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1. Introduction

Cytoskeletal-directed agents have been a mainstay in chemotherapy
due to their ability to readily interfere with the rapid proliferation of
neoplastic cells. Malignant cells have a perturbed cytoskeleton due to
the effects of dysplasia and subsequent anaplasia [1,2]. With so many
alterations present in malignant cells, the cytoskeleton provides an
ideal opportunity to attain preferential damage. Ever since vincristine
began demonstrating clinical efficacy in the 1960s [3], the idea of
disrupting the cytoskeleton of malignant cells during the mitotic
phase has become widely considered in chemotherapeutic protocols.
Along with paclitaxel (taxol) and the closely related docetaxel
(taxotere) that make up the taxane drug family [4], vinca alkaloids
(vinblastine, vincristine, vindesine, vinflunine and vinorelbine) have
been used extensively to treat a variety of cancers, particularly hemato-
logical malignancies [2,5]. In recent years, the discovery of epothilones
has furthered the development of cytoskeletal-directed agents as they
have very similar in vivo effects to taxanes, but with higher efficacy,
and reduced toxicity [6,7].

However, despite this apparent diversity of cytoskeletal-directed
agents available to oncologists, all currently approved cytoskeletal-
directed agents used in the clinical setting are essentially microtubule-
directed agents. Although it is true that these compounds act by distinct
mechanisms (taxanes and epothilones stabilize microtubules, while
vinca alkaloids disrupt polymerization), they all have the same cyto-
skeletal target. Since microtubules are pivotal for mitosis, cell traffick-
ing, and in some circumstances cell movement, inhibiting the dynamic
instability of these polymers can be absolutely devastating for rapidly
proliferating cells, henceforth ideal for disrupting tumorigenic growths
[8,9]. While microtubule-directed agents have also been shown to in-
duce apoptosis [10,11], they are inherently limited to one component
of the cytoskeleton. The other potential targets, intermediate filaments
and microfilaments, remain as elusive clinical prospects.

Cytoskeletal filaments are indeed viable targets to exploit in chemo-
therapy. Actin is inherently required for cell motility, cytokinesis, and
many other processes vital for malignant cell stability [12-15]. Interme-
diate filaments such as keratins are often overexpressed in carcinomas
due to the aberrant effects of associated oncogenes [16,17], and
vimentin has been shown to be vital for cell survival in numerous exper-
iments [18-20]. A substantial variety of microfilament-directed agents
and one intermediate filament-directed agent in particular (withaferin
A) have shown profound anticancer activity in a variety of cancer cell
lines. Despite these compelling data, there has yet to be a clinically ap-
proved intermediate filament-directed or microfilament-directed
agent used in cancer therapy. Therefore, this review is intended to
expose academics and clinicians to the tremendous variety of cytoskeletal
filament-directed agents that are currently available for chemotherapeu-
tic evaluation (Fig. 1). It is hoped that such an analysis will provide
enough data to warrant further in vivo, preclinical and eventual clinical
trials of these compounds, thereby potentiating a new paradigm of che-
motherapeutic agents.

2. Microfilaments as chemotherapeutic targets

Actin is a globular multi-functional protein that can be present as
either a free monomer known as globular actin (G-actin), or as part of
a microfilament polymer called filamentous actin (F-actin). In addition
to being an ATPase that helps dictate its structure, actin is able to carry
out more interactions than any other protein, allowing it to perform a
tremendous diversity of functions necessary for cellular life, including
chemotaxis and cytokinesis [21-24]. Actin polymerization is stimulated
by nucleating factors such as the Arp2/3 complex, which mimics a
G-actin dimer in order to stimulate G-actin nucleation. The Arp2/3 com-
plex binds forming microfilaments to form new actin branches off
existing polymers [23,24]. As an ATPase, actin binds ATP to stabilize mi-
crofilament formation, and hydrolysis of this nucleotide stimulates

depolymerization [21]. The growth of microfilaments is regulated by
thymosin and profilin; thymosin binds G-actin to buffer the polymeriz-
ing process, while profilin binds G-actin to exchange ADP for ATP, pro-
moting monomeric addition to the barbed, plus end of F-actin [25].
Unlike many biological polymers, microfilaments are formed through
non-covalent bonding, which enables filament ends to readily release
or incorporate monomers [21]. Therefore, microfilaments rapidly
remodel and change structure in response to environmental stimulus,
giving such structures an assembly dynamic very similar to microtubules.

Along with microtubules, microfilaments are vital for successful cell
proliferation. Shortly after the initiation of chromatid separation during
anaphase, a contractile ring of non-muscle myosin Il and microfilaments
is assembled at the cell cortex [12,26]. Myosin Il uses ATP hydrolysis to
move along F-actin, constricting the cell membrane to form the cleavage
furrow. The ingression of the cleavage furrow ultimately potentiates the
abscission (the process by which the cell bodies are cleaved) which is
entirely dependent on septin filaments beneath the cleavage furrow,
as they provide structural support to ensure the completion of cytokinesis
[14,26].

Due to the absolute requirement of microfilaments during cytokine-
sis, disrupting actin polymerization can exert profound effects on cellu-
lar structure. Cytokinesis inhibitors such as cytochalasin B disrupt the
actin cytoskeleton and interfere with the formation of the contractile
ring, as well as the development of the cleavage furrow [27,28]. Conse-
quently, the cell is unable to divide, permeating a weakened cytoskele-
tal network. However, the cell is still able to initiate another mitotic
event, continuing to form nuclei, and eventually becoming grossly en-
larged and multinucleated [29,30]. Substantial multinucleation in-
creases the likelihood of apoptosis, as it only takes a single nucleus to
undergo programmed cell death before a chain reaction is triggered,
culminating in the cell's destruction [1]. Further, the multinucleated
cells have an increased cell volume and weakened cytoskeleton, making
them more susceptible to physical agitation [31]. Preferential damage to
malignant cells is facilitated by the fact that normal cells exposed to cy-
tochalasin B exit the cell cycle and typically enter the G phase until suf-
ficient actin levels are restored [28]. As indicated by cultured BALB/c
mouse mammary gland epithelial cells, normal mammary gland cells
remain predominantly mono- or binucleate when exposed to cytocha-
lasin B, while highly tumorigenic cell lines derived from mammary
tumors become extensively multinucleated when cultured under the
same conditions [32]. Further, cell lines derived from bladder, kidney,
and prostate carcinomas become multinucleated when grown in cyto-
chalasin B-supplemented medium, whereas cells from corresponding
normal tissue remain mono- or binucleate under comparable condi-
tions [29]. Therefore, only malignant cells that have lost the ability to
enter the rest phase become grossly enlarged and multinucleated.
Such cells are ideal targets for concomitant chemotherapy, as they
have reduced cytoskeletal integrity, multiple nuclei, and even increased
mitochondrial activity [31].

Actin is also of substantial importance to cancer cell migration.
Carcinomas are the most prevalent form of cancer, constituting ~85%
of all cases annually worldwide [1]. It has been well documented that
dedifferentiated epithelial cells will undergo an epithelial-mesenchy-
mal transition (EMT) in order to readily detach and migrate toward
nearby vasculature [33-35]. This transformation into a motile cell type
is typically only reserved for embryonic development and wound
healing [1], and is a marked sign of cancer progression. Since these
transformed cells are dependent on the recruitment of matrix-
degrading proteases to reach endothelial tissue, it has been postulated
that potent protease inhibitors may be able to significantly delay or
even reduce the rate at which metastasis is observed [33-36]. However,
transformed epithelial cells are also capable of amoeboid migration that
is typically seen in lymphocytes and neutrophils. In this type of migra-
tion, cell-substrate adhesions are weak, resulting in the cell presenting
arounded morphology. When rounded cells migrate through the extra-
cellular matrix (ECM), they change shape and squeeze themselves into
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Fig. 1. A collection of cytoskeletal filament-directed agents. These compounds were reviewed to assess their chemotherapeutic potential. All compounds are microfilament-directed
agents, except for withaferin A which is an intermediate filament-directed agent. The generalized structure of scytophycins is provided due to the novelty of the compounds. Bonds
have been sequentially numbered to denote the naming system of the congeners. Scytophycins have seven R groups, indicating that the related compounds can still have substantial

variability.

gaps in the ECM, thereby circumventing the need for proteases [33-36].
Cancer cell migration can convert between the mesenchymal and
amoeboid types under certain conditions, particularly when exposed
to protease inhibitors [37]. Therefore, it would be very difficult to
repress cancer cell invasion by only targeting protease function.
However, the efficacy of protease inhibitors may be improved if
amoeboid migration is sufficiently inhibited by targeting microfila-
ments needed for cell motility. As an example, amoeboid migration is
driven by RhoA/ROCK-mediated bleb-like protrusions with active myo-
sin/actin contractions and with cortical actin, but without the presence

of stress fibers [38,39]. Inhibiting RhoA/ROCK signaling promotes the
formation of multiple competing microfilament-derived lamellipodia
that disrupt productive cell migration, thereby inhibiting amoeboid
migration [38]. It is known that motile malignant cells unable to move
through amoeboid migration will transition toward mesenchymal mi-
gration [33]. However, malignant cells exposed to protease inhibitors
attempt to move through amoeboid migration. Using microfilament-
disrupting RhoA/ROCK inhibitors in combination with protease inhibi-
tors would simultaneously perturb both types of cancer cell migration.
This would put metastasizing cells in a very difficult situation, as they
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would have to traverse the ECM using deficient modes of motility. Such
concomitant chemotherapy could substantially decrease metastatic
efficiency, and is an area of research worth investigating.

Disrupting cancer cell migration may be further facilitated by adding
tropomyosin isoforms such as Tm5NMT1. Not only does the actin associ-
ated protein stabilize microfilaments and inhibit cell migration in two-
dimensional culture systems [40-42], but it also stimulates down-
regulation of Src kinase, substantially reducing pseudopodia formation
[43]. Even more important to protease and RhoA/ROCK inhibitors is
the fact that Tm5NMT1 inhibits both the mesenchymal to amoeboid
and amoeboid to mesenchymal transitions in HT-1080 human fibrosar-
coma cells [43], suggesting that the addition of appropriate tropomyosin
isoforms could produce considerable drug synergy.

