylori is less common in breast-fed
than in formula-fed infants [24]. This may result from the structural
similarity between the glycans of κ-casein and the surface-exposed
carbohydrates of cells in the mucosa of the gastrointestinal tract,
suggesting that these glycans may act as soluble “decoys” for
pathogens [45]. Studies also indicate that caseins may exhibit
immunomodulatory activity by regulating chemotaxis and ameliorat-
ing inflammation [46–48].

4.1.3. Lactoferrin
Among the whey proteins, lactoferrin is a dominant component; it

constitutes 20% of true protein in breast milk. Lactoferrin is a protein
with multiple functions and a structure that makes it remarkably
resistant to proteolytic enzymes and, thus, difficult to digest. In
newborns and even in infants up to 4 months of age, intact lactoferrin
can be found in infant stool, suggesting that lactoferrin survives and
may be active in the small intestine [18,24]. Undigested lactoferrin can
bind to specific lactoferrin receptors on the surface of epithelial cells
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and be internalized through endocytosis [10,49,50]. Once inside the
cell, lactoferrin enters the nucleus and binds to specific promoter sites,
acting as a transcription factor and thereby regulating the expression
of many genes including several cytokines [51]. This may help explain
why and how lactoferrin can influence somany diverse activities [10].

Lactoferrin is known to facilitate the uptake of iron into cells.
However, early studies on infant formulas supplemented with bovine
lactoferrin largely showed that lactoferrin supplementation had no
impact on iron absorptionor iron status [14,52,53]. Thesefindingsmay
be explained by the fact that commercial bovine lactoferrin at that
Table 4
Included studies on bioactive proteins in human milk

First author Year Country Study esign Protein analyzed

Lönnerdal [17] 1976 Sweden
and Ethiopia

Longitudinal Lactoferrin, α-lactalbumin,
serum albumin, IgG, IgM

Lönnerdal [26] 1976 Sweden Longitudinal Lactoferrin, α-lactalbumin,
serum albumin, IgG, IgM

Sanchez-Pozo [27] 1986 Spain Cross-sectional Lactoferrin, α-lactalbumin,
serum albumin, lysozyme

Ronayne de
Ferrer [28]

2000 Argentina Longitudinal Lactoferrin

Nagasawa [29] 1972 Japan Not
documented

α-lactalbumin, serum albumin

Montagne
[30,31]

2000 France Cross-sectional Whey, caseins, lactoferrin,
α-lactalbumin, serum albumin,
lysozyme, IgA

Marquis [32] 2003 Peru Longitudinal Lactoferrin, lysozyme, IgA
Nagasawa [33] 1972 Japan Not

documented
Whey, caseins, lactoferrin

Nagra [34] 1989 Pakistan Longitudinal Whey, caseins
Kunz and

Lönnerdal [16]
1992 USA Longitudinal Whey, caseins

Sanchez-Pozo
1987 [35]

1987 Spain Exclusive Lactoferrin, α-lactalbumin,
serum albumin
time was contaminated with lipopolysaccharaide (LPS), which has a
very high affinity to lactoferrin andmay interferewith its bioactivities.
A more recent clinical trial, although limited in size, showed that
feeding infant formula with bovine lactoferrin at a concentration
similar to that of lactoferrin in human milk resulted in improved iron
status and significantly less upper respiratory illness compared to
regular formula without lactoferrin supplementation [54].

Lactoferrin is both bactericidal and bacteriostatic in that it limits
the growth of several pathogens and kills others. The iron-free form of
lactoferrin, itsmost common form in breastmilk, can kill Streptococcus
mutans, Streptococcus pneumoniae, Escherichia coli, Vibrio cholera,
Pseudomonas aeruginosa and Candida albicans [55]. The bacteriostatic
effects of lactoferrin result, in part, from its ability to withhold iron
from bacteria that require it for growth. It also exhibits antibacterial,
antivirus, antifungal and antiprotozoan activities that are likely
independent of iron chelation. For example, it has been suggested
that lactoferrin disrupts bacterial cell membranes and blocks cell–
virus interactions [44,56,57].

Lactoferrin is also an effective modulator of inflammatory and
immune responses. Evidence suggests that it increases the number
and activity of T lymphocytes, B lymphocytes and natural killer cells,
accelerates B and T cell maturation, and increases the expression of
cellular receptors [44,58].

These preclinical observations are reinforced by the finding that
administration of bovine lactoferrin to very low-birth weight infants
protects against late-onset sepsis and necrotizing enterocolitis (NEC)
arising from Gram-negative, Gram-positive and invasive fungal
infections [59–62].

