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Abstract-Adomian’s decomposition method (ADM) is a nonnumerical method which can be 
adapted for solving nonlinear ordinary differential equations. In this paper, the principle of the 
decomposition method is described, and its advantages as well ss drawbacks are discussed. Then 
an aftertreatment technique (AT) is proposed, which yields the analytic approximate solution with 
fast convergence rate and high accurscy through the application of Pad6 approximation to the series 
solution derived from ADM. Some concrete examples are also studied to show with numerical results 
how the AT works efficiently. @ 2002 Elsevier Science Ltd. All rights reserved. 

Keywords-Adomian’s decomposition method, Aftertreatment technique, Ordinary differential 
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1. INTRODUCTION 

Mathematical modelling of many frontier physical systems leads to nonlinear ordinary differential 

equations, e.g., Duffing’s equation. An effective method is required to .analyze the mathematical 

model which provides solutions conforming to physical reality, i.e., the real world of physics. 

Therefore, we must be able to solve nonlinear ordinary differential equations, in space and time, 

which may be strongly nonlinear. Common analytic procedures linearize the system or assume 
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that nonlinearities are relatively insignificant. Such procedures change the actual problem to 
make it tractable by the conventional methods. In short, the physical problem is transformed to 

a purely mathematical one for which the solution is readily available. This changes, sometimes 

seriously, the solution. Generally, the numerical methods such as Runge Kutta method are 

based on the discretization techniques, and they only permit us to calculate the approximate 

solutions for some values of time and space variables, which cause us to overlook some important 

phenomena such as chaos and bifurcations, because generally nonlinear dynamic systems exhibit 

some delicate structures in very small time and space intervals. Also, the numerical methods 

require computer-intensive calculations. The ability to solve nonlinear equations by an. analytic 

method is important because linearization changes the problem being analyzed to a different 

problem, perturbation is only reasonable when nonlinear effects are very small, and the numerical 

methods need a substantial amount of computation but only get limited information. 

Since the beginning of the 1980s Adomian [l-5] has presented and developed a so-called de 

composition method for solving linear or nonlinear problems such as ordinary differential equa- 

tions. Adomian’s decomposition method consists of splitting the given equation into linear and 

nonlinear parts, inverting the highest-order derivative operator contained in the linear operator 

on both sides, identifying the initial and/or boundary conditions and the terms involving the 

independent variable alone as initial approximation, decomposing the unknown function into a 

series whose components are to be determined, decomposing the nonlinear function in terms of 

special polynomials called Adomian’s polynomials, and finding the successive terms of the series 

solution by recurrent relation using Adornian’s polynomials. ADM is quantitative rather than 

qualitative, analytic, requiring neither linearization nor perturbation, and continuous with no 

resort to discretization and consequent computer-intensive calculations. Some applications [6,7] 

of the method show its advantages. 

However, ADM has some drawbacks. By using ADM, we get a series solution, in practice a 

truncated series solution. The series often coincides with the Taylor expansion of the true solution 

at point z = 0, in the initial value case. Although the series can be rapidly convergent in a very 

small region, it has very slow convergence rate in the wider region we examine, and the truncated 

series solution is an inaccurate solution in that region, which will greatly restrict the application 

area of the method. Many examples given in [8,9] can be used to support this assertion. 

We have proposed an extension of ADM [9], which can improve the convergence rate of the 

series solution. Because the series solution obtained from the generalized decomposition method 

is still a Maclaurin series, the method also has the limited accuracy, although it is superior to 

the ADM. The limitations of the existing methods motivate this work. 

Venkatarangan and Rajalakshmi [lo] presented an alternative technique, which modifies Ado- 

mian’s series solution and makes it periodic for nonlinear oscillatory systems. They used Laplace 

transform and Pade approximant to deal with the truncated series. Some examples show that 

their method yields a more convenient form of the solution compared to the Adomian’s series 

solution for a class of nonlinear oscillatory problems. But their method usually does not work 

for general ordinary differential equations, because getting the inverse Laplace transform of the 

complex Psde approximant is not easy, and often fails. In this paper, we will explain why their 

method works. 
Pade approximant [11,12] approximates a function by the ratio of two polynomials. The co- 

efficients of the powers occurring in the polynomials are determined by the coefficients in the 

Taylor series expansion of the function. Generally, the Pade approximant can enlarge the con- 

vergence domain of the truncated Taylor series, and can improve greatly the convergence rate of 

the truncated Maclaurin series. 

