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Glossary

Aerobic glycolysis: predominant fermentation of glucose even under oxygen

pressures considered to be aerobic. Fractions of glycolytic intermediates that

are not fermented are redirected and are seemingly sufficient to sustain

biosynthetic pathways such as the pentose phosphate pathway, shikimate

pathway, and lipid biosynthesis.

Agouti viable yellow mouse model: heterozygous mice for the Agouti yellow

allele have yellow coats and have a predisposition towards obesity. Mice that

are homozygous for the Agouti yellow allele have the lethal gene. Mice that are

homozygous for the non-agouti allele and non-agouti yellow allele have non-

agouti coat colour such as black. In this model, coat colour variation is

correlated to epigenetic marks established early in development, and is used

extensively to investigate the impacts of nutritional and environmental

influences on the (foetal) epigenome.

Anabolic reactions: relating to the synthesis of complex molecules in living

organisms.

Anaerobic metabolism: relating to metabolism that occurs in the absence of

free oxygen, often via substrate level phosphorylation and/or alternative

terminal acceptors.

Anaplerosis: the process of replenishment of depleted metabolic cycle or

pathway intermediates. Most commonly referring to the TCA cycle, this

concept is also used to describe glycolysis and glutaminolysis generated

substrates for macromolecular biosynthesis or anabolism.

Biomass: the total quantity or weight of organisms in a given area or volume.

The measurement of biomass production is important when studying

metabolic reactions that are required for growth.

Dormancy and reversible cell cycle arrest: cell quiescence, hibernation,

dormancy, or reversible cell cycle arrest are denominations of a common

and important physiological response in free-living microorganisms to control

cell size and growth that grants protection against environmental insults

including poor nutrient and micronutrient levels.

Fermentative glycolysis: breaking of glucose into different possible final

products from the reduction of pyruvate as common intermediate. The better-
We hypothesise that intraerythrocytic malaria parasite
metabolism is not merely fulfilling the need for ATP
generation, but is evolved to support rapid proliferation,
similar to that seen in other rapidly proliferating cells such
as cancer cells. Deregulated glycolytic activity coupled
with impaired mitochondrial metabolism is a metabolic
strategy to generate glycolytic intermediates essential for
rapid biomass generation for schizogony. Further, we
discuss the possibility that Plasmodium metabolism is
not only a functional consequence of the ‘hard-wired’
genome and argue that metabolism may also have a
causal role in triggering the cascade of events that leads
to developmental stage transitions. This hypothesis
offers a framework to rationalise the observations of
aerobic glycolysis, atypical mitochondrial metabolism,
and metabolic switching in nonproliferating stages.

Aerobic glycolysis drives proliferation in single-minded
eukaryotes
Rapidly proliferating eukaryotes have perfected metabolic
modes that efficiently convert glucose and specific amino
acids into biomass (see Glossary) and energy at the re-
quired pace. The past decade has brought a change in the
accepted paradigm on accelerated cell multiplication.
Streamlined metabolic networks and the capacity to sup-
port anabolic reactions in a rapidly responsive manner via
aerobic fermentative glycolysis and glutaminolysis, in-
stead of pursuing thorough oxidation of the glycolytic
carbons via cellular respiration, seems to be a precondition
for rather than a consequence of effective proliferative
signalling [1]. The corollary of this paradigm points to
respiration in nonproliferating cells as the prevalent met-
abolic mode to generate the energy needed to perform their
roles as differentiated cells.
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Current concept of the Warburg effect
Although originally ascribed to anaerobic metabolism, the
preference for fermentative glycolysis even under aerobic
conditions was accepted long ago as a feature in cancer
cells and is known as the Warburg effect [2]. Similarly,
Saccharomyces cerevisiae favour fermentation over respi-
ration when glucose is available even under oxygen abun-
known products are lactate in mammalian cells and ethanol in yeast.

Replenishment of NAD+ is a crucial consequence of fermentation.

