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Abstract

The analogy between combinatorial optimization and statistical mechanics has proven to be a fruitful object of
study. Simulated annealing, a metaheuristic for combinatorial optimization problems, is based on this analogy. In
this paper we show how a statistical mechanics formalism can be utilized to analyze the asymptotic behavior of
combinatorial optimization problems with sum objective function and provide an alternative proof for the following
result: Under a certain combinatorial condition and some natural probabilistic assumptions on the coefficients of
the problem, the ratio between the optimal solution and an arbitrary feasible solution tends to one almost surely, as
the size of the problem tends to infinity, so that the problem of optimization becomes trivial in some sense.Whereas
this result can also be proven by purely probabilistic techniques, the above approach allows one to understand why
the assumed combinatorial condition is essential for such a type of asymptotic behavior.
© 2005 Elsevier B.V. All rights reserved.

MSC:90C27; 82B30; 60F05

Keywords:Combinatorial problem; Asymptotic behavior; Probabilistic analysis; Statistical mechanics

� This research has been partially supported by the Spezialforschungsbereich F 003 “Optimierung und Kontrolle”/
Projektbereich Diskrete Optimierung.∗ Corresponding author. Tel.: +433168735357; fax: +433168735369.

E-mail addresses:albrecher@opt.math.tu-graz.ac.at(H. Albrecher), burkard@opt.math.tu-graz.ac.at(R.E. Burkard),
cela@opt.math.tu-graz.ac.at(E. Çela).

0377-0427/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2005.03.068

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82286988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
mailto:albrecher@opt.math.tu-graz.ac.at
mailto:burkard@opt.math.tu-graz.ac.at
mailto:cela@opt.math.tu-graz.ac.at


H. Albrecher et al. / Journal of Computational and Applied Mathematics 186 (2006) 148–162 149

1. Introduction

Large combinatorial optimization problems are often hard to solve. This is in particular the case for
NP-hard problems implying that most probably the considered problem is not solvable by any polynomial
time algorithm. In these situations an asymptotic analysis of the problem is needed, where in general the
coefficients of the problem are assumed to be random variables and the behavior of the optimal solution
is investigated as the problem size tends to infinity.
For a number of combinatorial optimization problems, asymptotic results are available in the literature,

e.g., for the linear assignment problem (LAP), the quadratic assignment problem (QAP) and the traveling
salesman problem (TSP). In the LAP of sizen, ann × n matrixC = (cij ) is given and one looks for a
permutation� of 1,2, . . . , n that minimizes

∑n
i=1 ci�(i). If the coefficientscij are independent random

variables uniformly distributed on[0,1], Aldous[3] proved that the optimal value of the LAP is given
by �2/6 − o(1), confirming a conjecture of Mézard and Parisi[15] (for earlier work on that problem,
see[10,11,13,16]). Thus, for largen, the optimal value becomes independent of the size of the problem
and, heuristically, the larger number of summands is exactly compensated by the larger set of available
permutations.
A completely different asymptotic behavior is exhibited by the QAP: In the Koopmans–Beckmann

QAP of sizen, twon× nmatricesA= (aij ) andB = (bij ) are given and one looks for a permutation�
of 1,2, . . . , n that minimizesg(�)=∑n

i,j=1 a�(i)�(j)bij . If the coefficientsaij andbij are independent

randomvariables uniformly distributedon[0,1], then theoptimal value is givenbyg(�∗)=�(n2)and thus
depends on the sizenof the problem. However, under certain probabilistic constraints on the coefficients,
the value of the objective function for any feasible solution gets arbitrarily close to the optimal value as
n → ∞, and in that way the problem of optimization becomes in some sense trivial (although the QAP
is NP-hard!). Specifically, Burkard and Fincke[5,6] showed that for the Koopmans–Beckmann QAP and
the bottleneck QAP, the ratio of the worst and the optimal feasible solution tends to 1 in probability (for
the QAP this was strengthened to almost sure convergence by Frenk et al.[12] under similar probabilistic
constraints, see also[17,18]). In [7], Burkard and Fincke extended the above convergence in probability
result to a whole class of combinatorial optimization problems (including graph-theoretic problems)
characterized by a specific combinatorial condition, which was generalized to almost sure convergence
by Szpankowski[20]. Sharp convergence rates of the relative difference between best and worst solutions
of bottleneck problems in the above class have recently been obtained by Albrecher[2].
The above results are derived by purely probabilistic techniques and the characterizing combinatorial