In order to improve the accuracy of ADM, we propose a so-called aftertreatment technique (AT) 
to modify Adomian’s series solution for general ordinary differential equations with initial con- 

ditions by using the Pade approximant. Generally, ADM yields the Taylor series of the true 

solution. By using the AT, we get the true solution in some cases. Usually the AT can be used 
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to get an analytic approximate solution which will greatly improve the convergence rate and 

accuracy of Adomian’s series. For the oscillatory systems, we use Laplace transformation and 

Pade approximant, and explain in which cases the AT leads to the true solution and why the 

technique works. Also, seven examples with closed-form solutions are studied carefully, and the 

numerical results show that the AT enjoys the high precision and is superior to the original ADM 

and the generalized decomposition method [9]. F inally, the general remarks are given. 

2. THE PRINCIPLE OF ADM 

Consider the equation 

Wz) = g(x), (I) 

where F represents a general nonlinear ordinary differential operator involving both linear and 

nonlinear parts, and g(z) is a given function. The linear terms in Fy are decomposed into Ly+Ry, 

where L is an easily invertible operator, which is taken as the highest-order derivative generally 

for avoiding the difficult integrations when complicated Green’s functions are involved, and R is 

the remainder of the linear operator. Thus, equation (1) can be written as 

Ly+Ry+Ny=g, (2) 

where Ny represents the nonlinear terms in Fy. Solving for Ly, 

Ly=g-Ry-Ny. (3) 

Because L is invertible, operating with its inverse L-l yields 

L-ILy = L-‘g - L-IRy - L-INy. (4 

An equivalent expression is 

Y = @ + L-‘g - ,TIRy - L-‘NY, (5) 

where Q is the integration constant and satisfies La = 0. If this corresponds to an initial-value 

problem, the operator L-l may be regarded as definite integrations from 0 to 2. If L is a second- 

order operator, then L-l is a two-fold integration, and Q = y(0) + y’(O)z. Due to Adomian [l-4], 

the solution y is represented as the infinite sum of series 

Y=FYn, 
n=O 

(6) 

and the nonlinear term Ny, assumed to be an analytic function f(x), is decomposed as follows: 

NY = f(x) = 2 An, (7) 
n=O 

where the A,s are Adomian’s polynomials of ys, yi , . . . , yn and are calculated by the formula 

, n = 0, 1,2, . . . . 

x=0 

Putting (6) and (7) into (5) gives 

~~,=~+L-‘~-L-‘R~~,-L-‘~A,. 
n=O n=O n=O 

(9) 
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Each term of series (6) is given by the recurrent relation 

Yo = @ + L-19, 

yn = -L-lRy,_l - L-lA,+ n 2 1. 
(10) 

However, in practice all the terms of series (6) cannot be determined, and the solution will be 

approximated by a truncated series C,“==, gn. 

By using ADM described above, we obtain series solutions for ordinary differential equations. 

The method reduces significantly the massive computation which may arise in the use of dis- 

cretization methods for the solution of nonlinear problems. Neither linearization nor perturbation 

is required. Although the series solutions converge rapidly only in a small region, in the wide 

region, they may have very slow convergence rates, and then their truncations yield inaccurate 

results. Some examples discussed in [8,9] can be used to support this observation. Here we take 

the example of Duffing’s equation given in [5]. 

Consider the Duffing’s equation 

$-$+3y-2y3=g(x)=cosxsin2s (Ii) 

with initial conditions 

Y(0) = 0, 

The analytic solution of this equation is 

y’(0) = 1. (12) 

y*(z) = sinx. 