Glutaminolysis: alternative source of biomass and electrons due to the relative

abundance of glutamine in human plasma. After deamination of this amino

acid, glutamate feeds part of the TCA cycle. Intermediates such as malate and

oxaloacetate can transit to the cytoplasm from mitochondria and be

decarboxylated to replenish glycolytic pyruvate with the production of NADPH.

One-carbon mitochondrial metabolism: exchange of one carbon molecules at

different levels of oxidation between folate intermediates catalysed by enzyme

complexes loosely attached to the inner mitochondrial membrane. The glycine

cleavage system (GCV), serine hydroxymethyltransferase (SHMT), and 5,10-

methenyltetrahydrofolate dehydrogenase multienzyme complex (MTHFD) are

their main components.
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Box 1. Metabolic rewiring for rapid parasite proliferation:

glycolysis

Glucose entry into the parasite occurs via the hexose transporter

PfHT1, which has a Km of �0.5 mM. Compared with the �5 mM blood

glucose concentration, this allows for a constant rate of transport [36].

Commitment to glycolysis is then controlled via the highly regulated

phosphofructokinase (PFK) that is allosterically inhibited by high

levels of ATP. In cancer cells, PFK is overexpressed, and the

predominant isoforms of this enzyme possess allosteric alterations

that reduce the degree of product inhibition by ATP and citrate whilst

being more highly activated by lower concentrations of fructose 2,6-

bisphosphate (F26bP) [37–39]. In P. falciparum PFK, deregulation is

also observed with the enzyme being insensitive to PEP, citrate, and

F26bP and only exhibiting allosteric behaviour for ATP and ADP,

although at elevated concentrations (>1.0 mM for ATP and >0.1 mM

for ADP) [40]. The final irreversible step in glycolysis involves

pyruvate kinase (PK), generating pyruvate and ATP. This is a critical

step in the control of biosynthetic intermediates for proliferation, and

the enzyme is activated by fructose 1,6-bisphosphate and inhibited by

both ATP and alanine. There are two isoforms in mammals, M1 and

M2. M1 is found in adult tissue and is largely unregulated by fructose

1,6-bisphosphate and ATP, whereas the M2 isoform predominates in

proliferating cells including cancer cells and is less active and more

tightly regulated [41]. Tight regulation of PK is hypothesised to aid the

control of flow of carbons between biosynthesis and lactate produc-

tion in proliferating cells. Indeed, cancer cells engineered to express

the M1 isoform produce more lactate [42,43]. P. falciparum PK is not

activated by fructose 1,6-bisphosphate but is markedly inhibited by

both ATP and citrate, akin to M2 mammalian isoforms [44].

Box 2. Metabolic rewiring for rapid parasite proliferation:

TCA and respiration

Pyruvate is a critical metabolic mode for entry into fermentation or

the TCA cycle. For fermentation, pyruvate must remain in the

cytosol, whereas for entry into the TCA cycle, pyruvate must enter

mitochondria in order to be converted to acetyl-CoA. In proliferating

cells, where described aerobic glycolysis is required for the

generation of biosynthetic intermediates, cells have evolved

mechanisms which either: (i) restrict the transport of pyruvate into

mitochondria [45]; (ii) inhibit pyruvate dehydrogenase (PDH) activity

[46]; or (iii) increase the activity of lactate dehydrogenase [47]. There

is no information concerning pyruvate transport into the mitochon-

drion of P. falciparum; however, the parasite does contain PDH, but

this is localised to the apicoplast and does not appear to contribute

to the acetyl-CoA pool [48]. A mitochondrially localised complex,

termed branch chain ketoacid dehydrogenase (BCKDH), with PDH-

like activity, has been hypothesised to contribute acetyl-CoA to the

TCA, this notwithstanding; however, labelling experiments indicate

that the rate of acetyl-CoA production is significantly slower

compared with the labelling of glycolytic intermediates [48]. Lactate

production in P. falciparum is extensive and in line with other key

parasite glycolytic enzymes, and lactate dehydrogenase activity is

deregulated, exhibiting only weak inhibition by pyruvate or by the

pyruvate/NAD+ complex [49,50].