The overexpression of microfilaments in metastatic cancers has been
known for some time, as Schenk noted that carcinomas lacking abun-
dant organized microfilaments did not promote invasion, while a prom-
inent microfilament system was inherent in carcinomas producing
metastases [44]. Mutations that affect cell migration are fundamentally
pivotal in cancer progression, as more than 90% of cancer mortality is
due to metastatic progression, rather than an invasive primary tumor
[45,46]. Intravasation alone requires a series of biological events in
which microfilaments are required, including tumor cell attachment
to ECM components, the degradation of the matrix by tumor cell-
associated metalloproteases, and tumor cell progression into the region
where the matrix is modified by proteolysis [1,47]. In particular,
invadopodia, ventral membrane protrusions seen in highly invasive car-
cinomas, are entirely dependent on actin and actin regulatory proteins
[47]. Further, most transmembrane proteins, including growth factor
receptors, adhesion proteins and ion channels, are either permanently
or transiently associated with sub-membranous microfilaments [48].
Aberrant levels of growth factors, their associated receptors, and signal-
ing intermediates are products of activated oncogenes, which stimulate
microfilament expression, thereby perpetuating increased motility and
cell proliferation. In other words, malignant cells often have abnormally
high levels of microfilaments that promote phenotypes uncharacteristic
of the cell type.

Due to the extreme importance of microfilaments in cell migration, it
seems likely that preventing the formation of such structures would pro-
foundly inhibit the motility of neoplastic cells. As shown in A549 human
lung adenocarcinoma, MCF7 human breast carcinoma, and many other
cancer cell lines, administering actin polymerization inhibitors substan-
tially reduces cell motility, suggesting that chemotherapeutic interven-
tion may potentially mitigate metastatic progression [49,50]. Further,
inhibiting actin polymerization through the use of antigen-binding do-
mains of Camelid heavy-chain antibodies substantially reduced the for-
mation of invadopodia in MDA-MB-231 human breast carcinoma and
PC3 human prostate carcinoma cells [51]. The nanobody delivery vehicles
(or nanoparticles) used in the study specifically targeted fascin F-actin
bundling, and also had a substantial influence on invadopodium array or-
ganization and turnover, matrix degradation, and cancer cell invasion,
emphasizing the importance of stable actin bundles in the formation of
these aberrant structures in malignant cells.

2.1. Cytochalasins

As indicated in both in vitro and in vivo experiments, microfilaments
are of monumental importance to cancer progression, and are therefore
an ideal target for chemotherapy. One of the most studied families of
microfilament-directed agents has been the cytochalasins, mycogenic
toxins known to disrupt the formation of actin polymers. Cytochalasins
are characterized by a highly substituted perhydro-isoindolone struc-
ture that is typically attached to a macrocyclic ring. This macrocycle
can vary tremendously between cytochalasins as carbocycles, lactones
or even cyclic carbonates have been identified in these congeners [52].
In fact, more than 60 different cytochalasins from several species of
fungi have been classified into various subgroups based on the size of

the macrocyclic ring and the substituent of the perhydroisoindolyl-1-
one residue at the C-3 position [53].

Although all cytochalasins demonstrate the propensity to bind
microfilaments and block polymerization, the way in which each
agent does so is unique [14]. Despite this diversity, only cytochalasins
B and D have been extensively studied for their chemotherapeutic po-
tential. While these congeners will be focused on, it is important to
note that other cytochalasins have demonstrated anticancer activity.
An in vitro study involving eight natural cytochalasins, and three
hemisynthetic derivatives of cytochalasin B on six cancer cell lines indi-
cated that most of the cytochalasins inhibit tumorigenic growths [53].
Particularly intriguing was the fact that the congeners were similarly
effective against cancer cell lines displaying noticeable levels of resis-
tance to pro-apoptotic stimuli when compared to cancer cell lines sen-
sitive to these stimuli, tentatively suggesting that cytochalasins may be
useful against malignancies known to circumvent apoptotic signaling.

In addition, some congeners that have yet to be extensively evaluat-
ed for anticancer activity demonstrate considerable activity against mi-
crotubules. Although cytochalasins are noted for their propensity to
disrupt microfilaments, the unique o, B-unsaturated ketone moiety of
cytochalasin A allows the congener to readily react with thiols [54,55].
As such, it has been shown that cytochalasin A reacts with critical
thiol moieties on microtubules, with a binding site very similar to col-
chicine [56]. This interaction severely perturbs microtubules, thereby
potentiating a novel mechanism by which the compound can damage
malignant cells. Cytochalasin ] is another potential microtubule drug
synergizing agent, as it perturbs microtubules during mitosis, particu-
larly the attachment of spindle microtubules with kinetochores
[57-59]. This is supported by observations that the congener disrupts
astral microtubules, and fragments spindle microtubules. Such interac-
tions inhibit proper attachments to kinetochores, subsequently
preventing proper chromosome congression [57-59]. This often results
in chromosomes arranging near the periphery of the spindle or some-
times becoming completely detached from the spindle [58], and such
a marked influence on mitosis could have profound toxicity for rapidly
proliferating cancer cells. Further research will be needed to determine
whether these and other congeners are also suitable candidates for
chemotherapy.

Many studies that have examined the anticancer activity of cytocha-
lasins concentrated their efforts on cytochalasin B as it appears to be a
safer alternative to the more potent cytochalasin D; cytochalasin B is
notably 20-fold less toxic than cytochalasin D in mice [60]. As such,
there is sufficient experimental evidence to suggest that cytochalasin
B is a potentially viable chemotherapeutic agent. Although cytochalasin
B is most notably known for its propensity to preferentially induce cell
enlargement and multinucleation in malignant cells [29,30,32], the
microfilament-directed agent influences many other cellular processes
as well. It has been long established that neoplastic cells often overex-
press survivin and securin proteins, inhibiting apoptosis and promoting
mitotic progression [61-63]. Survivin can also serve as a radio/
chemoresistance factor during cancer therapy [64-66]. When tested
on the human lung carcinoma cell lines A549 and H1299 known to
highly express survivin proteins, cytochalasin B significantly decreased
cell survival, inhibited cell growth, increased the levels of G2/M frac-
tions, and induced multinucleation in both cell lines [67]. Further, cyto-
chalasin B used concurrently with survivin small interfering RNA
(siRNA) increased cytotoxicity and cell growth inhibition [67]. In addi-
tion, cytochalasin B has been shown to increase the sensitivity of
U937 human monocytic leukemia cells to physicochemical therapeutic
approaches such as ultrasound and X-radiation, as cells exposed to cyto-
chalasin B have an enlarged and perturbed cytoskeleton, with aberrant
actin bundles readily observed after treatment [31]. It has also been
demonstrated that cytochalasin B substantially increases the mito-
chondrial activity of U937 cells [31]. This is a particularly pragmatic
finding as leukemias and other cancers are well noted for dramatic in-
creases in mitochondrial activity [1,2,28]. As such, using cytochalasin
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B concomitantly with mitochondrial-directed agents may provide a
dependable target to inflict preferential damage. U937 cells have even
shown marked reductions in clonogenicity after being exposed to cyto-
chalasin B treatments [31], indicating that the compound might effec-
tively neutralize cancer's most prolific phenotypic characteristic:
aberrant cell proliferation.

Cytochalasin B has also shown substantial in vivo activity. When
cytochalasin B was injected subcutaneously (s.c.) at 10 or 100 mg/kg
single doses 24 h after s.c. challenge of B6D2F; mice with trocar im-
plants of B16F10 murine melanoma cells, the appearance of measurable
tumor nodules was delayed by 93 and 157% respectively and extended
host survival by 26 and 65% [67]. Tumorigenic growth was also delayed
when cytochalasin B treatment was given 24 h after the appearance of
notable tumor nodules in the mice. To supplement these findings, the
same study introduced Madison 109 murine lung carcinoma cells into
CD2F; mice s.c. before cytochalasin B was injected s.c. at 100 or
150 mg/kg 24 h after initial tumor challenge. As a result, cytochalasin
B-treated mice showed a 66% delay in the median day of tumor nodule
appearance. When administered under these conditions or at the time
of nodule appearance, cytochalasin B markedly inhibited the rate of
tumor growth, prevented tumor invasion at day 23, extended life span
by 23%, and significantly inhibited spontaneous lung metastases mea-
sured 28 days after tumor challenge [68]. Although cytochalasin B can
cause immunosuppression in mice, it is readily reversed through the
introduction of human recombinant interleukin-2 (rhIL-2) [69]. In addi-
tion, cytochalasin B can be encapsulated in liposomes at dosages sub-
stantially higher (three times the maximum tolerated dose in mice)
than those which normally suppress immune responses without induc-
ing any appreciable immunosuppression [69].

Cytochalasin B also demonstrates a marked propensity to inhibit
glycolysis via inhibition of GLUT transporters [70-73]. Considerable
attention has been paid toward the chemotherapeutic potential of
glycolysis transporters due to the observation that most cancer cells
predominantly rely on elevated rates of glycolysis to sustain metabolic
activity, rather than waiting on pyruvate oxidation in mitochondria for
eventual oxidative phosphorylation [74-76]. Exploiting such an inher-
ent difference between the malignant and normal states of many cell
types is a sensible prospect to attain preferential damage in the clinical
setting. It is possible that cytochalasin B may exert anticancer activity
through glycolysis inhibition. Although this has yet to be critically ex-
amined, work from my laboratory has shown that cytochalasin B
synergizes with doxorubicin (DOX) against DOX-resistant P388/ADR
murine leukemia in a mechanism that is likely independent of glucose
transport inhibition (unpublished data). This is due to the observation
that 21,22-dihydrocytochalasin B (DiHCB), a reduced congener that
does not inhibit glucose transport [77,78], appeared to be more syner-
gistic with DOX in reducing the clonogenicity of P388/ADR cells. Never-
theless, this is a preliminary finding for a very specific case of drug
interaction, and the potential anticancer effects of cytochalasin B poten-
tiated through glucose inhibition warrant further investigation.