condition appears as a technical requirement. However, the condition itself is structural and since it
describes a class of optimization problems for which any feasible solution is in some sense asymptotically
optimal, this is of considerable relevance in applications and it would be nice to gain additional insight
into the geometry of this condition. This can be achieved to some extent by reconsidering the problem
using a statistical mechanics formalism, which is done in this paper.
For the special case of the QAP, an attempt in that direction can be found in Bonomi and Lutton[4].

There, however, an invalid convexity argument was applied to exchange the limit and the derivative for a
sequence of functions over[0,+∞) (see[4], equalities (13) and (14)1), the exchange step being crucial
for the whole proof.

1 It is not difficult to give examples of sequences of real functions which are convex on[0,+∞), where the derivative and
the limit cannot be exchanged in a neighborhood of 0.
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In this paper we correct their proof and showmore generally that the statistical mechanics approach can
be applied to analyze the asymptotic behavior of a whole class of combinatorial optimization problems
including the QAP.
The paper is organized as follows. In Section 2 the analogy between combinatorial optimization and

statistical mechanics is described in some detail and the statistical mechanics formalism is introduced.
In Section 3 we introduce the class of combinatorial optimization problems we are dealing with and
formulate the main asymptotic result, which is proved in Section 4. The proof involves six lemmata and
parts of it are quite technical. Finally, in Section 5 we discuss the importance of the conditions imposed
on the problems we deal with, and formulate some open questions.

2. Thermodynamics and combinatorial optimization

In combinatorial optimization one is interested in choosing a solution that minimizes (maximizes,
respectively) the value of a certain objective function among a finite number of feasible solutions. More
formally, a generic combinatorial optimization problemPmay be defined as follows. Let aground set E
and acost functionf :E → R+ be given. Afeasible solution Sis a subset of the ground setE and the set
of feasible solutions is denoted byS. By means of the cost functionf we associate costs to the feasible
solutions. One possibility is to define an objective functionF :S → R+ through

F(S)=
∑
e∈S
f (e) (1)

for all S ∈ S (which is called asumobjective function). The optimization problem can then be formulated
as the task of finding

min
S∈SF(S). (2)

Let us now turn to thermodynamics. A thermodynamical system may exhibit different states which are
characterized by different values of energy. In thermodynamics, one is often interested in low-energy-
states of the considered system, just as one is interested in feasible solutions with a small value of
the objective function in a minimization problem. More precisely, an analogy between combinatorial
optimization and thermodynamics can be built along the following two lines:

• Feasible solutions of a combinatorial optimization problemare analogous to states of a physical system.
• The objective function value corresponding to a feasible solution is analogous to the energy of the
corresponding state.

According to statistical mechanics, the thermal equilibrium of a thermodynamical system is characterized
by the so-calledBoltzmann distribution, where the probability that the system is in statei with energyEi
at temperatureT is given by

1

Q(T )
exp

(−Ei
kBT

)
, (3)
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with kB beingaphysical constant knownasBoltzmannconstant, andQ(T )denoting the so-calledpartition
functiondefined by

Q(T ) :=
∑
j

exp

(−Ej
kBT

)
, (4)

where the summation extends over all possible states of the system.
The statistical mechanics formalism can now be used to investigate combinatorial optimization prob-

lems (for simulation issues, cf.[8,9]). The first authors who argued on the use of this formalism to analyze
the asymptotic behavior of the quadratic assignment problem were Bonomi and Lutton[4]. We will re-
pair and generalize their approach to a generic combinatorial optimization problem as introduced in the
beginning of this section.
The probabilistic model looks as follows. A probability Pr(S) is assigned to each feasible solution