Defects of electron transport chain components also appear to be

a feature in cancer cells. These include defects at the level of

succinate dehydrogenase (SDH), inhibition of ATP synthase, and

downregulation of complex I (NADH:dehydrogenase), III (bc1

complex), and IV (cytochrome c oxidase) [51–53]. P. falciparum also

possess atypical mitochondrial function, whereby mitochondria

have low O2 consumption and are not actively synthesizing ATP

(respiratory state 4) [54]. Several adaptive features, including the

absence of a transmembrane proton pumping complex I, enable

proton-uncoupled oxidation of NADH, thereby reducing proton

‘back-pressure’ in the absence of extensive ATP synthesis. This in

turn reduces mitochondrial superoxide generation and potential

DNA damage and, importantly for glycolysis, still allows deregu-

lated oxidation of cytosolic NADH [54]. The reported essentiality of

complex V (ATP synthase [55]) is consistent with the need of a small

H+ leak in order to maintain transmembrane H+ pumping by

complexes III and IV [54].
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dance (Crabtree effect) [3]. In its original form, the War-
burg effect also stated that the oxidation of glucose in
mitochondria was ablated. However, more recent evidence
points to functional mitochondrial oxidative phosphoryla-
tion in some cancer cell lines [3,4]. Under this modern
version of the Warburg effect, rapidly proliferating, non-
cancerous cells have also been found to undergo aerobic
glycolysis/fermentation [5–7].

The advantage provided to rapidly proliferating cells by
increased glycolysis is attributed to the capacity of glucose
to support biomass generation by redirection of glycolytic
intermediates into anabolic reactions while at the same
time sustaining a predominant (over 90%) fermentation
flux to lactate [3,5,7,8] (Figure 1, Boxes 1 and 2). The latter
is necessary for the regeneration of NAD+, an essential
cofactor of glycolysis itself, but more importantly and less
intuitively, to allow the cells to gauge their metabolic
status. Thus, only when high levels of fermentative glycol-
ysis are possible does the cell enter high rates of prolifera-
tion assisted by the anabolic capacity of glycolysis.

Aerobic glycolysis during the in vitro cell cycle of
Plasmodium falciparum

The intraerythrocytic cycle of human falciparum malaria
takes the parasites through successive rounds of mitosis
every 48 h. Following erythrocyte invasion by a merozoite,
but sometimes following multiple invasions, the parasite
develops into a ring-shaped form in the first 24 h, and by
approximately 30 h, the parasite very rapidly expands to
occupy most of the space available within the erythrocyte
plasma membrane, resulting in a major increase in biomass.
From approximately 40 h, the vastly enlarged nucleus goes
through several asynchronous and multiple segmentations
that in vitro produce a number (small double figures) of
next-generation merozoites [9]. Cytokinesis occurs near the
end of the cycle before the new daughter cells (merozoites)
emerge as free-living forms for seconds to minutes in the
search for a new erythrocyte [9]. A fraction, usually less than
1% but dependent on the prevailing environment, of the
newly generated intraerythrocytic parasites are pro-
grammed to differentiate as gametocytes, the sexual nondi-
viding forms that in the natural environment continue the
malaria cycle in the mosquito vector [10].

Malaria parasites committed to proliferation in the
intraerythrocytic cycle are fermentative organisms [11–
13] (Figure 1, Boxes 1 and 2) with an anabolic central
carbon metabolism that can feed all major biomass gener-
ating pathways [14]. When directed to differentiation into
gametocytes, however, these nonproliferative cells seem to
follow the respiration of glucose in a manner more in line
with the biology of eukaryotes in stationary phase via the
canonical glucose-driven, mitochondrial tricarboxylic acid
(TCA) cycle. Current evidence appears to substantiate this
dichotomy of fermentation when in proliferation mode
versus respiration when committed to sexual differentia-
tion [15].