Although there is some concern over the potency of cytochalasin D,
studies examining its potential for use as a chemotherapeutic agent
have found promising results. In an in vivo study involving BALB/c
mice challenged with murine colorectal carcinoma CT26 cells, mice
were injected intravenously (i.v.) with various doses of cytochalasin D
(12.5, 25, 50 and 100 mg/kg in 200 uL DMSO) [79]. The agent readily
inhibited CT26 tumor cell proliferation in a time and dose dependent
manner and induced significant CT26 cell apoptosis. The level of apopto-
sis was so high that it almost reached the level induced by the positive
control TACS-nuclease. Further, cytochalasin D effectively inhibited
tumor angiogenesis, indicating that the agent can attack tumorigenic
growths through multiple mechanisms. Evidence of apoptotic events
induced by cytochalasin D was also found in a study that observed the
effects of cytochalasin D, LY294002 (morpholine-containing PI3K inhib-
itor), and olomoucine (purine derivative that inhibits cyclin-dependent
kinases, and induces G1/S and G2/M arrest) on 5 separate melanoma

cell lines [80]. While the drugs had only moderate effects when admin-
istered alone, concomitant chemotherapy was very effective in inducing
caspase-3 activity as well as reducing cell viability. In particular, the
triple combination of cytochalasin D/LY294002/olomoucine produced
substantial caspase-3 activity and apoptosis, suggesting that a synergis-
tic approach of cytochalasin D and other chemotherapeutic agents could
be a potentially effective clinical strategy for melanoma patients.

As with its congener, cytochalasin D can also be encapsulated in
polyethylene glycol (pegylated) liposomes to prevent immunological
recognition until it reaches an intended tumor. In a comparative study
between pegylated cytochalasin D and its natural form, pegylated
cytochalasin D was more readily dissolved in water for intravenous
injection, accumulated in tumor tissues more efficiently than natural
cytochalasin D, and even had a significantly longer plasma t;» (4 h vs.
10 min) [81]. All of these benefits were observed in liposomal cytocha-
lasin D, while still retaining the antitumor activity of its parental com-
pound. Significant inhibition of tumor angiogenesis and apoptosis was
observed in mice treated with liposomal cytochalasin D (B16 melanoma
model in C57BL/6N mice, and colorectal carcinoma CT26/hepatoma H22
models in BALB/c mice) [81]. It is important to note that no significant
side effects were observed in mice treated with liposomal cytochalasin
D, suggesting that this enhanced form of cytochalasin D may be a viable
chemotherapeutic agent.

2.2. Chaetoglobosins

Chaetoglobosins are very close derivatives of cytochalasins, the main
difference being an indol-3-yl group replacing the phenyl group at C-3
of the core carbon skeleton (perhydroisoindolone and macrocyclic
ring). Due to structural similarities, chaetoglobosins exhibit many of
the in vitro and in vivo effects on cells as do cytochalasins such as
inhibiting actin polymerization and the capping of lymphocytes [82].
Further, chaetoglobosins have been shown to multinucleate malignant
cells, indicating that these congeners are also cytokinesis inhibitors
[83,84].

While chaetoglobosins have not been studied as extensively as cyto-
chalasins in regard to chemotherapeutic potential, enough studies have
been compiled to warrant further investigation. Chaetoglobosin K has
shown particular anticancer activity in Ras-dependent cancer cell
lines. The compound caps the plus-ends of F-actin, which contributes
to its anti-Ras oncogenic activity through the phosphatidylinositol-
4,5-bisphosphate 3-kinase (PI3K)-mediated pathway by preventing
Ras from activating Rac [85]. This is important for influencing neoplastic
cell transformation as Rac causes uncapping of F-actin at the plus-ends,
through phosphatidylinositol 4,5 bisphosphate (PIP2), and eventually
induces formation of a motile cell surface that contains a meshwork of
newly polymerized actin filaments (membrane ruffling) [86,87]. In
fact, it has been shown that the Ras-induced malignant phenotype of
anchorage-independent growth is suppressed by overexpression of
tensin which is normally used in cells to cap the plus-end of F-actin
[85]. Chaetoglobosin K exhibited particular efficacy in WB-Ras1 rat
liver epithelial cells, as even a non-cytotoxic dose inhibited both
anchorage-dependent and anchorage-independent growth, as well as
induced substantial multinucleation [88]. The study also confirmed
that chaetoglobosin K decreases the level of phosphorylation of Akt
kinase, a key signal transducer of the PI3K pathway. Since Ras mutations
appear in at least 30% of human cancers [89,90], finding a chemothera-
peutic agent that inhibits oncogenic overproduction of microfilaments,
while inducing multinucleation for concomitant chemotherapy with
nucleic acid agents would be of substantial clinical utility.

Although it has been less studied, the congener chaetoglobosin A
also appears to exhibit substantial anticancer activity. An in vitro testing
of chaetoglobosin A against 89 individual cell cultures taken directly
from patients suffering from chronic lymphoid leukemia (CLL) revealed
effective targeting of CLL cells by the compound independent of bad
prognosis characteristics, such as 17p deletions or TP53 mutations
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[91]. This is particularly important as current chemoimmunotherapeutic
approaches reciprocate minimal clinical benefit against such prognostic
factors, and patients presenting with these genotypes have little chance
of survival [92,93]. As expected, chaetoglobosin A targeted microfila-
ments in CLL cells, thereby inducing cell-cycle arrest, as well as
inhibiting cell migration. Further, it appeared that the compound
prevented CLL cell activation and sensitized the cells to treatment
with PI3K and Bruton's tyrosine kinase (BTK) inhibitors. Using current
chemotherapeutic protocols, CLL is a treatable but incurable disease
that often shows relapse due to the development of drug resistant
cells. Therefore, chaetoglobosin A could be of particular benefit to CLL
chemotherapy, hopefully helping to establish a protocol that can effec-
tively cure patients.

2.3. Jasplakinolide

Contrary to cytochalasins and the closely related chaetoglobosins,
jasplakinolide does not inhibit actin polymerization. Rather, it induces
polymerization, and then rigidifies the formed microfilaments to pre-
vent the inherent tendency of actin depolymerization [94,95]. The dif-
ferences between cytochalasin congeners and jasplakinolide are akin
to the vinca alkaloids and taxanes' method of attacking microtubules,
as vinca alkaloids inhibit polymerization, while taxanes stabilize the
polymers [2]. As with microtubules, stabilizing formed polymers can
have just as much of a deleterious effect on a cell as inhibiting polymer-
ization, suggesting that jasplakinolide is also a likely candidate for
chemotherapeutic evaluation.

Unlike cytochalasins which are fungal in origin, jasplakinolide is de-
rived from marine sponges [96]. The compound is a cyclo-depsipeptide
containing a tripeptide moiety linked to a polypeptide chain. When
cells are treated with jasplakinolide at nontoxic dosages, observa-
tions after drug removal indicate that a misshapen cytoskeleton
forms, and protrusions on the cell surface become readily apparent
[97-99]. When applied during mitosis, the compound can induce the
formation of binucleate cells, although multinucleated cells are a rare oc-
currence [98]. Interestingly enough, jasplakinolide can induce bundling of
F-actin in organisms that hardly ever exhibit this process [99], demon-
strating that the compound substantially stimulates microfilament
formation.

Although atypical of most microfilament-directed agents,
jasplakinolide has also demonstrated substantial anticancer activity.
In an in vitro study involving three human prostate carcinoma cell
lines (LNCaP, PC3, and TSU-Pr1), only 41 nM jasplakinolide was
needed to potently inhibit cell growth, with the mechanism of
growth inhibition being directly associated to its influence on the
actin cytoskeleton [100]. Jasplakinolide also appears to be a potent
radiation sensitizer as observed in vitro and in vivo with DU-145,
LNCaP, and PC3 human prostate carcinoma, as well as murine Lewis
lung carcinoma cell lines [101]. Concomitant use of jasplakinolide
and X-radiation produced a marked diminution in the shoulder of
the survival curve of normally oxygenated PC3 cells. Further, the
compound appeared to be a potent radiation sensitizer of hypoxic
DU-145 cells and hypoxic PC3 cells. In vivo, jasplakinolide displayed
substantial antitumor activity against Lewis lung carcinoma and DU-
145 prostate carcinoma xenografts. In particular, the compound
markedly increased survival of the mice, and reduced lung metasta-
ses due to Lewis lung carcinoma. Metastases were further decreased
when jasplakinolide was administered along with X-radiation in s.c.
primary tumors. In addition, concomitant jasplakinolide/X-radiation
markedly delayed tumor growth. However, in the DU-145 tumor, the
effects of jasplakinolide and fractionated radiation for 1-2 weeks ap-
peared to be primarily additive, and not synergistic. Nevertheless,
jasplakinolide might still be a beneficial addition to current radiation
sensitizers, as the microfilament-directed agent damages malignant
cells by a mechanism novel to radiation oncology.

2.4. Latrunculins

As with jasplakinolide, latrunculins are microfilament-directed
agents derived from marine sea sponges. However, their mechanisms
of action are much more similar to cytochalasins as the compounds
bind actin monomers near the nucleotide binding cleft with 1:1 stoichi-
ometry, thereby inhibiting polymerization [102]. It should also be noted
that latrunculins typically bind G-actin as opposed to cytochalasins
which have a high affinity for F-actin [103-105]. Consequently, while
cytochalasins affect the kinetics of microfilament polymerization at
both the barbed and pointed ends, latrunculins preferentially associate
with actin monomers, thereby preventing subunits from repolymerizing
into filaments.