S ∈ S of the problem by

Pr(S)= exp(−F(S) · �)

Q(�)
, (5)

where� is a parameter which mimics the reciprocal of the temperature, andQ(�) is the partition function
defined analogously as in the Boltzmann distribution by

Q(�) :=
∑
S∈S

exp(−F(S) · �). (6)

Denote by〈F(S)〉(�) the expected value of the objective functionF(S) in the above probabilistic model,
for fixed�. Then〈F(S)〉(�) is given by

〈F(S)〉(�)= 1

Q(�)

∑
S∈S

F(S)exp(−F(S) · �). (7)

It can easily be seen that the right-hand side of the above equality is equal to the derivative of− lnQ(�)
with respect to�:

〈F(S)〉(�)= −(lnQ(�))′. (8)

Furthermore, the variance�F(S)(�) of the objective functionF(S) (in the probabilistic model introduced
above) can be expressed as

�F(S)(�)= 〈[F(S)− 〈F(S)〉(�)]2〉 = (lnQ(�))′′. (9)

3. The main result

In this section we formulate themain result concerning a specific asymptotic behavior of combinatorial
optimization problems, and introduce the probabilistic and combinatorial conditions to be imposed on
the combinatorial problem so as to guarantee that specific behavior.
Consider a sequencePn, n ∈ N, of instances of a generic combinatorial optimization problem, where

Pn is the instance of sizen. The ground set, the set of feasible solutions, the cost function, and the sum
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objective function of problemPn are denoted byEn,Sn, fn, andFn, respectively. Denote byF ∗
n , S

∗
n , the

optimal value and an optimal solution of problemPn, respectively:

F ∗
n = min

S∈Sn

Fn(S)= Fn(S∗
n).

Assume that the combinatorial optimization problem has the following properties:

(P1) For eachn ∈ N, all feasible solutionsS ∈ Sn have the same cardinalitysn.
(P2) For some fixedn ∈ N, let �n(e) be the number of feasible solutionsS ∈ Sn such thate ∈ S. We

suppose that there exists a constant�n such that�n(e)= �n for all e ∈ En.
(P3) The costsfn(e), n ∈ N, e ∈ En, are random variables identically and independently distributed on

[0,M], whereM>0, with expected valueE := E (fn(e)) and varianceD := Var(fn(e)).
(P4) The cardinality of the set of feasible solutions|Sn| and the size of a feasible solutionsn tend to

infinity asn tends to infinity. Furthermore

lim
n→∞

ln |Sn|
sn

= 0. (10)

(P5) The size of the feasible solutionssn grows monotonically inn, i.e.sn+1�sn for all n ∈ N, and

lim
n→∞

sn

ln n
= ∞. (11)

We are interested in the asymptotic behavior ofF ∗
n asn tends to infinity and we will show that under

(P1)–(P5), the ratio of the optimal solution and an arbitrary solution tends to 1 almost surely (a.s.). For the
ease of exposition, let us restate this behavior as follows: the ratioF ∗

n /|S∗
n | tends toE as the sizen of the

problem tends to infinity, a.s. with respect to the probability measure Pr defined as the product measure
on the probability space(�,A,Pr), where� is the cartesian product of the individual probability spaces
on which the random variablesfn(e) are defined, andA is the corresponding product�-algebra (note that
due to the strong law of large numbers this formulation is equivalent to the former one). Summarizing,
the main result is given by the following theorem:

Theorem 3.1. Let a combinatorial optimization problem be given by(2)and let the properties(P1)–(P5)
be fulfilled. Then

Pr

(
lim
n→∞

F ∗
n

sn
= E

)
= 1. (12)

4. Proof of the main result

The proof of Theorem 3.1 is based on the following lemmata:

Lemma 4.1. Under the conditions of Theorem3.1,we have

Pr

(
lim
n→∞

〈Fn(S)〉(0)
sn

= E
)

= 1. (13)
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Proof. By applying equality (7) for� = 0 we get

〈Fn(S)〉(0)=
∑
S∈Sn

Fn(S) · 1

|Sn| .