In proliferating asexual parasites, glutaminolysis feeds
part of the TCA cycle through the five-carbon a-ketoglu-
tarate. The four-carbon malate and oxaloacetate are
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Rapidly prolifera�ng cells: Plasmodium
intraerythrocy�c stages
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Figure 1. Proliferating cell hypothesis: similarities between cancer cells and Plasmodium falciparum. Principle end products of glucose consumption (lactate, alanine,

pyruvate, glycerol-3-phosphate, and glycerol, shown in red boxes) are similar in both cancer cells [3] and asexual intraerythrocytic malaria parasites [12]. A high glycolytic

flux maintains rate-limiting glycolytic intermediates to support nucleotide (via glucose-6-phosphate to 5-phosphoribosyl-a-pyrophosphate) and lipid biosynthesis (via

dihydroxyacetone phosphate to glycerol-3-phosphate). Metabolic modifications (Boxes 1 and 2) allow aerobic glycolysis/fermentation to proceed rapidly whilst keeping

tricarboxylic acid (TCA) flux low. Anapleorotic glutaminolysis follows past part of the TCA cycle through the five-carbon a-ketoglutarate [15]. Subsequent conversion of

oxaloacetate to phosphoenolpyruvate (PEP) by phosphoenolpyruvate carboxykinase (PEPCK, EC 4.1.1.49) allows for further synthesis of biosynthetic intermediates (e.g., via

shikimate pathway [16] and isoprenoid biosynthesis [17]). Abbreviations: GLUT-1, glucose transporter 1; PfHT1, Plasmodium falciparum hexose transporter 1; HK,

hexokinase (EC 2.7.1.1); PGI, phosphoglucose isomerase (EC 5.3.1.9); PFK, phosphofructokinase (EC 2.7.1.11); G3PDH, glyceraldehyde 3 phosphate dehydrogenase (EC
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Box 3. Growing fast while fermenting furiously: crunching

the numbers

Aerobic glycolysis is able to provide the required biosynthetic

intermediates for building biomass, explaining why Plasmodium

and other proliferating organisms and cell types adopt increased

glucose metabolism during rapid growth and multiplication. By way

of illustration, the capacity of Plasmodium to synthesise some of the

required DNA precursors relates to the de novo synthesis of the

pyrimidine deoxythymidine triphosphate (dTTP). The de novo synth-

esis of dTTP requires folate 5,10-methylene tetrahydrofolate (5,10-

myTHF). In its final polyglutamated form, with five glutamic residues

as found in an average eukaryote, 5,10-myTHF is a structure of 40

carbons and 11 nitrogens that requires two NADPHs and ten ATPs for

its biosynthesis from GTP, D-erythrose-4-phosphate (E4P) and PEP

(shikimate pathway [16]). Only two molecules of glucose are needed

to contribute seven carbons and the two NADPHs (pentose phosphate

pathway). The rest of the carbon count originates from five

glutamates and a serine or glycine. The nitrogen sources are GTP

(six nitrogens) and glutamate (five nitrogens) from glutaminolysis.