Latrunculins are unique in structure as the 14 or 16 membered
macrolide base is attached to the rare 2-thiazolidinone moiety which
can be oxidized to form oxalatrunculin derivatives [ 106]. This structural
component appears to be pivotal for latrunculin binding as the crystal
structure of G-actin/latrunculin A complexes shows that the macrolide
binds above the ATP-binding site between the two major domains of
G-actin, with its unique 2-thiazolidinone moiety buried deep in the
cleft [107]. Further, structural variations in the 2-thiazolidinone moiety
among various latrunculin congeners confer substantial differences in
binding affinity to G-actin, validating its importance in the inhibition
of actin polymerization [108]. Once bound to G-actin monomers,
latrunculin prevents actin polymerization by hindering the rotation of
the two major domains associated with the G- to F-actin transition,
inhibiting microfilament formation.

In regard to chemotherapeutic potential, latrunculin A has shown
particular in vitro and in vivo efficacy against gastric cancer. The
microfilament-directed agent was shown to induce substantial apopto-
sis in vitro in MKN45 and NUGC-4 gastric adenocarcinoma cells through
activation of the caspase-3/7 pathway [109]. The importance of micro-
filaments in neoplastic cell homeostasis was readily apparent as cells
treated with 5 pM latrunculin A for 1 h were swollen, and contained ab-
normal accumulation of vesicles within the cytoplasm. After 12 h, intra-
cellular organelles became substantially compressed and erupted
within the cells, inflicting considerable damage on the plasma mem-
brane. Further, treated cells initially developed irregular filopodia,
lamellipodia, and microvilli protruding from the cell surface before the
fine actin network and stress fibers virtually disappeared after 24 h of
treatment. In vivo, MKN45 and NUGC-4 cell-challenged mice exhibited
significantly improved survival rates without any major side-effects
after i.p. injection of latrunculin A [109]. Although the incidence and
mortality of gastric carcinomas have decreased markedly over several
decades due to improvements in sanitation conditions [1], it still re-
mains prevalent in Asia as there is no effective therapy once peritoneal
dissemination is observed [110-112]. Therefore, latrunculin A could
potentially be used to supplement current chemotherapeutic protocols
for gastric cancer if further in vivo evaluation warrants clinical trials.

Synthesized derivatives of latrunculin A also appear to potentiate a
substantial anticancer effect, as exhibited by latrunculin A-17-0-
carbamates in PC3 human prostate and T47D human breast carcinoma
cells. Prepared by reacting latrunculin A with the corresponding isocya-
nate, the congeners exhibited potent anti-invasive activity against PC3
cells in a Matrigel™ assay [113]. While 1.5 pM latrunculin A decreased
the disaggregation and cell migration of PC3-CT + spheroids by three-
fold, two different carbamate derivatives at the same concentration
were two and half and five-fold more active than the progenitor com-
pound. Further, latrunculin A and its 17-O-N-(benzyl)carbamate sup-
pressed hypoxia-inducible factor-1 (HIF-1) activation in T47D cells, a
clinically relevant finding as no chemotherapeutic agents have been
clinically approved to specifically target tumor cells that have become
hypoxic [113-115]. Similar results have been found in other analogs of
latrunculin A (acetylated, esterified, and N-alkylated) that were specifi-
cally designed to modulate the binding affinity toward G-actin [116]. As
with the carbamate series, these synthesized analogs demonstrated
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anti-proliferative and anti-invasive properties against MCF7 and MDA-
MB-231 cells. It should be noted that derivatives of latrunculin A were
developed due to the observation that the hydrogen bond donation of
the thiazolidinone NH is obligatory to latrunculin/G-actin binding
[116]. In effect, the compounds were developed to optimize the activity
of latrunculins' lactol hydroxyl and thiazolidinone NH groups, thereby
conferring a higher binding affinity in malignant cells. Potentiating
latrunculin/G-actin binding affinity could make the congeners more
potent chemotherapeutic agents, and is an area of research worth
further evaluation.

2.5. MKT-077

MKT-077 (1-ethyl-2-[|3-ethyl-5-(3-methyl-2(3H)-benzothiazolylidene)-
4-oxo-2-thiazolidinylidene|methyl]-pyridinium chloride) is a highly
water-soluble (>200 mg/mL) rhodacyanine dye that has significant an-
titumor activity in a variety of cancer cell types [117-119]. It has gained
substantial notoriety due to its ability to inhibit the mitochondrial
hsp70 (heat shock protein, 70 kDa) chaperones, including mortalin
(mot-2), inducing the selective death of cancer cells [120], and was
the first delocalized lipophilic cation with a favorable pharmacological
and toxicological profile in preclinical studies [117]. Although it is
more commonly known for its ability to induce apoptosis through mi-
tochondrial pathways, MKT-077 is also a potent F-actin inhibitor,
exerting a substantial influence on actin polymerization dynamics within
malignant cells [121].

MKT-077 was first examined for its potential to induce mitochondrial-
linked apoptosis due to the unique properties of lipophilic cations. The
large membrane potential (150-180 mV) across the mitochondrial
inner membrane can be exploited as a method by which to deliver mole-
cules to mitochondria [122,123]. As such, MKT-077 readily traverses the
lipid bilayers of mitochondria, as its charge is dispersed over a large sur-
face area, allowing the potential gradient to drive its accumulation into
the negatively-charged mitochondrial matrix. In fact, the uptake of lipo-
philic cations into mitochondria increases 10 fold for every 61.5 mV of
membrane potential at 37 °C, leading to a 100-500 fold accumulation
[122], and enabling such molecules to profoundly influence mitochondri-
al physiology. It has since been determined that MKT-077 is an allosteric
inhibitor of Hsp70 chaperones, preferentially inducing apoptosis in neo-
plastic cells as Hsp70 chaperones are significantly up-regulated in tumors
[124]. Along with neutralizing conformational changes in aberrant
proteins, Hsp70 chaperones specifically inhibit cell death pathways, pro-
viding a viable chemotherapeutic target.

However, this is only half of the story. In addition to allosterically
inhibiting Hsp70 chaperones, MKT-077 is known to substantially
crosslink F-actin, producing aberrant microfilaments within malignant
cells. It has been observed that MKT-077 binds a 45-kD protein (p45)
and a 75-kD protein (p75) in Ras-transformed neoplastic cells, but not
in parental normal cells [121,125]. It was subsequently demonstrated
that p45 and p75 co-migrate with actin in SDS-PAGE, and that MKT-
077 binds directly to purified G- and F-actin. Further, as with F-actin
bundling proteins, the compound suppresses Ras transformation
by blocking membrane ruffling [125]. As expected of F-actin
crosslinkers/bundlers, sufficient concentrations of MKT-077 (300 uM)
superprecipitates most microfilaments within treated cells. In accor-
dance with these findings, the compound substantially lowers the spe-
cific viscosity of F-actin, and electron microscopy has confirmed that
MKT-077 induces actin bundle formation, indicative of microfilament
crosslinking [125].

Unlike other microfilament-directed agents, MKT-077 has been
clinically evaluated in preliminary Phase I studies, and substantial data
on patient toxicity and pharmacokinetics have been acquired. In one
study that assessed the tolerability and pharmacokinetic behavior of
MKT-077, 13 patients with advanced solid malignancies were adminis-
tered MKT-077 as a 30 min i.v. infusion weekly for 4 weeks every
6 weeks at doses ranging from 42 to 126 mg/m?/week [126]. The

principal toxicity was renal magnesium wasting, which was subse-
quently improved with i.v. magnesium supplementation. However,
dose escalation above 126 mg/m? was not considered feasible, and the
recommended dose conjectured for this schedule of MKT-077 is
126 mg/m?/week. Fortunately, this dosing schedule of MKT-077 pro-
duced a toxicity profile consistent with preferential accumulation of
the chemotherapeutic agent within tumor cell mitochondria, and
biologically relevant plasma concentrations were achieved. Pharmaco-
kinetic data acquired for all patients revealed a low Cls (plasma clear-
ance; 39 + 13 L/h/m?), large V,, (apparent volume of distribution at
steady state; 685 + 430 L/m?), and C.x (maximum serum concentra-
tion; 1.2 + 0.31 to 6.3 £ 5.3 mg/mL) values that exceeded ICso concen-
trations required for human CX-1 colorectal, MCF7 breast, CRL-1420
pancreas, EJ bladder, and LOX melanoma tumor cell lines in vitro (0.15
to 0.5 mg/mL).

Despite these promising results, another Phase I study noted that
severe renal toxicity might potentially limit the utility of MKT-077 in
the clinical setting [127]. In the study, 10 patients with advanced solid
malignancies were treated at three dose levels: 30, 40 and 50 mg/m?/
day for a total of 18 cycles. In patients that experienced perturbed
renal function, nephrotoxicity appeared by day 5 of the first cycle of
treatment and recurred with each cycle of treatment. However, there
was no evidence for cumulative renal toxicity, even in the patient who
developed nephrotoxicity in each of the 11 treatment cycles. In regard
to pharmacokinetics, the distribution of MKT-077 after termination of
treatment was rapid, and the terminal t; », was between 19 and 25 h.
The elimination characteristics for the chemotherapeutic agent were
similar to what were observed after single and weekly 30 min i.v. infu-
sions. In addition, pharmacodynamic monitoring using >'Phosphorus
magnetic resonance spectroscopy (MRS) on skeletal muscle mitochon-
drial function revealed that MKT-077 inhibited mitochondrial function
in patients, indicating that the chemotherapeutic agent did reach its
intended target. Although substantial nephrotoxicity was observed,
the study indicated that it is feasible to target mitochondria with
MKT-077, suggesting that it or other rhodacyanine analogs can be
used in the clinical setting if higher therapeutic indices can be devel-
oped. However, two preliminary Phase I clinical trials with contrasting
results are insufficient to fully evaluate the clinical efficacy of MKT-
077, and further study is required. Further, syntheses of MKT-077 deriv-
atives that have increased activity against MDA-MB-231 and MCF7 cells,
as well as a much higher theoretical plasma t;,, due to protection
against oxidation at the benzothiazole and pyridinium rings, are prom-
ising potential chemotherapeutic agents [128], and may be able to reach
the therapeutic indices necessary for clinical utility.