Results from our meta-analysis indicated that reductions in
lactoferrin concentrations parallel reductions in true protein content
over time. The highest lactoferrin levels were noted between days 1
and 3 (5.05mg/ml), decreasing to 3.30mg/ml inmilk expressed at 6 to
15 days and to 1.44 mg/ml in milk collected at 91 to 360 days. These
findings are consistent with previous research [63–66]. In some
studies, lactoferrin concentrations peak at 7 mg/ml in colostrum and
decrease to 1 or 2 mg/ml in mature milk [63–65,67]. A recent
systematic review reported that lactoferrin concentrations were
highest during early lactation (4.91 g/l in milkb28 days lactation)
and rapidly declined to essentially constant levels after 1 month of
lactation (2.1 g/l) [68]. The decrease in milk lactoferrin during
lactation together with the increased capacity of the newborn infant
to digest lactoferrin [18] will gradually lead to lower concentrations of
intact lactoferrin in the gut lumen. This may result in a changing role
for lactoferrin during infancy in that higher concentrations of
lactoferrin promote cell proliferation, whereas lower concentrations
stimulate cell differentiation [51,69], which corresponds with the
development of the infant gut.
4.1.4. α-lactalbumin
α-Lactalbumin is a digestible whey protein that comprises 25% to

35% of the true protein in human breast milk [70–71]. It has several
Table 5
Median values of whey to casein ratio, lactoferrin, α-lactalbumin, serum albumin, IgG,
IgM, IgA and lysozyme in human milk (data in mg per ml)

Time
(days)

Whey-
to-casein
ratio

Lactoferrin α-Lactalbumin Serum
albumin

IgG IgM sIgA Lysozyme

0–5 89:11 5.05 4.30 0.35 –⁎ – 5.45 0.32
6–15 65:35 3.30 4.20 0.62 0.05 0.12 1.50 0.30
16–30 59:41 2.31 3.30 0.67 0.05 0.05 1.10 0.28
31–60 61:39 1.95 3.10 0.69 – – 1.00 1.10
61–90 61:39 1.89 2.84 0.45 0.03 0.03 1.30 0.85
91–360 60:40 1.44 2.62 0.37 0.04 0.03 – –

⁎ Not reported.



Table 6
Bioactive proteins in breast milk and their mechanisms of action

Bioactive protein Mechanism of action References

Lactoferrin Bacteriostasis, bactericidal
activity, immunomodulatory
activity, cell proliferation
and differentiation, iron uptake

[10,14,44,55,58]

Lysozyme Antibacterial activity; degradation
of cell wall glycans

[23,92]

Secretory IgA Transfer of maternal
immunity; antibodies
against bacteria and viruses

[83,85]

Bile–salt
stimulated lipase

Hydrolysis of triglycerides;
fatty acid absorption

[132]

Milk fat globule
membrane proteins

Antibacterial and
antiviral activities

[133–135]

α-lactalbumin Prebiotic activity; immunostimulatory;
enhancing trace mineral
(Fe, Zn) absorption;
antibacterial function

[10,73,74,77,78,79,81,82]

β-casein Opioid activity; enhancing
calcium absorption

[24,40,41]

Κ-casein Antibacterial activity by acting as
structural analogs

[24,45]

Osteopontin Immunomodulatory activity [136,137]
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physiological functions in the developing infant beyond its role as a
well-balanced source of essential amino acids. For example, α-
lactalbumin is a calcium-binding protein that can also bind iron and
zinc with lower affinity [10,72]. Current evidence suggests that α-
lactalbumin has a stimulating effect on the absorption of these
minerals [10,73–74]. α-Lactalbumin has also been shown to inhibit
the growth of several potential pathogens both in vitro [75–77] and in
vivo [78].

Interestingly, several of the functions associated with α-
lactalbumin may actually be attributable to peptides released during
its digestion [10]. Although these peptides are likely formed in the
upper gastrointestinal tract, they may exert their functions as they
pass through the distal part of the small intestine and the colon.
Several of these peptides, which appear to be transiently formed, have
been shown to have antibacterial and immunostimulatory properties
[10,14,79–81]. In one study, three polypeptide fragments from α-
lactalbumin exerted antimicrobial activity against E. coli, Klebsiella
pneumoniae, Staphylococcus aureus, Staphylococcus epidermis, Strep-
tococci and C. albicans [82]. Certain peptides arising from the digestion
of α-lactalbumin have also been shown to encourage the growth of
bifidobacteria, a species that dominates the gut of breast-fed infants
but is less prevalent in formula-fed infants.