Considering property (P2), the last equality can be transformed as follows:

〈Fn(S)〉(0)= 1

|Sn| ·
∑
S∈Sn

∑
e∈S
fn(e)= 1

|Sn| ·
∑
e∈En

�n · fn(e)= �n
|Sn|

∑
e∈En

fn(e).

From (P2) we have

|Sn| · sn = |En| · �n (14)

and by substitution we obtain:

〈Fn(S)〉(0)
sn

=
∑
e∈Enfn(e)
|En| . (15)

Due to the Chernoff–Hoëffding bound we have

Pr



∣∣∣∣∣∣

1

|En|
∑
e∈En

fn(e)− E
∣∣∣∣∣∣> �


 �2 exp

(
−2�2|En|

M2

)
,

and thus, by the Borel–Cantelli lemma, (13) follows, if the sum

∞∑
n=1

exp

(
−2�2|En|

M2

)

converges for all�>0. But this is indeed the case, since from (11), (14) and�n� |Sn| we have that
limn→∞|En|/ ln n= ∞. �

Lemma 4.2. Under the conditions of Theorem3.1for each	 ∈ � there exists a convergent subsequence
(F ∗
nm
(	))/snm of the sequence(F ∗

n (	))/sn with limit l(	).

Proof. Since |(F ∗
n (	))/sn|�(Msn)/sn = M, the sequence(F ∗

n (	))/sn is bounded. Therefore, it has
at least one cluster point, which we denote byl(	), and a subsequence(F ∗

nm
(	))/snm converging to it,

so that

l(	) := lim
m→∞

F ∗
nm
(	)

snm
. � (16)

If S∗
n is an optimal solution of problemPn, the following inequalities hold for the partition function

Qn(�) for each	 ∈ �:

exp(−Fn(S∗
n) · �)�Qn(�)� |Sn| · exp(−Fn(S∗

n) · �) (17)

−F ∗
n · �� lnQn(�)� ln |Sn| − F ∗

n · �. (18)
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Let us now introduce the continuous and differentiable functionsGn(�) = (lnQn(�))/sn, defined on
[0,∞), for all n ∈ N (note thatGn(�) is a function of	 also, however in the sequel we do not explicitly
indicate this dependence for the ease of notation). Dividing both sides of (18) bysn we get

−� · F
∗
n

sn
�Gn(�)�

ln |Sn|
sn

− � · F
∗
n

sn
. (19)

Lemma 4.3. Under the conditions of Theorem3.1,for each	 ∈ � andl(	) defined in(16), there exists
a subsequenceGnk(�) of the sequence of functionsGn(�), such thatGnk(�) and the sequence of its
derivativesG′

nk
(�) converge uniformly in[
, �] for any
, �>0,and

lim
k→∞Gnk(�)= −� · l(	), (20)

lim
k→∞G

′
nk
(�)= −l(	). (21)

Proof. We apply the following classical result: Let a sequence of differentiable functionsGnm(�) be
given, which are pointwise convergent on an interval[
, �] (here
>0, and� is an arbitrarily large, but
finite real number). Assume that the sequence of derivativesG′

nm
(�) is equicontinuous and uniformly

bounded on[
, �]. Then, there exists a subsequenceGnk of Gnm such that both sequencesGnk andG
′
nk

are uniformly convergent on[
, �] (see, e.g.,[19]).
Note that the pointwise convergence ofGnm(�) follows from Lemma 4.2, (10) and (19). Thus, in order

to prove the lemma it is sufficient to show that the sequence of functionsG′
nm

is uniformly bounded and
equicontinuous on[
, �].
First, let us show that the sequenceof derivativesG′

n is uniformly boundedon[
, �]. Note that∀S ∈ Sn,
we have

Fn(S)=
∑
e∈S
fn(e)�M · |S| =M · sn. (22)