2.6. Staurosporine

Staurosporine is an antibiotic product of the bacterium Streptomyces
staurosporeus [129]. The compound is a member of the indolocarbazoles,
an alkaloid sub-class of bisindoles. The indolocarbazoles are frequently
found as indolo(2,3-a)pyrrole(3,4-c)carbazoles which can be divided
into two major classes; halogenated with a fully oxidized C-7 carbon
and only one indole nitrogen containing a (3-glycosidic bond, and non-
halogenated, consisting of both indole nitrogen glycosylated compounds,
and those with a fully reduced C-7 carbon [130,131]. Staurosporine is
non-halogenated and contains a fully reduced C-7, and is therefore asso-
ciated with the second non-halogenated class.

As with MKT-077, staurosporine is a microfilament-directed agent
more commonly known for other influences on cellular physiology.
The compound is a potent protein kinase inhibitor that exerts its effects
by preventing ATP binding [132-134]. As a competitive inhibitor,
staurosporine has a much stronger affinity to the ATP-binding site on
the kinase than ATP. However, structural analysis of kinase pockets
has indicated that main chain atoms which are conserved in their rela-
tive positions to staurosporine contribute to its affinity [135]. As such,
concern has arisen that the compound will indiscriminately inhibit
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kinases in malignant, as well as normal cells, although it has been
demonstrated that leukemic lymphocytes are more sensitive to
staurosporine than normal lymphocytes [134].

It has been established that staurosporine can induce apoptosis by
activating caspase-3 proteases, which then cleave Forkhead box 03a
(FOX03a) [136-140]. This is important as FOXO3a is known to trigger
apoptosis through up-regulating genes necessary for cell death, such
as the Bcl-2-like protein 11 (Bim) [141,142] and the p53 upregulated
modulator of apoptosis (PUMA) [139,143,144], as well as down-
regulating anti-apoptotic proteins such as the FLICE-like inhibitory
protein (FLIP) [145,146]. In addition, staurosporine has been shown to
activate the caspase-dependent apoptotic pathway in human melano-
ma cells (Me4405, Me1007, IgR3, Mel-FH, Mel-RMu, Mel-RM, Mel-CV,
and MM200) by release of cytochrome ¢ and Smac/DIABLO from mito-
chondria, as well as cleavage of poly(ADP-ribose) polymerase (PARP)
[147]. The study also indicated that a second, caspase independent apo-
ptotic pathway may be involved in late apoptotic events induced by
staurosporine, as overexpression of Bcl-2 inhibited the early onset of
apoptosis, but not the later, caspase-independent pathway.

Although staurosporine is clearly a protein kinase inhibitor, it has
also been demonstrated that the compound has a profound effect on
the actin cytoskeleton of a variety of cell types. The protein kinase inhib-
itor was found to dramatically alter microfilaments in PTK2 epithelial
cells, Swiss 3T3 fibroblasts, and human foreskin fibroblasts [ 148]. In par-
ticular, cells exposed to 20 nM staurosporine exhibited a progressive
thinning and loss of cytoplasmic actin bundles within 60 min, while mi-
crotubule and intermediate filament systems remained intact. Similar
results of microfilament perturbation have been observed in rat osteo-
blasts [149]. Not only did actin depolymerizers enhance the effects of
staurosporine, but fluorescence labeling showed that staurosporine
caused a substantial dissolution of microfilaments, again leaving micro-
tubules and intermediate filaments intact in perturbed cells. While
further studies are needed to confirm the extent of microfilament
disruption in malignant cells, it is no doubt a mechanism by which
staurosporine inflicts damage.

The potential indiscriminate inhibition of protein kinases elicited by
staurosporine may be alleviated by liposomal encapsulation, akin to
reducing the toxicity of cytochalasins through the same process. In
one study, a novel reverse pH gradient liposomal loading method for
staurosporine was developed [150], which produced 70% loading effi-
ciency with good retention, and substantial in vivo antitumor activity
in U87 human glioblastoma cells challenged in the flanks of nude
mice. Biodistribution analyses revealed that the compound preferential-
ly accumulated within tumors (although high accumulations were
found in the spleen), and body weight data were unaffected by liposo-
mal staurosporine, as opposed to the free compound which did reduce
body weight. In vitro, liposomal staurosporine was shown to block Akt
phosphorylation, induce PARP cleavage, and increase levels of apoptosis
in U87 cells. Such results are intriguing, but further evaluation of this
novel staurosporine derivation is needed to determine whether such re-
sults can be repeated. Nevertheless, brain cancers, particularly glioblas-
toma multiforme, are very problematic in the clinic, and finding novel
compounds to supplement current chemotherapeutic and radiation
protocols (particularly temozolomide and X-radiation) are of significant
interest.

2.7. Scytophycins

Tumors often exhibit innate or acquired resistance to chemothera-
peutic agents due to the overexpression of ATP-binding cassette (ABC)
transporters, which efflux a substantial variety of compounds across
cellular compartments [1,2]. In particular, the plasma membrane-
spanning proteins permeability glycoprotein (Pgp) and multidrug
resistance-associated protein (MRP) confer resistance to vinca alkaloids,
taxanes, and other bulky chemotherapeutic agents due to drug efflux
[151-153]. However, scytophycins, a novel class of natural cytotoxins

isolated from cyanobacteria of the family Scytonemataceae [154], are
microfilament-directed agents that do not appear to be modulated by
ABC transporters, a surprising find given the structural bulk of the
compounds.

Scytophycins consist largely of polyketides and numerous 1,3-diol
units that vary in structure and stereochemistry [154]. Due to the novelty
of these compounds, a generalized carbon skeleton structure is presented
in Fig. 1. It has been determined that scytophycins are potent, cytokinesis
inhibitors with mechanisms very similar to cytochalasins. Treatment of
KB HeLa contaminant carcinoma cells with the scytophycin tolytoxin
(2-16 nM) results in profound morphological changes, including marked
zeiosis (localized decoupling of the cytoskeleton from the plasma mem-
brane, inducing membrane blebbing), and substantial nuclear protrusion
[155]. Further examination revealed that tolytoxin inhibited actin poly-
merization, as well as depolymerized and fragmented F-actin. In L1210
murine lymphoid leukemia cells, cytokinesis was shown to be inhibited
by 2 nM tolytoxin, inducing multinucleation. In addition, tolytoxin spe-
cifically disrupted microfilament organization in A10 rat myoblasts,
while having no apparent effect on microtubules or intermediate fila-
ments. Particularly intriguing was the observation that tolytoxin exerts
very similar effects on microfilaments as cytochalasin B, but was effec-
tive at concentrations 1/1000 that of the known cytokinesis inhibitor
[155].

Although limited data are available on the anticancer activity of
scytophycins, a study demonstrating cytoxicity against drug sensitive
(SKOV3) and drug-resistant (SKVLB1) human ovarian carcinoma cells
is of particular interest [156]. In a comparison with cytochalasin B, mi-
crofilaments in SKOV3 and SKVLBI1 cells were depolymerized by similar
concentrations of tolytoxin, while cytochalasin B exhibited less potency.
While SKVLB1 cells demonstrated >150 and 10,000-fold decreases in
sensitivity to DOX and vinblastine, respectively, both cell lines were
equally sensitive to the anti-proliferative effects of tolytoxin and a few
other scytophycins. In regard to circumventing ABC transporter drug re-
sistance, both tolytoxin and cytochalasin B synergized considerably
with vinblastine toward SKVLB1 cells. While this does not directly indi-
cate reversal of drug resistance, it appears that tolytoxin and other
scytophycins are not subject to Pgp-mediated efflux from SKVLB1 cells
exhibiting multidrug resistance due to overexpression of this transport
protein, suggesting that the compounds may have clinical applications
for drug-resistant tumors. Extensive in vivo assessment is needed to
determine whether scytophycins exhibit the same antitumor activity
as the mechanistically related cytochalasins.

3. Intermediate filaments as chemotherapeutic targets

Along with microfilaments, intermediate filaments are the other
component of the cytoskeleton that has yet to be exploited in the clini-
cal setting. All intermediate filaments have a central alpha-helical rod
domain that is composed of four alpha-helical segments (named as
1A, 1B, 2A and 2B) separated by three linker regions [157]. The N and
C-termini of intermediate filaments are non-alpha-helical regions that
are considerably diverse in terms of length and polypeptide sequence
[157]. As opposed to microtubule and microfilament formation, inter-
mediate filaments are constructed from a parallel and in-register
dimer, which forms through the interaction of the rod domain to form
a coiled coil [158,159].

Intermediate filaments typically assemble into non-polar unit-
length filaments (ULFs) that can then interact to form staggered,
antiparallel, soluble tetramers [160]. These structures associate head-
to-tail into protofilaments that pair up laterally into protofibrils; four
of these protofibrils then wind together into an intermediate filament.
Interestingly, the N-terminal head domain binds DNA, and vimentin
(type Il intermediate filament) heads are routinely used in normal
cell physiology to alter nuclear architecture and chromatin distribution
[161,162]. Intermediate filaments are also distinct from other cytoskel-
etal components in that its anti-parallel orientation of tetramers does
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not enable polarity, as is found in microfilaments and microtubules.
Therefore, intermediate filaments are not routinely involved in cell
motility and intracellular transport [157]. Also, as opposed to actin or
tubulin, intermediate filaments do not contain a binding site for a nucle-
oside triphosphate [ 157,158]. However while intermediate filaments do
not undergo treadmilling (one end of the structure grows in length
while the other end shrinks) like microfilaments and microtubules,
formed structures are dynamic, and are used in intracellular crosstalk
with other components of the cytoskeleton [163,164].