Longitudinal changes inα-lactalbumin over the course of lactation
are not well characterized in the literature. In our study, changes inα-
lactalbumin concentrations appear to reflect the decreases in true
protein content over time. For example, concentrations of α-
lactalbumin were highest in the colostrum (4.30 mg/ml) but
decreased more gradually compared to concentrations of lactoferrin,
true protein content, or amino acid content. In fact, α-lactalbumin
concentrations in milk expressed 6 to 15 days after delivery (4.20 mg/
ml) were similar to those seen in colostrum, but began to decrease in
samples collected 16 to 30 days (to 3.30 mg/ml) and continued to
decline over time. The impact of changing α-lactalbumin concentra-
tions in the developing infant requires additional study.

4.1.5. Secretory IgA
Several immunoglobulins found in serum are also found in human

milk, including sIgA, IgG and IgM. sIgA is quantitatively the most
prominent immunoglobulin, though, accounting for 90% of total
immunoglobulins in human milk [24]. sIgA consists of a dimer of IgA
linked with a secretory component and a joining chain [14,83]. Unlike
other types of IgA, sIgA is not easily degraded by the proteolytic
enzymes in the infant gut [18,84]. As a result, maternal immunity
against several general pathogens can be transferred through the
breast milk via sIgA, mediated by the enteromammary immune
pathway. This process boosts the immunity of the infant through the
acquired immunity of the mother [83,85].

When sIgA specifically binds to the antigen of a pathogen, the
binding renders the pathogen less infective. In fact, sIgA antibodies
against numerous bacterial pathogens (e.g., E. coli, V. cholera, H.
influenza, S. pneumoniaie, Clostridium difficile and Salmonella), viruses
(rotavirus, cytomegalovirus, HIV, influenza, respiratory syncytial
virus) and yeasts (C. albicans) have been found in breast milk,
demonstrating the breadth of this line of immune defense [14,83].

Studies also suggest that the broad spectrum and high diversity of
sIgA antibodies may contribute to the proper development of the
breastfed infant's mucosal immune system. SIgA polyreactive auto-
antibodies with broad specificity have been described in colostrum,
and thesemay exert antiinflammatory and tissue-protective activities
[86]. In addition, a recent study in mice lacking milk SIgA and/or
endogenous mucosal SIgA found that lack of early exposure to sIgA in
milk affected the gut microflora, which in turn resulted in a pattern of
epithelial cell gene expression that differed from that seen in mice not
exposed to milk sIgA, including genes associated with intestinal
inflammatory diseases in humans [87].

While sIgA is present at relatively high quantities throughout
lactation, its levels are highest in colostrum [44,67,88]. In one 12-week
study, the highest sIgA level occurred at day 3. This level decreased
rapidly in the first 4 weeks andmore gradually in the remainder of the
study [88]. This temporal trend makes intuitive sense given the
infant's developing immune system and its increasing ability tomount
an effective immune response against pathogens.

Results from our meta-analysis quantify these trends in more
detail. In our analysis, median sIgA concentrations decreased from
5.45 mg/ml at days 0 to 5 to 1.50 mg/ml 6 to 15 days after delivery.
Concentrations of sIgA remained at or below this level throughout the
first year of lactation.

4.1.6. IgG and IgM
IgG and IgM are found in small concentrations in human colostrum

and milk [89]. However, these immunoglobulins are not always
detected in colostrum samples, and only two studies that assessed
their concentrations in human milk were suitable for inclusion in our
analysis [17,26]. Neither study evaluated IgG or IgM levels in
colostrum nor were we able to detect any clear trend in the
concentrations of either immunoglobulin in more mature milk over
time. A study by Gao et al. did report that IgM levels decreased and IgG
levels increased over the course of lactation, but this study did not
evaluate the levels of these immunoglobulins in colostrum [90].

The presence of IgG in humanmilk helps to counteract the infant's
deficiencies in opsonization and antibody-mediated cytotoxicity [89].
However, the newborn is fully capable of producing IgM in response to
infection. This finding may explain why IgM concentrations in
colostrum are low and progressively decrease in more mature milk
over time. It has been hypothesized that the higher levels of sIgA in
colostrum and transitional milk and the lower levels of IgG in more
mature milk suggest a transformation in the immunological function
of human milk as infants age [90]. Early in lactation, the high levels of
sIgA in colostrum and transitional milk support the direct killing of
pathogens, while the increased levels of IgG in more mature milk
support the development of the infant's own immunity as lactation
progresses. This hypothesis is supported by the finding that IgG levels
in newborns are comparable to those of their mothers due to the
transport of IgG across the placenta. Moreover, IgG production in
infants is delayed until about 6 months of birth. The late production of
IgG by infants and the catabolism of maternal IgG suggest that there
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may be a transient deficiency in IgG levels in infants during the first
year [91], and the increasing supply of IgG in breast milk may attempt
to compensate for this deficiency [90]. Additional research is needed to
explore this hypothesis.
4.1.7. Lysozyme
Lysozyme is another major component of the whey fraction in