The Taylor expansion of g(x) at 50 = 0 is represented as g(s) = C,“==, gnP. By the same way 

as given in [5], we use an approximation of each term in g up to order x3, which provides an 

approximation to y of order x5. In this case, 

X2 
cosx = 1- -, 

2 

sin2x 
8x3 

= 2x - -. 
3! 

Equation (11) is expressed as 

Ly=g-3y+2y! 

Let y = C,“=, yn and y3 = x:=0 A,, where the A,s are Adomian’s polynomials for this nonlin- 
earity, and identifying ya = y(0) + xy’(0) + L-‘g, we find 

Yo=x+$, 

3 
y1 = -3L-‘yo + 2pyo3 = + 

to order x3; thus, the two-term approximation to y is given by 

X3 
42(x) = x - - 

3! 

Also, the three-term approximation to y is 

x3 x5 
43(x)= 2 - - + -. 

3! 5! 
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If an approximation of terms in g to higher order is adopted, then the higher-order-term approx- 

imations to y can be obtained. The error function of the truncated series &(x) for the solution 

sinx is denoted by 
Es(x) = sinx - da(x), 

which is a strictly decreasing function for x 2 0, and Es(O) = 0, Es(O.5) = -1.5447 x lo-‘, 

E3(1) = -0.0001957, E3(1.5) = -0.003286, Es(2) = -0.02404, Es(2.5) = -0.1112, E3(3) = 

-0.3839, Es(3.5) = -1.0818, ES(~) = -2.6235, Es(4.5) = -5.6674, Es(5) = -11.1673. These 

results show that #Jo is always an approximation to the exact solution (except for x = 0). 

This approximation is best near x = 0 and gets progressively worse away from x = 0. That 

means &(x) converges in a small region but yields a wrong solution in a wider region. All the 

truncated series solutions have the same problem. 

3. THE AFTERTREATMENT TECHNIQUE 

If we expand the excitation term g in (1) into Taylor series at x0 = 0, ADM leads to the 

Maclaurin series solution, which is equal to a generalized Taylor series about function ye(z) 
rather than a point, as claimed in [5,13]. Generally, the truncations of the series solution are 

the partial sums of the Taylor expansion series of the true solution function at ILO = 0. For the 

differential equation in the form 

dy 
z = f(Y) + 9, (13) 

Y(O) = co, (14) 

where f is the nonlinear term, g is given, and CO is a constant, Abbaoui and Cherruault [14] 

observed the following. 

THEOREM. In the differential system given by (13) and (14), we suppose that f(y) is infinitely 

differentiable and that g is expandable in Taylor series in the neighborhood of x0 = 0, the series 

solution Cr=‘=, yn of (13) and (14) given by the recurrent scheme 

Yo = co, 

l/n+1 = L_lA, + L-l (a,xn) ) 
P) (0) 

a, = -, 
n! 

11 2 0, 
(15) 

is the Taylor series of its true solution at x0 = 0, where the A,s are calculated by formula (8). 

Adomian’s recurrent scheme for (13) and (14) can be expressed as 

YO = co + L-‘g, 

Y~+I = L-lA,, n 1 0. 
(16) 

The two schemes (15) and (16) in general give different series, but they are identical if g = 0. We 

will use scheme (15) to serve our purpose. 

A PadQ approximant [11,12] is the ratio of two polynomials constructed from the coefficients 
of the Taylor series expansion of a function. The [L/M] Pad6 approximant to a formal power 

series B(x) = C,“=, 63x3 is given by 

L 1 1 TE 
_ pL(x) , 

Qdx) 

where PL(x) is a polynomial of degree at most L and QM(x) is a polynomial of degree at most M. 

Without loss of generality, assume &M(O) = 1. Further, PL and Qbf have no common factors. 

This means that the formal power series B(x) equals the [L/M] approximant through L + M + 1 
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terms. In this case, by using the conclusion given in [12, Theorem 1.4.31, we know that the Pad6 
approximant [L/M] is uniquely determined. 