Due to their tremendous diversity in structure, intermediate fila-
ments exhibit tissue-specific expression. Whereas microfilaments and
microtubules are polymers of actin and tubulin, respectively, intermedi-
ate filaments are composed of a variety of proteins that are expressed in
different types of cells. In fact, more than 50 different intermediate fila-
ment proteins have been identified and classified into 6 types based on
similarities in amino acid sequence [157]. In regard to potential chemo-
therapeutic targets, the intermediate filaments that have shown the
most promise are Keratins, nestin and vimentin. The three will be
described in detail in order to elucidate how valuable these potential
targets are to malignant cell viability.

3.1. Keratins

Keratins (formerly known as cytokeratins) are proteins of keratin-
containing intermediate filaments found in the intracytoplasmic cyto-
skeleton of epithelial tissue [165]. These intermediate filaments are
either found as the acidic type I keratins, or the basic/neutral type II
keratins. Complete keratins are typically found in pairs comprising a
type I keratin and a type II keratin, and expression of these structures
is frequently organ or tissue specific. This is derived from the fact that
subsets of keratins expressed in epithelial cells depend on the type of
epithelium, the time of terminal differentiation, and the stage of devel-
opment [166]. Such specificity produces a unique keratin fingerprint for
different types of epithelia, allowing classification to be based on this
protein expression profile. This specificity even holds true in most carci-
nomas, as the keratin profile tends to remain consistent when epithelial
cells develop neoplastic characteristics [ 166]. Therefore, the keratin pro-
file can be exploited by immunohistochemistry techniques as a tool for
tumor diagnosis and characterization in surgical pathology [167,168].

However, keratins may have much more utility to cancer treatment
than diagnostic measures. It has been shown that introducing a keratin
network into mouse fibroblasts confers a MDR phenotype [169]. Fur-
ther, insertion of keratins has perpetuated resistance to mitoxantrone,
DOX, melphalan, bleomycin, and mitomycin C in different keratin-
positive cell lines [170]. In addition, keratin-positive cell lines were
protected from apoptosis against mitoxantrone exposure, while cell
lines without keratins exhibited marked levels of apoptosis after being
exposed to the chemotherapeutic agent [169]. Multiple studies have
supported these findings [169,171,172], and it has been further demon-
strated that keratins play a prominent protective role in TNF and Fas
mediated apoptosis after exposure to chemotherapeutic agents [173].
These studies indicate that acquisition of drug resistance may be attribut-
ed to a keratin-conferred protection against apoptosis.

Keratins of particular interest to cancer therapy are keratin 8 (K8)
and keratin 18 (K18), the most common and characteristic members
of intermediate filaments expressed in single layer epithelial tissues
[17,174]. Oncogenes which activate Ras signaling stimulate expression
of K18 through transcription factors, and elevated expression of K8
and K18 has been associated with an escape from the suppressive epige-
netic mechanisms of DNA methylation and chromatin condensation
[175,176]. In other words, overexpression of K8 and K18 is stimulated
by multiple oncogenes that have been shown to be activated through
only a limited number of transcription factors. As well as being associat-
ed with drug resistance, aberrant K8 and K18 expression has been noted
in particularly invasive carcinomas [173,177], prompting investiga-
tion to determine how these intermediate filaments are involved in

tumorigenesis, and apoptotic expression. Although it has been known
for years that nuclear lamins are cleaved by caspases, it has been
shown that K18 is also a substrate of the cysteine-aspartic proteases
during epithelial apoptosis [ 173]. While the importance of keratin in ap-
optosis needs to be further characterized, it is apparent that aberrant
keratin expression found in many cancers presents a novel chemother-
apeutic target that warrants further investigation.

3.2. Nestin

Nestin is a type VI intermediate filament that is expressed in many
cell types during development, but is typically not expressed in adults.
One exception is the expression of nestin in stem cells, particularly neu-
ronal precursor cells which has been associated with the radial growth
of axons [178,179]. Nevertheless, embryonic levels of nestin often
return in a variety of cancer types, and is now being considered as a
potential diagnostic factor. Nestin expression is currently used as a
stem cell marker [179], indicating that dedifferentiation of adult cells
can be tracked using appropriate intermediate filaments. Indeed, nestin
is highly expressed in several cancers, including gliomas, osteosarco-
mas, and colorectal and prostate carcinomas [ 180-184]. It has been pos-
tulated that nestin promotes the migration of prostate carcinoma cells
and metastasis [179]. This is in accordance with data that suggest that
nestin knockdown decreases the motility of cells derived from metasta-
sized prostate carcinomas and the ability of these metastatic cells to
migrate following xenograft transplantation [181]. Although the under-
lying mechanism has not yet been elucidated, it has been speculated
that nestin interacts with Cyclin-dependent kinase 5 (Cdk5) in which
Cdk5 regulates nestin organization, and nestin, in turn, regulates Cdk5
localization and activity. This is supported by the observation that nestin
acts as a survival factor to inhibit Cdk5-mediated apoptosis [185,186];
critical for successful development, but also as potentially vital for
cancer progression.

3.3. Vimentin

Vimentin is a type IIl intermediate filament that is found in a variety
of cell types, including fibroblasts, smooth muscle cells, and leukocytes
[157]. Further, vimentin is the major cytoskeletal component of mesen-
chymal cells and is used for maintaining cell shape, as well as stabilizing
cytoskeletal interactions such as supporting and anchoring the position
of organelles [187-189]. Due to its prevalence in mesenchymal cells, it is
often used as a marker for cells undergoing EMT during both normal
physiological processes and metastatic progression [190,191].

As with K8, K18, and nestin, vimentin has been shown to be
overexpressed in a variety of carcinomas, including those of the breast,
central nervous system, gastrointestinal tract, and lung, as well as
melanoma [192]. This is particularly intriguing for cancers derived
from epithelial tissue, as many of these cell types have a high expression
of vimentin during fetal development that substantially decreases with
age [192]. Overexpression of vimentin in these cell types can therefore
be seen as a characteristic sign of dedifferentiation, validating the use
of intermediate filaments as diagnostic and prognostic factors in a
variety of carcinomas. Further, overexpression of vimentin is associated
with increased tumor growth, invasion, and a poor prognosis [193-195].

Due to the prevalence of vimentin overexpression in carcinomas, it
should come as no surprise that the intermediate filament is vital for
EMT. It has been recently shown that overexpression of oncogenic
H-Ras-V12G and Slug induces vimentin expression and cell migration
in pre-malignant breast epithelial cells [196]. Even more intriguing
is that vimentin expression is necessary for Slug- or H-Ras-V12G-
induced EMT-associated migration. Silencing vimentin expression in
breast epithelial cells reduces invasiveness-related gene expression,
and gene expression profiling analyses reveal that vimentin expression
correlates positively/negatively with these genes in multiple breast
carcinoma cell lines and breast cancer patient samples. Induction of
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vimentin by EMT is also associated with upregulation of Axl expression,
thereby enhancing migratory activity in pre-malignant breast epithelial
cells [196]. Similar results have been found in lung carcinomas [197],
with vimentin expression being perpetuated by HIF-1, facilitating
EMT, and subsequent metastasis. In addition, vimentin forms a complex
with 14-3-3 proteins (regulatory molecules that bind a multitude of
functionally diverse signaling proteins) and beclin 1 in lung and pros-
tate carcinomas to inhibit autophagy via an AKT-dependent mecha-
nism, thereby regulating various intracellular signaling and cell cycle
control pathways by depleting the availability of free 14-3-3 [197,198].

3.4. Withaferin A

Although no potential chemotherapeutic agent has been identified
to specifically target aberrant keratin or nestin levels in malignant
cells, withaferin A has shown promise as a potent vimentin inhibitor.
Withaferin A is a steroidal lactone that was initially isolated from
winter cherry (Withania somnifera), and was the first member of
the withanolides to be discovered [199]. While other withanolides
have shown anticancer activity, withaferin A has demonstrated the
most efficacy, likely due to its unique structure: an o, B-unsaturated
ketone in the first ring, a 5-3, 6-3-epoxy group in the second ring, and
a nine carbon side chain with an «, B-unsaturated 6-lactone group. As
expected, the 28 carbon steroidal lactone contains the characteristic
steroid ring system that is connected to a lactone via a methanetriyl
carbon. This lactone is a cyclic ester, characterized by a closed ring
consisting of five carbon atoms and a single oxygen atom. In all
withanolides, the lactone moiety is built on an intact or rearranged
ergostane framework, in which C-22 and C-26 are appropriately oxidized
to form a six-membered lactone ring.

While withaferin A is known to influence a variety of proteins, the
most extensively studied target protein has been vimentin. The com-
pound binds vimentin at Cys328 located in the conserved a-helix and
lying in close proximity with the C-3 and C-6 sites of the first two
rings in withaferin A [200]. This covalent modification of vimentin in
the conserved ac-helical coiled coil domain inhibits its assembly, thereby
preventing formation of the complete intermediate filament. Affinity
purification has confirmed this interaction with vimentin, as well as
with desmin, and glial fibrillary acidic protein (GFAP) [201-203]. In
addition, withaferin A down-regulates the expression of these filament
proteins, as well as peripherin [204], inducing substantial cytoskeletal
perturbation [201-204] in affected cells, and suggesting that withaferin
A is a potent inhibitor of all type IIl intermediate filaments.

However, withaferin A is much more than a potent intermediate
filament inhibitor. Withaferin A has been shown repeatedly to inhibit
angiogenesis [201,205-207]. It has been demonstrated that withaferin
A inhibits human umbilical vein endothelial cell (HUVEC) sprouting
by inhibiting NF-kB, as well as cyclin D1 expression [206]. It has also
been shown that withaferin A inhibits NF-«B through interference
with the ubiquitin-mediated proteasome pathway, exerting potent
anti-angiogenic activity at doses as low as 7 ug/kg/day i.p. in C57BL/6]
mice [206]. These in vivo observations can be tied directly back to the
propensity of withaferin A to inhibit vimentin, as site-specific modifica-
tion of vimentin by withaferin A induces endothelial cell apoptosis
through interference with the conserved rod 2B domain. In addition,
withaferin A substantially down-regulates vascular endothelial growth
factor (VEGF) expression [208,209], further inhibiting angiogenesis.