The following inequalities show thatG′
n(�) is uniformly bounded:

|G′
n(�)|�

∑
S∈Sn

|Fn(S)|exp(−� · Fn(S))
sn ·Qn(�) �

sn ·M ·∑S∈Sn
exp(−� · Fn(S))

sn ·Qn(�) =M.

Secondly, we show that the sequence of functionsG′
n is equicontinuous on[
, �], i.e.,∀�>0 ∃�>0, such

that∀�1, �2 ∈ [
, �] and∀n ∈ N

|�1 − �2|< � ⇒ |G′
n(�1)−G′

n(�2)|��

holds. Let us evaluate the difference|G′
n(�1)−G′

n(�2)|, for 
��1��2 andn ∈ N.

|G′
n(�1)−G′

n(�2)|�
∑
S∈Sn

Fn(S)

sn
·
∣∣∣∣exp(−�1 · Fn(S))

Qn(�1)
− exp(−�2 · Fn(S))

Qn(�2)

∣∣∣∣
�M ·

∑
S∈Sn

exp(−�1 · Fn(S))
Qn(�1)

·
∣∣∣∣1− Qn(�1) · exp(−�2 · Fn(S))

Qn(�2) · exp(−�1 · Fn(S))
∣∣∣∣ . (23)
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Next, we show that there exists aT >0 such that the following inequality holds for allS0 ∈ Sn and for
all n ∈ N:∣∣∣∣1− Qn(�1) · exp(�1 · Fn(S0))

Qn(�2) · exp(�2 · Fn(S0))
∣∣∣∣ �T · (�2 − �1). (24)

The following elementary transformations prove the existence of such aT. Assume w.l.o.g. that

∣∣∣∣∣∣
∑

S:Fn(S)>Fn(S0)

exp(�2(Fn(S0)− Fn(S)))−
∑

S:Fn(S)>Fn(S0)

exp(�1(Fn(S0)− Fn(S)))
∣∣∣∣∣∣

�

∣∣∣∣∣∣
∑

S:Fn(S)<Fn(S0)

exp(�2(Fn(S0)− Fn(S)))−
∑

S:Fn(S)<Fn(S0)

exp(�1(Fn(S0)− Fn(S)))
∣∣∣∣∣∣ . (25)

(The other case can be handled analogously.) Then we have

∣∣∣∣1− Qn(�1) · exp(�1 · Fn(S0))
Qn(�2) · exp(�2 · Fn(S0))

∣∣∣∣=
∣∣∣∣∣1− 1+∑

S∈Sn:S �=S0 exp(�1 · (Fn(S0)− Fn(S)))
1+∑

S∈Sn:S �=S0 exp(�2 · (Fn(S0)− Fn(S)))

∣∣∣∣∣
�

|∑S:Fn(S)>Fn(S0)[exp(�2 · (Fn(S0)− Fn(S)))− exp(�1 · (Fn(S0)− Fn(S)))]|∑
S:Fn(S)>Fn(S0) exp(�2 · (Fn(S0)− Fn(S))) ,

since the sign of exp(�2(Fn(S0) − Fn(S))) − exp(�1(Fn(S0) − Fn(S))) depends on the sign of
Fn(S)− Fn(S0) and together with (25) the above inequality holds. It follows that

|∑S:Fn(S)>Fn(S0) exp(�1 · (Fn(S0)− Fn(S)))[exp((�2 − �1) · (Fn(S0)− Fn(S)))− 1]|∑
S:Fn(S)>Fn(S0) exp(�2 · (Fn(S0)− Fn(S)))

�
|∑S:Fn(S)>Fn(S0)[exp((�2 − �1) · (Fn(S0)− Fn(S)))− 1]|∑

S:Fn(S)>Fn(S0) exp(�2 · (Fn(S0)− Fn(S))) .