Suppose f(z) is the ratio of two polynomials 

f(x) = PO 
Q(X) ’ (17) 

wherep(x) =po+plx+eee+p~xL, q(x) = l+qlx+~~~+q~x~, P(X), and q(x) have no common 
factors, and the truncated sum CEO uixi of the Taylor expansion f(z) = CEO a& is given. Let 

FK(X) = -&z,i. (18) 
i=o 

Then, clearly 

f(x) = gziXi = &iXi + ~=~+laixi 

= F&x) + -g c&xi 
i=K+l 

= F‘y(x)+o(8+1). 

Recalling f(x) = p(x)/q(x), we have 

pg = FK(X) + 0 (xK+l) ; 

that is, 

FK(X) = p$$ + 0 (xK+l) . 09) 

If K + 1 2 L + A4 + 1, i.e., K 2 L + M, (19) is the definition that f(x) = p(x)/q(x) is a Pad6 
approximant of FK(z). Because g(0) = 1 # 0, the Pad6 approximant is unique for given L 
and M. So, (19) means that for a function equal to the ratio of two polynomials such as (17), the 
Pad6 approximant of its truncated Taylor series FK(x), which is uniquely determined for given L 
and M, gives the original function p(x)/q(x) = f(x) when K 1 L + M. 

Suppose ADM yields a truncated Taylor series of the true solution with enough terms, and the 
solution can be written as the ratio of two polynomials with no common factors. Then the above 
argument shows the Pad6 approximant for the truncated series provides the true solution. 

Even when the solution cannot be expressed as the ratio of two polynomials, the Pad6 approx- 
imant for the truncated series given by ADM yields a good approximation to the true solution, 
which usually improves greatly the truncated series in the convergence rate and the accuracy. 

When ADM yields a truncated Maclaurin series, which cannot be expressed as the partial 
sum of the Taylor series of the true solution, the Pad6 approximant can be used. It yields 
an approximation to the true solution, which generally has faster convergence rate and higher 
accuracy than the truncated series. 

For the oscillatory systems of form 

2 

$$+w2y=f Y,$ I 
( > 

(20) 

where w is a constant, and f is a linear or nonlinear function, their solutions usually can be 
written as or can be approximated by the algebraic combination of sinx, cosx, e”, polynomials, 



Adomian’s Decomposition Method 789 

and other functions. Let T(s) = ,C[f(z)] stand for the Laplace transformation of function f(z). As 
shown in [15], Laplace transformation of algebraic combinations of sin 2, cos z, e”, and polynomial 

functions, such as zn, zneaz, sin(crus), COS(CXZ), ea+ sin(@), and eas cos@), can be written as 
the ratio of two polynomials with respect to s, where (II and P are constants. Therefore, for 
many oscillatory systems such as Duffing’s equation, we first apply Laplace transformation to 
the truncated series obtained by ADM, then convert the transformed series into a meromorphic 
function by forming its Pad6 approximant, and finally adopt inverse Laplace transformation to 
get an analytic solution, which may be the true solution or a better approximate solution than 
Adomian’s truncated series solution, owing to the advantages of the Pad6 approximant described 
above. The obtained analytic solution may be periodic; however, Adomian’s truncated series does 
not exhibit periodicity. That is why the modification of ADM given in [lo] works. Surely, for 
some oscillatory systems, Adomian’s truncated series is not the partial sum of the Taylor series of 
the true solution at 2s = 0, and it is very difficult to calculate the inverse Laplace transformation 
of the meromorphic function. In this case, generally part of Adomian’s truncated series is the 
partial sum of the Taylor series of the true solution (see Examples 4 and 7 of Section 4), and 
the lower-order Pad6 approximant is used to get the true solution or an approximate analytic 
solution which improves the accuracy of ADM. 

4. EXAMPLES 

In order to demonstrate the feasibility and the efficiency of the AT, seven examples with closed- 
form solutions are studied carefully. All the results are calculated by using the symbolic calculus 
software Mathematics. 