Withaferin A has also demonstrated potent anticancer activity by
directly inhibiting tumorigenic growth. The compound inhibited
growth of murine, as well as patient-derived mesothelioma cells in
part by decreasing the chymotryptic activity of proteasomes, conse-
quently perpetuating increased levels of ubiquitinated proteins and
pro-apoptotic proteasome target proteins (p21, Bax, 1kBa) [210].
Withaferin A suppression of mesothelioma growth was also attributed
to elevated levels of apoptosis induced by activation of pro-apoptotic
P38 stress activated protein kinase (SAPK) and caspase-3, and cleavage

of PARP. In addition, gene-array based analyses further revealed that
withaferin suppressed oncogene activity in tumors, including c-myc
[211]. Withaferin A has also shown substantial anticancer activity
against MDA-MB-231 and MCF7 cells by suppressing XIAP, cIAP-2,
and survivin protein levels [212]. In vivo activity was also exhibited
in MDA-MB-231 xenografts, but only suppression of survivin was
observed.

Perhaps most intriguing is that withaferin A has demonstrated sig-
nificant synergistic effects with the multikinase-targeted inhibitor
sorafenib in thyroid carcinoma models (human papillary (BCPAP) and
anaplastic (SW1736) cells) [212]. Concomitant use of sorafenib and
withaferin A at ICsg levels decreased cell viability to 19%, as opposed
to 50% for each agent administered separately. Further, apoptosis levels
in SW1736 cells increased significantly from 0-2% (sorafenib- or
withaferin A-alone treatments) to 89% when administered together, as
assessed by annexin V/propidium iodide flow cytometry. Synergy was
also observed in the ability to down-regulate the BRAF, Raf-1, and extra-
cellular signal-regulated kinase (ERK) signaling pathways, while each
agent administered individually exerted only minimal influence on reg-
ulatory control. This ultimately suggests that concomitant chemothera-
py of sorafenib and withaferin A may exert potent anticancer activity,
with lower overall doses of the moderately toxic sorafenib required to
significantly inhibit neoplastic growths.

4. Potential pitfalls

As with currently approved chemotherapeutic agents, cytoskeletal
filament-directed agents that eventually reach the clinical setting will
invariably be limited by drug toxicity. Although mitigating cell motility
is an important chemotherapeutic target for microfilament-directed
agents, many physiological functions are inherently dependent on
such capabilities. Leukocytes also have the need to extravasate in
great quantity over a short period in order to combat infection [213].
In the course of this process known as diapedesis, leukocytes adhere
via selectins to the endothelium and perform a form of rolling adhesion
to interact with endothelial cells, which in turn enables the passage of
appropriate immune cells [213,214]. In a manner similar to malignant
cells, leukocytes are also capable of amoeba migration, meandering
their way through the ECM to reach a site of infection or inflammation
[215,216]. Although 1.5 uM cytochalasin B does not appear to have a
substantial effect on human leukocytes in vitro [31], 50 mg/kg cytocha-
lasin B in vivo does produce substantial immunosuppression in C57B1/6
mice [68,69]. In addition, the same dosage is marked by splenomegaly,
supported by tissue distribution analyses which confirm high accumu-
lation rates in the spleen, as well as blood cells [217]. Nevertheless,
elevated concentrations do not typically last longer than 24 h [217],
and cytochalasin B immunosuppression can be readily ameliorated
with rhIL-2, with less marked splenomegaly [69].

There are also concerns about the acute organ toxicity microfilament-
directed agents may have. Cytochalasins [218-221] and jasplakinolide
[222,223] have been noted for cardiac toxicity, MKT-077 for marked
renal impairment [127], and staurosporine for neurotoxicity [224,225].
Therefore it may be necessary to find effective drug vehicles that can
ensure successful delivery, while reducing unintended toxicity. Lipo-
somes have been extensively examined for their abilities to improve
drug delivery and have been used for a substantial variety of medicines,
including cytotoxic agents, antibiotics and antifungal agents [226]. In
regard to cancer therapy, liposomal incorporation has been shown to re-
duce side effects of a variety of chemotherapeutic agents, as well as pro-
mote targeted tumor damage due in part to their ability to substantially
aggregate at tumor sites by leaking through pores and defects in tumor
capillary endothelium [226]. Liposomal incorporation has been shown
to improve the delivery, while reducing aberrant toxicity in cytochalasins
B [69] and D [81], and staurosporine [150], suggesting that it may be an
appropriate method by which to administer many microfilament-
directed agents in the clinic. In addition, curcumin, a plant extract used
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in traditional medicine has shown to mitigate the toxicity of
staurosporine [227]. However, the protein kinase inhibitor has
shown potential against malignant brain cancers [150,228,229],
and whether the plant extract would also mitigate anticancer activity
has yet to be assessed.

Although withaferin A has shown considerable anticancer activity
in vitro and in vivo, the compound is relatively novel to chemotherapeu-
tic investigation, and a comprehensive toxicity profile has yet to be
assembled. From the limited toxicity data available, it appears that the
compound is not deleterious to pancreatic islet cells [230,231], but can
have immunosuppressive effects on human B and T lymphocytes, as
well as on mice thymocytes [232]. A comprehensive preclinical pharma-
cokinetic and pharmacodynamic study of withaferin A has yet to be per-
formed, and such data would be pivotal for assessing its potential
clinical utility.

A practical limitation for cytoskeletal filament-directed agents,
particularly those that affect microfilaments is the expense. Many of
these compounds are natural toxins derived from a diversity of
organisms, such as bacteria (scytophycins, staurosporine), flowers
(withaferin A), molds (cytochalasins, cheatoglobosins), and marine
sponges (latrunculins, jasplakinolide). As such, compounds relevant
for chemotherapeutic assessment have to be extracted and purified,
resulting in a considerable expense for interested laboratories. This is
epitomized by jasplakinolide, as the microfilament-stabilizing agent
varies from $289.00 to 498.50 for 100 pg when purchased from com-
mercial suppliers. Scytophycins have the additional problem of being
relatively novel compounds, and they are not readily available commer-
cially. Nevertheless, successful application of these compounds will in-
evitably lower the cost of production due to demand, as demonstrated
by the vinca alkaloids and taxanes.

The costs for comprehensive mammalian studies can be significantly
reduced if the laboratory is willing to isolate the compound directly
from the organism, as has been done in my laboratory. To compare, a
matte of Drechslera dematioidea that can produce the gram quantities
of cytochalasin B needed for extensive murine study costs ~$354.00.
By contrast, 50 mg cytochalasin B from a commercial supplier can cost
around $1245.00. Further, interested laboratories can seek donations
from the Natural Products Branch of the National Cancer Institute as
was done in [101], or other providers of natural products. In addition,
partial or total syntheses of many cytoskeletal-filament directed agents
have been described [233-240], and are another alternative to commer-
cial purchases. The promise of these potential chemotherapeutic agents
will hopefully enable much easier access in the coming future.

5. Concomitant use of cytoskeletal filament-directed agents and
other chemotherapeutic agents

This review has comprehensively examined the mechanisms by
which microfilament directed- and intermediate filament-directed
agents damage malignant cells. A summary of these mechanisms is pro-
vided in Table 1 for reference. In addition, the binding sites of the pro-
posed agents are depicted in Figs. 2 and 3 (microfilament-directed
agents and intermediate filament-directed agents, respectively). This
summarization was done in order to elucidate the potential of using
these drugs in combination with each other, or with currently approved
chemotherapeutic agents to generate a substantial synergistic attack.
For example, while it is true that cytochalasins and latrunculins disrupt
microfilament formation, thereby causing the formation of multinucle-
ated cells, they do so by different mechanisms. Cytochalasins (as well as
chaetoglobosins and scytophycins) bind F-actin, and depolymerize actin
polymers; latrunculins bind G-actin monomers, inhibiting polymeriza-
tion before it initiates. It would be very difficult for malignant cells sen-
sitive to microfilament-directed agents to circumvent both destabilizers
in order to form viable microfilaments. Preventing rapidly proliferating
cells from successfully completing cytokinesis could be of monumental
clinical importance, as such cells are sensitive to a variety of treatment

modalities. Malignant cells exposed to cytokinesis inhibitors have a
highly perturbed cytoskeleton due to the disruption of actin polymeri-
zation, while concurrently developing multiple nuclei as a consequence
of high proliferation rates [27,29,98,102]. This ultimately suggests that
malignant cells exposed to cytokinesis inhibitors could be substantially
sensitive to DNA-directed agents such as alkylators, antifolates,
anthracyclines, and nucleoside analogs. Further, cells exposed to cyto-
chalasin B have markedly increased rates of mitochondrial activity [31]
. Therefore, combining MKT-077 or other known mitochondrial-
directed agents with microfilament-directed agents, as well as DNA-
directed agents could induce potent drug synergy, especially since
MKT-077 is known to perturb microfilament formation.

Microfilament-directed agents also could be used to enhance the
efficacy of physicochemical therapeutic approaches such as X-radiation
or the experimental sonodynamic therapy (SDT) [28], as malignant
cells exposed to such agents develop a perturbed cytoskeleton. As
shown with U937 human monocytic leukemia cells exposed to 1.5 uM
cytochalasin B, malignant cells that become grossly enlarged and multi-
nucleated are sensitized to physical agitation [31]. It has even been
shown that SDT increases reactive oxygen species (ROS) content within
malignant cells, making them more sensitive to mitochondrial-directed
agents, as many cancer types have substantially lower concentrations
of thiol buffers than normal cells [256-258]. Therefore, combining
physicochemical approaches with cytochalasin B, mitochondrial-
directed agents and DNA-directed agents could exert substantial prefer-
ential damage on tumorigenic growths.