We now show that∣∣∣∣∣∣
∑

S:Fn(S)>Fn(S0)

[exp((�2 − �1) · (Fn(S0)− Fn(S)))− 1]
∣∣∣∣∣∣

�
1



· (�2 − �1) ·

∑
S:Fn(S)>Fn(S0)

exp[�2 · (Fn(S0)− Fn(S))]. (26)
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Indeed, inequality (26) is a consequence of the following inequalities, which hold for allS ∈ Sn such
thatFn(S)�Fn(S0):

|exp((�2 − �1) · (Fn(S0)− Fn(S)))− 1|�(�2 − �1) ·
∞∑
i=1

(�2 − �1)
i−1 · (Fn(S)− Fn(S0))i

i!

�(�2 − �1) ·
1



·

∞∑
i=1

(�2)
i · (Fn(S)− Fn(S0))i

i!
�(�2 − �1) ·

1



· exp[�2 · (Fn(S)− Fn(S0))],

and we obtain (24) withT := 1/
. Returning to (23),

|G′
n(�1)−G′

n(�2)|�M · 1



· (�2 − �1) ·
∑
S∈Sn

exp(−�1 · Fn(S))
Qn(�1)

=M · 1



· (�2 − �1),

from which the equicontinuity ofG′
n on [
, �] obviously follows.

Due to (10), (16) and (19) we have limk→∞Gnk(�)=−� l(	). Then, uniform convergence of the above
sequence together with the sequence of its derivatives implies

lim
k→∞G

′
nk
(�)=

(
lim
k→∞Gnk(�)

)′
= −l(	). �

Lemma 4.4. For almost all	 ∈ � we havel(	)�E.

Proof. Since for each	 ∈ � andn ∈ N we haveFn(S∗)�〈Fn(S)〉(0), the assertion follows from
Lemma 4.1. �

For each	 ∈ � and each cluster pointl(	) as defined in Lemma 4.2, there are now two possibilities:
(i) either l(	) = E andE is the (unique) limit of(F ∗

n (	))/sn or (ii) there exists a cluster pointl(	) of
(F ∗
n (	))/sn such thatl(	)<E. If (i) is true for almost all	 ∈ �, the main result follows immediately.

We show that the second case almost surely cannot happen:
Assume thatl(	)<E throughout the rest of this section. Clearly, in this case the convergence of

Gnk(�)andG
′
nk
(�) is not uniformover thewhole interval[0, �] (cf. Lemma4.1).According to Lemma4.3,

however, limk→∞G′
nk
(�)=−l(	) uniformly on[
, �] for each
>0, and limk→∞G′

nk
(0)=−E<−l(	),

due to Lemma 4.1. Under these conditions, for allK >0 and for allm ∈ N there must be some�0�0 and
somek0 ∈ N, k0>m, such thatG′′

nk0
(�0)�K. Indeed, given aK >0, we may chooseε= (E − l(	))/4

and
 = (E− l(	))/2K, and apply the above mentioned convergence result on[
, �] and at� =0. Fork0
large enough we haveG′

nk0
(
)>− l(	)− ε andG′

nk0
(0)<−E + ε. Thus, by the mean value theorem,


G′′
nk0
(�0)=G′

nk0
(
)−G′

nk0
(0)>E − l(	)− 2ε = E − l(	)

2
,

for some�0 ∈ [0, 
]. The last equality implies thatG′′
nk0
(�0)�K and hence the second derivativesG′′

nk
(�)

are unbounded askapproaches infinity and� approaches 0.We show that almost surely this cannot be the
case, because: (a) The third derivativeG′′′

nk
(�) is almost surely nonpositive for��0 and (b) the sequence
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of second derivativesG′′
n(0) is almost surely bounded. Combining (a) and (b) with the nonnegativity

of the second derivativeG′′
n(�) = (�Fn(S)(�))/sn (cf. (9)) for all n ∈ N and��0, yields the desired

contradiction. The facts (a) and (b) are proven in the next two lemmata.