EXAMPLE 1. Consider the equation 

with the initial condition 

dY 
&j =Y2 

y(0) = 1. 

(21) 

The analytic solution of this equation is 

Y*(x) = j&T Ola:<l. 

We solve this equation by ADM. Writing y = C,“=, yn and y2 = CFct”=, A,{y2}, we express the 
recurrent scheme of ADM as 

Yo = 1, 

J 

I 

Yn+1 = -4, dx, n 2 0. (22) 

0 

The A,s are calculated by formula (8), so the partial sum & = C”,=, ym can be determined 
by (22). Simple calculations lead to 

l#Jn=1+x+s2+...+xn, n > 0, 

which is the partial sum of the Taylor series of the solution y*(x) at xc = 0. We use the Pad6 
approximant to handle 4,. By using Mathematics, we see that the [L/M] Pad6 approximant of 
the series r& with 

n is even, 

-, nisodd, 

n is even, 

n is odd, 

leads to the true solution y*(z) when n 2 2. 
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EXAMPLE 2. Consider the equation 
2 

g+,=o 

with initial conditions 

Y(0) = 0, y’(0) = 1. 

The analytic solution of this equation is 

y*(2) = sins. 

Let y = C,“==, yn. Then the recurrent scheme of ADM can be expressed as 

Yo =x, 

Yn+1 = -L--lYn, 72 2 0, 

(23) 

(24) 

where L-’ stands for the two-fold definite integration from 0 to x. From (24), we get the partial 

sum & = CLsOym, i.e., 

x3 x5 x2n+l 

AZ = 2 - z + 5 - . . * + (-v-’ (2n + 1)! 7 n 1 0, 

which is the partial sum of the Taylor series of the solution y*(x) at xc = 0. Because (23) is an 

oscillatory system, here we apply Laplace transformation to &, which yields 

L[&] = f - f + $ -. . . + (-l)n 1, s2n+2 n 2 0. 

For the sake of simplicity, let s = l/t; then 

C[&] = t2 - t4 + t6 -. . . + (-l)Vn+2, n 2 0. 

Its [(n + l)/(n + l)] Pad6 approximant with n 2 1 yields 

n+l l-1 t2 

n+l =m+ 

Recalling t = l/s, we obtain [(n + l)/(n + l)] in terms of s 

n+l L-1 1 

n+l =m+ 

By using the inverse Laplace transformation to [(n + l)/(n + l)], we obtain the true solution 

y*(x). 

EXAMPLE 3. Consider the equation 
dY WY 
z=e (25) 

with the initial condition 

y(0) = 0. 

The analytic solution of this equation is 

y*(x) = ln(1 + x), x > -1. 

Let Y = C,“=, y, and e-9 = Crzp=, An{e-Y}. Then the recurrent scheme of ADM is 

n > 0. 
(26) 



Adomian’s Decomposition Method 791 

The A,s are calculated by formula (8), SO the partial sum q& = Cz=, ?~m can be determined 

by (26) as 
40 = 0, 

gjn = x - $ + ; - . . . + (_1)“-‘c”, 
n 

n 2 1, 
(27) 

which is the partial sum of the Taylor series of the solution y*(x) at xc = 0. By using Mathe- 

matica, we find the [5/5] PadQ approximant of the truncated series 410 

5 [I S = 

x + 2x2 + 47/36x3 + 11/36x4 + 137/7560x5 

1 + 5/2x + 20/9x2 + 5/6x3 + 5/42x4 + 1/252x5’ 

Let 

El(x) = ln(1 +x) - &0(x), &(x) = ln(l +x) - i (x), 
[I 

x > -1, 

which stands for the error functions determined by ADM and the AT, respectively. The error 

curves obtained by ADM and the AT are shown in Figures 1 and 2, respectively. Also, Es(200) = 

error cute obtained by ADM 

60. 

50. 

40. 
b 

5 30’ 

20. 

10. 

O./- 

-1 -0.5 0 0.5 1 1.5 ; 

I. 