human milk. Lysozyme is an enzyme capable of degrading the outer
cell wall of gram-positive bacteria [14,92]. An in vitro study using
electron microscopy also demonstrated that lysozyme can act
synergistically with lactoferrin to kill gram-negative bacteria [14,23].
Lactoferrin first binds to the lipopolysaccharides of the outer cell
membrane of these bacteria, creating holes in the membrane.
Lysozyme can then enter and degrade the glycomatrix of these
bacteria through these holes, killing the pathogen [23]. A clinical trial
in which recombinant human lysozyme and human lactoferrin were
given in oral rehydration solution (ORS) to children hospitalized with
acute diarrhea may support these in vitro observations [93]. The
prevalence and duration of diarrhea as well as relapse rate were
significantly reduced by these two human milk proteins as compared
to regular ORS. However, a weakness of the study was that neither
protein was studied separately, meaning that either human lysozyme
or human lactoferrin alone may have caused the effect. In vitro data
also indicate that lysozymemay inhibit the growth of HIV in vitro [94],
although the mechanism for its antiviral activity is unknown.

Our findings confirm that lysozyme concentrations in breast milk
vary by duration of lactation. However, the temporal trend in
lysozyme concentrations contrasted with the trends we observed for
other bioactive proteins. Concentrations of lysozyme were lowest in
colostrum and increased through the first month of lactation, peaking
at 31 to 60 days and declining thereafter. These results are not entirely
consistent with previous research. In one study, lysozyme concentra-
tions were higher in colostrum, decreased in milk collected in the first
month after delivery and peaked between days 57 and 84 [95]. In a
second study, lysozyme concentrationswere low in the colostrum and
progressively increased during the course of lactation [89]. Due to
these discrepancies, additional research on this protein may be
warranted.
4.1.8. Serum albumin
Serum albumin is a major serum protein also present in human

milk. Because its properties in human milk are similar to those in
blood, it is thought that it may not be synthesized by the mammary
gland [14]. Instead, it is believed to be transferred from maternal
circulation.While serumalbumindoes serve as a source of amino acids
for the breastfed infant, whether it has other physiologic functions in
human milk is unclear. In blood, serum albumin binds many ligands,
including fatty acids, trace elements, calcium and other molecules.
Similarly, in milk, serum albumin has been associated with zinc,
copper and thyroxine [96,97]. However, it is unlikely that serum
albumin plays a major role as a nutrient binder or a source of
nutrients for infants because its associations with these ligands are
weak and binding to these ligands would not persist in the infant gut
[98].

Our findings are in line with previous research demonstrating that
serum albumin concentrations are approximately 0.4 to 1.0 mg/ml in
the colostrum [17,26,27,98–100]. While previous evidence has shown
that serum albumin concentrations remain relatively constant
throughout lactation [17,26,27,98–100], our results show that con-
centrations slightly increase from the colostrum through day 60 and
then decline over time. Additional research is needed to further clarify
the role of serum albumin in human milk and its concentrations in
human milk over the course of lactation.
4.2. Limitations

Our analysis has several limitations. First, it is limited by the
availability of results from the individual studies. Not all endpoints
were analyzed in all studies, and there were large variations in
endpoints, populations, geographic regions, timing, design and
methods of milk collection, data collection and data analysis. The
variation in the timing of milk collection was also considerable,
complicating the ability to create a precise characterization of changes
in the individual proteins over time. Moreover, sample sizes in some
studieswere small, a limitation thatmay increase the variability of the
findings.

5. Conclusion

Human milk contains a wide array of proteins with biological
activities ranging from antimicrobial protection to immunomodula-
tion and the facilitation of nutrient absorption. The proteins in human
milk also provide adequate amounts of essential amino acids to
support the growth of maturing infants. This highly adapted system
likely is responsible for providing many of the advantages of human
milk compared to infant formula. Results from our meta-analysis
represent a useful dataset for the evaluation of protein quantity and
quality in efforts to narrow the nutritional and immunological gap
between breast milk and currently available breast milk substitutes.
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