Lemma 4.5. The third derivativeG′′′
nk
(�) is almost surely nonpositive for allk�k0, ��0, wherek0 is

some fixed natural number.

Proof. We have

G′′′
nk
(�)= 1

snk

[
�Fnk(S)(�)

]′ = 1

snk


 ∑
S∈Snk

[Fnk(S)− 〈Fnk 〉(�)]2
e−Fnk (S)�

Qnk(�)




′
,

where〈·〉(�) denotes the expectation w.r.t. the Boltzmann distribution with parameter�. It follows that

G′′′
nk
(�)= 1

snk


 ∑
S∈Snk

2(Fnk (S)− 〈Fnk 〉(�))
e−Fnk (S)�

Qnk(�)

(〈F 2
nk

〉(�)
Qnk(�)

− 〈Fnk 〉2(�)
)

+
∑
S∈Snk

[Fnk(S)− 〈Fnk 〉(�)]2
(

−Fnk(S)
e−Fnk (S)�

Qnk(�)
+ 〈Fnk 〉(�)

e−Fnk (S)�

Qnk(�)

)

= 1

snk


0−

∑
S∈Snk

(
Fnk(S)− 〈Fnk 〉(�)

)3e−Fnk (S)�

Qnk(�)


= −〈(Fnk − 〈Fnk 〉(�))3〉(�)

snk
.

Hence it is enough to show thatFnk(S) − 〈Fnk 〉(�)�0 ∀��0 for all k�k0 almost surely. Indeed, for
all S ∈ Snk , Fnk(S) = ∑

e∈S fnk (e) is the sum ofsnk independent and identically distributed random
variables withE(fnk (e))= E. The Chernoff–Hoëffding bound thus gives

Pr

(∣∣∣∣Fnk(S)snk
− E

∣∣∣∣> �

)
�2 exp

(
−2�2snk
M2

)
(27)

for all �>0, and by the Borel–Cantelli lemma we obtain

Pr

(
lim
k→∞

∣∣∣∣Fnk(S)snk
− E

∣∣∣∣= 0

)
= 1, (28)

since the growth rate (11) is in particular satisfied for any subsequence ofsn. Thus, for almost all	 ∈ �,
limk→∞(Fnk (S))/snk (	)= E.At the same time, we have from Lemma 4.3 that

lim
k→∞

〈Fnk 〉(�)
snk

(	)= − lim
k→∞G

′
nk
(�)= l(	)

for all �>0. The inequalityl(	)<E, together with Lemma 4.1 for the case� = 0, thus implies that
Fnk(S)− 〈Fnk 〉(�)�0 for all k�k0 almost surely for all��0, as desired. �

Lemma 4.6. The sequence of the second derivativesG′′
n(0) is almost surely bounded.
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Proof. SinceG′′
n(0)= (�Fn(S)(0))/sn�0, we have by Markov’s inequality

Pr(G′′
n(0)>K)�

E(G′′
n(0))

K

for every K >0, whereE denotes the expectation w.r.t. the distribution of the random variables
fn(e), e ∈ En. Now we have

E(G′′
n(0))= E


 1

sn|Sn|
∑
S∈Sn

F 2
n (S)−

1

sn|Sn|2


∑
S∈Sn

Fn(S)




2



= 1

sn|Sn|E


∑
S∈Sn

(∑
e∈S
fn(e)

)2

− 1

sn |Sn|2E


∑
S∈Sn

∑
e∈S
fn(e)




2

= 1

sn
E

(∑
e∈S
fn(e)

)2

− �2n
sn|Sn|2E


∑
e∈En

fn(e)




2

= 1

sn
(snD + s2nE2)− �2n

sn|Sn|2 (|En|D + |En|2E2)

=D
(
1− sn

|En|
)

�D,

where we have used the equality�n|En| = sn|Sn|. Thus, for anyK >0,

Pr(G′′
n(0)>K)�

D

K
.