X 

Figure 1. The error function El(z) with El(-0.99) = -1.77399 and El(2) = 65.924. 

error curve obtained by the AT 

-0.2 

-0.4 

0 20 40 60 80 1 0' 

X 

0 

. 

Figure 2. The error function E2(2) with .I+(-0.99) = -0.546023 and Ez(100) = 
0.551705. 
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1.01016, &(500) = 1.76545, I&(1000) = 2.40094, Ez(10000) = 4.64976. Prom these results, we 
can see that the AT improves greatly Adomian’s truncated series in the convergence rate and the 
accuracy. 

DISCUSSION. We hope to make use of the special structures of the Adomian’s series. Prom (27), 

we have 

&(z) = 1 - z +x2 - *. . + (-l)n-rxn-r, n > 1. (28) 

Then by using Mathematics, we see that the [L/M] Pade approximant of the series @h(z) with 

n is odd, 

--1, niseven, 

-, nisodd, 

n is even, 

andn23is 
L 

[ 1 1 

ii? =l+. 

By solving a simple equation 

dy 1 _- 
z-l+& 

Y(0) = 0, 

we obtain the true solution y*(x) of the original equation. 

EXAMPLE 4. Consider the Duffing’s equation (11) with initial conditions (12). The analytic 
solution of this equation is 

y*(x) = sinz. 

Since the complicated excitation term g(x) can cause difficult integrations and proliferation of 
terms, we can express g(s) in Taylor series at xc = 0, which is truncated for simplification. 
Supposing we replace g(x) by 

~(x)=22-;x3+~x5- 
547 7 

2520x ’ 
(2% 

then equation (11) becomes 

2 + 3y - 2y3 = 3(x) 

with initial conditions (12). Let L = &. Then equation (30) becomes 

(30) 

Ly = j + 2y3 - 3y. 

Let y = CrYt”=, yn and y3 = C,“==, A,{y3}. Then the recurrent scheme of ADM is written as 

yo = 2 + L-Q, 

yn+l = 2L-lA, - 3L-ly,, n > 0, 
(31) 

where L-’ stands for the two-fold definite integration from 0 to 2. The A,s are calculated by 
formula (8), so the partial sum & = Ck=, ym is determined by (31). The calculation of & 
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(n > 1) becomes complex rapidly. By using Mathematics software, 4s is calculated. Because of 
the truncation of the excitation term g(x), we get a truncated series &(z) to order x9 

x3 x5 27 x9 
&(2) = 2 - - + - - - + -, 

3! 5! 7! 9! 

which coincides with the first five terms in @s(x), and is a partial sum of the Taylor series of the 
solution y*(x) at xc = 0. Because (11) and (12) form an oscillatory system, we apply Laplace 
transformation to $5(x), which yields 

c [&(x)1 = $ - $ + f - f + f. 

For simplicity, let s = l/t; then 

L [&(x)1 = t2 - t4 + t6 - t8 + 90. (32) 

All of the [L/M] Pad6 approximant of (32) with L 2 2, M 2 2, and L + M 5 10 yields 

L 

[ 1 t2 

7i? =If. 

Recalling t = l/s, we obtain [L/M] in terms of s 

L 

[ I 

1 
z =m+ 

By using the inverse Laplace transformation to [L/M], we obtain the true solution y*(x). 

EXAMPLE 5. Consider the equation 

sty-ys=o (33) 

with the initial condition 
y(0) = 2. 

The analytic solution of this equation is 

Y*(x) = &, x < ln2. 