Thus, the synthesis of 5,10-myTHF from glucose and GTP can be

abbreviated as: 2 glucose (carbon) + 1 GTP + 5 glutamate + 5 glucose

(ATP) + 1 serine/glycine ! 1 (5,10-myTHF) + 5 ADP + glycine/(CO2 +

NH3). Malaria parasites salvage precursors for the synthesis of

purines such as GTP from the host as well as amino acids from

plasma and the digestion of the haemoglobin of the host. Then, for

every 100 molecules of glucose, if 90% are used to sustain a high

fermentative glycolytic flux, where the needed ATP originates in

abundance, ten molecules of glucose can be used to build up to five

molecules of 5,10-myTHF. Human plasma contains a strictly regulated

level of glucose to �5 mM, the equivalent of 3 � 1015 molecules of

glucose per microlitre. That would be enough to build up to 7.5 � 1014

molecules of 5,10-myTHF per microlitre, the equivalent to 625 to 62.5

times what is needed to support an expected intracellular folate

concentration in P. falciparum of approximately 2–20 mM.
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transported to the cytoplasm. Here phosphoenolpyruvate
(PEP) can be synthesised from oxaloacetate by the activity
of phosphoenolpyruvate carboxykinase (PEPCK) for on-
ward biosynthetic reactions (e.g., shikimate pathway
[16] and isoprenoid biosynthesis [17]) (Figure 1). In non-
proliferating gametocytes whereby a more canonical glu-
cose TCA cycle is present, less glucose is catabolised by
fermentation to lactate, and minimal glutamine is catabo-
lised by glutaminolysis [15].

The paradigm of the rapidly proliferating eukaryote can
then be applied to profile the dividing intraerythrocytic P.
falciparum as an organism that in the presence of abun-
dant glucose and glutamine, such as the levels available in
human plasma, generates the required biomass by aerobic
glycolysis/fermentation and glutaminolysis (Figure 1, Box-
es 1–3). The rest of the macromolecular biomass is sal-
vaged from the purine precursors, amino acids, and lipids
or fatty acids of the human host. Under these conditions, a
low flux glycolytic TCA cycle and a modified electron
transport chain provides a further selective advantage
(Boxes 1 and 2).

Are there metabolic regulatory switches controlling life
cycle commitment in Plasmodium?
The established dogma states that Plasmodium metabo-
lism is simply a functional consequence of the ‘hard-wired’
genome-wide, just-in-time regulation of expression [18,19].
However, there is increasing evidence in biology to support
the notion that metabolism, in response to the environ-
ment/diet, can be causal, promoting the switch of cellular
phenotypes. Examples in nature range from post-transla-
tional modifications (PTMs) of histones by constituents of
royal jelly (fatty acids) causing larvae to become queens
instead of worker bees [20], to PTMs of histones in the
Agouti viable yellow mouse model, whereby different ma-
ternal methyl-donor supplementation (e.g., with folic acid,
vitamin B12, or betaine) results in different offspring
ranging from obese hyperinsulinaemic yellow to leaner
nonhyperinsulinaemic pseudoagouti phenotypes [21].

The malaria parasite controls vital virulence processes
such as host cell invasion and cytoadherence, at least in
part, by epigenetic mechanisms [22]. With this in mind,
and given that in vitro and in vivo nutrient/stress condi-
tions have been linked with life cycle commitment in
Plasmodium [23–25], it is not inconceivable that parasite
metabolism may promote changes in phenotype via one or
more of the many metabolites that are known to influence
epigenetic gene regulation in other cell types.

In cancer cells and yeast, for example, nutrient avail-
ability and metabolic status, including the yeast metabolic
cycle (YMC) fluctuating from oxidative phosphorylation
and fermentation, is coupled to the control of gene expres-
sion via key metabolites such as NAD+, acetyl Co-A, FAD,
and folates [26–28].

The influence of metabolism on parasite epigenetics is
certainly an exciting area for future research, and some
1.2.1.12); PGK, phosphoglycerate kinase (EC 2.7.2.3); PK, pyruvate kinase (EC 2.7.1

carboxylase (EC 4.1.1.31); PC, pyruvate carboxylase (EC 6.4.1.1); PDH, pyruvate dehydro