It is also extremely pragmatic to emphasize the fact that the only
cytoskeletal-directed agents currently used in the clinical setting per-
turb microtubule function. Microtubule-directed agents such as taxanes
and vinca alkaloids primarily act as mitotic poisons, subsequently
inducing cell cycle arrest, and eventual apoptosis. Since many
microfilament-directed agents are potent cytokinesis inhibitors, it
seems likely that using these agents in tandem with a known
microtubule-directed mitotic inhibitor could elicit a profound synergis-
tic effect. In theory, this provides malignant cells very few opportunities
to carry out a successful mitosis as the microtubule-directed agents
would prevent proper formation of a spindle fiber, while any cells that
managed to evade this mechanism and replicate their nuclei would be
unable to undergo cytokinesis. Therefore, any malignant cells that man-
age to evade this mechanism by mitotic escape and replicate their nuclei
would be unable to undergo cytokinesis, and potentially even metasta-
sis due to the effects microfilament-directed agents have on actin
polymerization. Such synergy has been demonstrated with cytochalsin
B and vincristine in vitro [243], suggesting that this approach may be
viable in the clinical setting. It has also been shown that some
microfilament-directed agents (particularly tolytoxin) are resistant
to drug efflux mediated through ABC transporters. Combining
microtubule-directed agents also known to be resistant to drug efflux,
such as epothilones, with these microfilament-directed agents might
be a particularly useful method to combat drug resistant tumors, and
warrants further investigation.

As microfilaments and microtubules do not constitute the entire
cytoskeleton, intermediate filament-directed agents such as withaferin
A are very promising drug leads. Withaferin A is a potent angiogenesis
inhibitor that induces apoptosis in endothelial cells, as well as down-
regulates essential angiogenic proteins. Using withaferin A to supple-
ment statins and other known anti-angiogenic agents could be more
effective at preventing tumor vascularization. An ample blood supply
is absolutely critical for sustaining the elevated metabolic rates of rapid-
ly proliferating cancer cells, and finding novel approaches to mitigate
angiogenesis has significant clinical utility. Further, as shown with
sorafenib, withaferin A may be used to increase the efficacy of protein
kinase inhibitors (including staurosporine) or other chemotherapeutic
agents. Investigating this potential synergy could result in novel chemo-
therapeutic protocols for cancers that respond to protein kinase inhibi-
tors, many of which have particularly grim prognoses (hepatocellular,
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Table 1
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Prospective cytoskeletal filament-directed agents for use in chemotherapy.

Chemotherapeutic Drug class Mechanism of action Cancer types exhibiting sensitivity
agent
Cytochalasin B MFD Depolymerizes F-actin and inhibits nucleation by binding to the barbed end of Breast carcinoma [27,29,32]
F-actin filaments [14,15], as well as interacting with capping proteins (CAPZA1 Colorectal carcinoma [67]
and others in the F-actin capping protein o subunit family) [241,242]. Leukemia [31]
Lymphoma [243]
Lung carcinoma [27,67,68]
Prostate carcinoma [27]
Mastocytoma [243]
Melanoma [27,68]
Cytochalasin D MFD Depolymerizes F-actin and inhibits nucleation by binding to the barbed end of Colorectal carcinoma [79,81]
F-actin filaments [244-246], potentially activating P53 in cancers with an active Melanoma [80,81]
form of the tumor suppressing gene [247]. Induces actin dimer formation in the Hepatocellular carcinoma [81]
presence of Mg2™, thereby eliminating the polymerization lag phase due to
accelerated nucleation by the dimers [245,248]. ATP hydrolysis is also stimulated,
preventing actin polymerization [249,250].
Chaetoglobosin K MFD Depolymerizes F-actin and inhibits nucleation by binding to the barbed end of Ras-dependent cancers [84,85,88]
F-actin filaments [84,85,88]. Shows particular anticancer activity in Ras-dependent
cancer cell lines, as the compound caps the plus-ends of F-actin, which confers
anti-Ras oncogenic activity through the PI3K-mediated pathway by preventing
Ras from activating Rac [88].
Chaetoglobosin A MFD Depolymerizes F-actin and inhibits nucleation by binding to the barbed end of Leukemia [91]
F-actin filaments [91]. Sensitizes malignant cells to PI3K and BTK inhibitors [91].
Jasplakinolide MFS Induces actin polymerization by binding F-actin at three G-actin sites, and then Lung carcinoma [101]
rigidifies the formed microfilaments to prevent the inherent tendency of Prostate carcinoma [100,101]
depolymerization [94,97,98].
Latrunculin A MFD Binds actin monomers near the nucleotide binding cleft, thereby inhibiting Breast carcinoma [113,116]

polymerization [105]. Preferentially associates with G-actin, thereby preventing
subunits from repolymerizing into filaments [103-105,107,108]. Activates the
caspase-3/7 pathway [109].

Crosslinks F-actin, producing aberrant microfilaments within malignant cells
[121,125]. Suppresses Ras transformation by blocking membrane ruffling [125].
Allosterically inhibits Hsp70 chaperones, inducing apoptosis [124].

Binds actin polymers, inducing depolymerization, thereby perpetuating thinning
and loss of cytoplasmic actin bundles [148,149]. Competitively inhibits ATP from
binding protein kinases, as it has a much stronger affinity to the ATP-binding site

Depolymerizes F-actin and inhibits filament nucleation [154,155]. Produces
marked morphological changes, including zeiosis, and nuclear protrusion [155].

MKT-077 MFC, Hsp70 chaperone
inhibitor
Staurosporine MED, protein kinase
inhibitor
[135-137].
Tolytoxin MFD
Withaferin A IFD

Binds vimentin at Cys328 located in the conserved a-helix [200]. The resulting
covalent modification of vimentin in the conserved a-helical coiled coil domain
inhibits its assembly, thereby preventing formation of the complete intermediate
filament [200,201]. Known to be a potent inhibitor of angiogenesis [206,208].

Gastric adenocarcinoma [109]
Prostate carcinoma [113]

Breast carcinoma [117,119,120,128]
Bladder carcinoma [117]
Colorectal carcinoma [117,119]
Osteosarcoma [119]

Pancreatic carcinoma [117]
Leukemia [118]

Melanoma [117]

Ras-dependent cancers [120,125]
Cervical carcinoma [132]
Fibrosarcoma [132]

Leukemia [132,134]

Melanoma [147]

Cervical Carcinoma [116]
Leukemia [155]

Ovarian Carcinoma [156]

Breast carcinoma [211,251-253]
Mesothelioma [210]

Ovarian carcinoma [254]

Thyroid carcinoma [212]

MFC: microfilament-crosslinking agent; MFD: microfilament-disrupting agent; MFS: microfilament-stabilizing agent; IFD: intermediate filament-disrupting agent. Agents are listed in the

order that they appear in the review.

renal and anaplastic thyroid carcinomas). It may even be possible to
combine withaferin A with microfilament- and microtubule-directed
agents in cancers that overexpress vimentin to inflict irreversible
damage to cytoskeletal structure and function. This appears feasible,
as microfilaments, microtubules, and intermediate filaments often act
in concert, rather than isolation [163,259,260]. Since the cytoskeleton
is fundamental for many vital cell signaling processes, interfering with
this intricate system of interaction with mechanistically distinct
cytoskeletal agents could result in highly effective chemotherapeutic
protocols.

6. Conclusion

The mechanisms by which cytoskeletal filament-directed agents
inflict preferential damage on malignant cells are as diverse as the mo-
lecular structures of these proposed compounds. They could be used to
fill gaps within the arsenal of clinicians, providing more comprehensive,
and therefore more effective therapeutic protocols. However, many of

these compounds lack the necessary in vivo data for clinical evaluation.
Microfilament- and intermediate filament-directed disruption is an
intriguing area of pharmacological research, and could potentially revo-
lutionize chemotherapy or other treatment modalities currently used
against cancer. While it is true that most promising drug leads fail to ex-
hibit clinical efficacy, cytoskeletal-filament directed agents have yet to
be critically evaluated at this stage, and have demonstrated potential
in numerous in vitro and in vivo preclinical studies. Critical assessment
of these novel chemotherapeutic agents is indeed warranted, and hope-
fully will establish a new avenue of cancer therapy.
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A ATP Binding Site
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Fig. 2. Binding sites of microfilament-directed agents. A) The binding sites of microfilament-disrupting and microfilament-crosslinking agents are shown. While cytochalasins,
chaetoglobosins, and scytophycins bind the barbed (+) end of F-actin, latrunculins bind G-actin at the nucleotide binding cleft. MKT-077 crosslinks adjacent microfilaments in the cytoskeleton.
B) The binding sites of microfilament-stabilizing agents are shown. Note that amphidinole H, dolostatin 11, and phalloidin were not discussed in this review, but demonstrate the importance of
the positioning of three G-actin monomers in F-actin for stabilizing microfilaments. Staurosporine was not shown as its binding site on microfilaments has yet to be determined.

Panel B was adapted from [255].

Fig. 3. Binding site models of withaferin A on tetrameric vimentin. A) The close-up image shows the A-ring twist-boat and B-ring half-chair conformation of withaferin A is accommodated
deep within the binding cleft of the vimentin tetramer, allowing for proper orientation with Cys328 (yellow) to form a covalent bond with the C3 or C6 electrophilic carbon centers of
withaferin A. The exocyclic C27 hydroxyl group of withaferin A was conjugated to the linker-biotin for affinity labeling. The biotin affinity tag was linked to withaferin A via a long hydro-
carbon chain residue. It is orientated toward the solvent-side of the binding cleft, enabling the withaferin A B-ring to bind tetrameric vimentin. B) The model shows hydrogen bonding
between GIn324 of the vimentin A-helix and the C1 position oxygen atom (2.3 A), and Asp331 of the vimentin A’ helix and the C4 hydroxyl group (1.7 A).

Images were adapted from [201].
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