Let y = C,“=, yn and y2 = C,“=, A,{y2}. Then the recurrent scheme of ADM is written as 

YO =2, 

Yn+1 = J ZkL -~n]k n 1 0. 
(34) 

0 

The A,s are calculated by formula (8), so the partial sum & = c”,=,ym can be determined 
by (34) as 

$0 = 2, 

41 = 2 + 2x, 

42 =2+2x+3x2, 

(ps=2+2x+3z2+;z3, 

13 25 
&=2+2~+3x~+~x~+~x~, 
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error curve obtained by ADM 

200 

150 

8 
5 100 

50 

- 

.i 
-0.75 -0.5-0.25 0 0.25 0.5 

X 

Figure 3. The error function El(z) with El(0.668) = 17.6373 and El(-0.9) = 
196.299. 

error curve obtained by the AT 

0.05 

-100 -80 -60 -40 -20 c 

X 

Figure 4. The error function Ez(z) with Ez(0.69) = -5.68434 x 

(-100) = 0.294194. 
lo-‘* and E2 

As can be seen, the &(x)s determined by ADM are the partial sums of the Taylor series of 
solution y*(z) at 50 = 0. By using Mathematics, we get &l(z) from (34) and its [lo/lo] P 
approximant. Let 

El(X) =-A - 421(2), 
2 

J32b) = - - 2 - ex [ 1 ; (XL 2 < ln2, 

which stands for the error functions determined by ADM and the AT, respectively. The e 
curves obtained by ADM and the AT are shown in Figures 3 and 4, respectively. Also, E2( -20C 
0.732312, E2(-500) = 0.933523, E2(-1000) = 0.97277, E2(-10000) = 0.997751. From tl 
results, we can see that the AT leads to accurate results in a wide region and that it gre 
improves Adomian’s series in the convergence rate. 

EXAMPLE 6. Consider the equation 
dY -y 
z=e 

with the initial condition 
y(0) = 1. 
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The analytic solution of this equation is 

y*(x) = 1 - ln(1 - ex), 
1 

x < -. 
e 

Let y = Crzp=, yn and eY = x:=0 A,{eY}. Then the recurrent scheme of ADM is 

Yo = 1, 

I 
I 

An dx, 
(36) 

Yn+1 = n 1 0. 
0 

The A,s are calculated by formula (8), so the partial sum C& = ck=, ym can be determined 

by (36) as 

$o=l, 

&=l+ex+$$+.+.+w, n>l, 
n 

(37) 

which is the partial sum of the Taylor series of the solution y*(x) at xc = 0. By using Mathe- 
matica, we find the [5/5] Pade approximant of the truncated series 410 

5 [I -7560 + 11340ex - 1680(ex)2 - 3570(ex)3 + 1410(ex)4 - 107(ex)5 

s = 30 x [-252 + 630ex - 560(ex)2 + 210(ex)3 - 30(ex)4 + (ex)5] ’ 

Let 

EI(x) = 1 - ln(1 - ex) - &O(X), Ez(x) = 1 - 141 - ex) - i (X)7 
[1 

1 
x < -, 

e 

which stands for the error functions determined by ADM and the AT, respectively. The error 
curves obtained by ADM and the AT are shown in Figures 5 and 6, respectively. Also, Es( -200) = 
-1.84004, Es(-500) = -2.6922, Es(-1000) = -3.36337, E2(-10000) = -5.64592. From these 
results, we see that the AT improves greatly Adomian’s truncated series in the convergence rate 
and that it yields accurate results in wide range. 

error curve obtained by ADM 

5 

>.. I 

-0.6 -0.4 -0.2 

X 

0.2 

Figure 5. The error function El(r) with El(0.36) = 1.11878 and EI(-0.65) = 
-18.2359. 
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error curve obtained by the AT 

-0.4 

P) 

-0.6 

-0.8 

-1 

Figure 6. The error function Ez(z) with I&(0.36) = 0.20534 and Ez(-100) = 
-1.2482. 

DISCUSSION. We could make use of the special structures of the Adornian’s series & in the 
following way. From (37), we have 

C&(X) = e [l + ex + (ex)2 + * . * + (ex)+l] , n 2 1. 

Then, by using Mathematics, we see that the [L/M] Pad6 approximant of the series 4;(x) with 

-, nisodd, 

n is even, 

-, nisodd, 

n is even, 

and n 2 3 is 
L 

[ 1 e 

z =1- 

By solving a simple equation 

dy e 
-&j=-------’ 1 - ex 

Y(0) = 1, 

we obtain the true solution y*(x) of the original equation. 