Suc-CoA, succinyl-CoA.
evidence, although circumstantial, exists to link nutrient
levels to parasite development. Environmental stress has
been consistently correlated with enhanced gametocyte
production both in vitro and in vivo. The methodology
applied to enrich in vitro cultures of P. falciparum with
sexual forms has the common denominator of nutrient
deprivation: low haematocrit, haemoglobin depletion, lysed
erythrocytes, and recycling of spent media, among others
[23,29]. Antimalarials that act as antimetabolites such as
antifolates have long been known to increase gametocyte
production in vivo [24]. In vivo transcriptional profiles of P.
falciparum blood stages show that a proportion of the para-
site population appears to be in states similar to what is
known as either a starvation response or environmental
stress in yeast [25]. Therefore, natural variability of sub-
strate levels in the human host, perhaps not surprisingly,
seems to be a selective force for life cycle commitment
pathways in field populations of Plasmodium. Unfortunate-
ly, cellular metabolism of malaria parasites under variable
nutrient availability has been poorly investigated, a situa-
tion not helped by the routine use of highly enriched media
normally used for the in vitro culture of P. falciparum [30].

The decision of a parasite to commit to a sexual lineage
is believed to take place in the first 20 h (the ‘ring’ stage) of
the preceding erythrocytic cycle [29]. Interestingly, the
.40); LDH, lactate dehydrogenase (EC 1.1.1.27); PEPCase, phosphoenolpyruvate

genase (EC 1.2.4.1); BCKDH, branched chain ketoacid dehydrogenase (EC 1.2.4.4);
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Box 4. Outstanding questions

� As described here, our hypothesis is that metabolism in the

malaria parasite is highly evolved to promote rapid proliferation,

in a similar manner to that seen in other rapidly proliferating cells,

for example, cancer cells, activated lymphocytes, and yeast.

� The major ‘step change’ for future research questions will be to

determine if metabolism can be causal. This will necessitate a

deeper understanding of the metabolic nodes and checkpoints

used by the parasite during growth and in response to its

environment in its various hosts.
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early ring stages of P. falciparum have less compact his-
tone cores (nucleosomes) than in later stages [9], and
usually this ‘open’ conformation is reflective of, and condu-
cive to, transcriptional regulation. As in other organisms
and cell types it is therefore possible that in Plasmodium
there exists a metabolic component that controls, via an
epigenetic mechanism, the commitment to replicate or to
differentiate.

A further, metabolically controlled, decision-making
option open to the parasite in the early hours of intracel-
lular parasite life is the possibility of reversible cell cycle
arrest. As part of their parasitic lifestyle, P. falciparum
become dependent on the extracellular supply of isoleucine
due to an absence of this amino acid in human haemoglo-
bin. Media that lacks isoleucine induce reversible cell cycle
arrest with parasites not progressing beyond the first half,
the ring stage, of their asexual intraerythrocytic life cycle
unless the missing nutrient is provided [31]. In malaria,
the phenomenon of reversible cell cycle arrest is poorly
understood. Nonetheless, there is a new interest in study-
ing malaria dormancy in the intraerythrocytic stages of the
parasite life cycle due to the potential role of reversible cell
cycle arrest in the slow clearance and/or ring stage survival
(RSA0–3h) phenotypes seen in clinical failures with arte-
misinins [32–35].

Concluding remarks
Glucose and glutamine contribute to malaria parasite
biomass for the biosynthesis of nucleotides and lipids via
aerobic glycolysis/fermentation and glutaminolysis. To-
gether with salvaged amino acids, fatty acids, and purines,
these are the main biochemical resources used to assemble
the macromolecular structure of the plasmodial cell. How-
ever, there are two further options available: (i) differenti-
ation into a sexual lineage as gametocytes and (ii) cell cycle
arrest. The first half of the intraerythrocytic cycle of P.
falciparum, particularly within the initial 10 h, seems to be
the stage at which quorum sensing and decision making is
most relevant. As seen with other organisms and cell types,
we have discussed the possibility that this occurs via
nutrient/metabolite-dependent epigenetic mechanisms.
Deconvolution of these regulatory processes offers a new
and exciting chapter in our understanding of Plasmodium
biology (Box 4).
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