EXAMPLE 7. Consider the equation 

with initial conditions 

Y(0) = 0, y’(0) = 1. 

The analytic solution of this equation is 

(38) 

y*(x) = em5sinx. 
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Let Y = Czo !A. Then the recurrent scheme of ADM can be expressed as 

Yo = 2, 

Yn+1 = -L-l (2y, + 2y3, n. 2 0, 
(39) 

where L-l stands for the two-fold definite integration from 0 to x. From (39), we have the partial 

sum & = CzEo yn. BY using Mathematics, 41s is calculated. Notice that 41s is not the partial 
sum of the Taylor series of the solution y*(x) at zs = 0. We analyze this series and see that a 

truncated series &e(z) to order x1’, which is the first fifteen terms in 419, is a partial sum of the 
Taylor series of the solution y*(x) at zs = 0. &g(z) is expressed a~ 

x3 4x5 8x6 8x7 16x9 32x1’ 
~ig(x)=x-x2+---+---+- -- 

3 5! 6! 
64x’73l 

lo! 
32~‘~ --- 

+ ll! 14! 

128~‘~ + 256~‘~ 
13! +--- --- 

15! 17! 
512~‘~ + 512~~~ 

18! -X--’ 

Because equation (38) is an oscillatory system, here we apply Laplace transformation to &g(z) 

and obtain 

256 512 512 
,19+** 

For simplicity, let s = l/t; then 

L: [&,(x)] = t2 - 2t3 + 2t4 - 2t6 + 8t7 - 8t8 + 16t1’ - 32t” 

+ 32t12 - 64t14 + 128t15 - 128t”j + 256t18 - 512t1’ + 512t2’. 

All the [L/M] Pade approximant of the &g(x) with L 2 2, M 1 2, and L + M < 20 yields 

L 

[ 1 t2 

xi = 1 + 2t + 2t2’ 

Substituting t = l/s, we obtain [L/M] in terms of s 

L 

i 1 1 

M= s2+2s+2’ 

By using the inverse Laplace transformation to [L/M], we obtain the true solution y*(x). 

All the numerical results given in this section indicate that the AT greatly improves Adomian’s 
truncated series in the convergence rate, and that it often yields the true analytic solution. They 
support that the AT is powerful and superior to ADM as well as the generalized decomposition 
method [9j. 

5. CONCLUSIONS 

In this paper, we have presented an aftertreatment technique for ADM. Generally, ADM yields 
the Taylor series of the exact solution. Because the Padi: approximant usually improves greatly 
the Maclaurin series in the convergence region and the convergence rate, the AT leads to a 
better analytic approximate solution from Adomian’s truncated series. For the oscillatory sys- 
tems, Laplace transformation of Adomian’s series solution has some specific properties, so we 
use Laplace transformation and Pade approximant to obtain an analytic solution and to improve 
the accuracy of ADM. Seven examples with closed-form solutions are studied carefully, and the 
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results obtained indicate that the AT is efficient. It really improves the accuracy of ADM. The 

reason for the powerful aftertreatment is that the AT takes full advantage of the Pad6 approxi- 

mant. Also, symbolic calculus software Mathematics makes programming the schemes of ADM 

and the AT very simple and fast. All the figures are drawn by the same software. The AT is 

applicable to the system of initial-value ordinary differential equations. 

In order to obtain more accurate solutions, we suggest first analyzing Adomian’s truncated 

series carefully, then applying some reasonable operations such as Laplace transformation or 

derivative to the truncated series with some specific structures and making the Pad6 approximant 

more efficient, as shown in Examples 2,3, and 6 of Section 4. Also, for general ordinary differential 

equations with initial conditions, we suggest calculating Adomian’s series solution as well as the 

AT solution and comparing them to obtain a more accurate analytic solution. The further study 

of the AT for solving some well-known nonlinear differential equations such as Duffing’s equation 

and for discovering some new phenomena such as chaos as well as bifurcations could be an 

interesting and promising subject. 
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