SinceD = Var(fn(e)) is finite, it follows thatG′′
n(0) is almost surely bounded.�

Summarizing, for almost all	 ∈ �, if l(	)<E, the second derivativesG′′
nk
(�) have to be bounded

and unbounded at the same time. This implies thatl(	)<E almost surely cannot happen. Thusl(	)=E
a.s. and Theorem 3.1 holds.

Remark 1. The proof technique can also be interpreted as follows: Since(〈Fn〉(�))/sn = |G′
n(�)|�M

is bounded, for each	 ∈ � and for all ��0 there exists a convergent subsequence such that
limk→∞(〈Fnk 〉(�))/snk = l(�). In the proof it is shown that almost surelyl(�) does not depend on�
andl = E a.s., from which it follows that

lim
n→∞

〈Fn〉(�)
sn

= E almost surely for any� ∈ [0, �]. (29)

Recall that〈Fn〉(�)denotes theexpectationofFn(S)w.r.t. theBoltzmannweightwithparameter�assigned
to each admissible solutionS ∈ Sn. The right-hand side of (29) being independent of�, Theorem 3.1
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can now be deduced for� → ∞, since for anyS0 ∈ Sn we have (see, e.g.,[1])

lim
�→∞Pr(S0)= lim

�→∞
e−Fn(S0)�

Qn(�)
= lim

�→∞
e−Fn(S0)�∑
S∈Sn

e−Fn(S)�

= lim
�→∞

e−�(Fn(S0)−F ∗
n )

|S∗
n| +∑

S∈Sn\S∗
n
e−�(Fn(S)−F ∗

n )
=
{ 1

|S∗
n|

for S0 ∈ S∗
n,

0 for S0 ∈ Sn\S∗
n,

whereS∗
n ⊂ Sn is the set of optimal solutions of problemPn, and thus for alln ∈ N we have

lim�→∞〈Fn〉(�)= F ∗
n .

Remark 2. As emphasized earlier, Theorem 3.1 can be proved in a much shorter way by using the
following purely probabilistic argument: Under conditions (P1)–(P5), we have the Chernoff–Hoëffding
bound (27) so that

Pr

(
sup
S∈Sn

∣∣∣∣Fn(S)sn
− E

∣∣∣∣> �

)
�2|Sn|exp

(
−2�2sn
M2

)
(30)

from which Theorem 3.1 can be deduced using the Borel–Cantelli lemma, since the right-hand side of
(30) is summable for all�>0 provided that the growth condition (11) holds.
However, our alternative approach to prove Theorem 3.1 gives additional insight into the structure of

the problem and the way the conditions (P1)–(P5) enter (see Section 5). In particular, the origin of the
crucial growth condition (P4) receives a geometric interpretation in view of (19). Moreover the statistical
mechanics formalism is of independent interest in view of applications such as simulated annealing
(cf. [14]).

5. Discussion and open questions

Let us shortly discuss conditions (P1)–(P5). (P4) is a crucial, purely combinatorial condition, which
is used in Lemma 4.3 to show the pointwise convergence ofGnk(�) and this is the simplest kind of
convergence which has to hold in order to get through with the other lemmata.A nice feature of our proof
of the main result is that it explicitly shows the importance of condition (10). Note that (10) is essential
for deriving any of the results existing in the literature on problems which show an asymptotic behavior
similar to the one described by Theorem 3.1.
Condition (P5) is needed to guarantee the almost sure convergence of the result. If (11) is not fulfilled,

then Lemmata 4.1, 4.4 and 4.5 hold in probability only, from which it follows that the main result holds
only in probability, i.e.,

lim
n→∞ Pr

(∣∣∣∣F ∗
n

sn
− E

∣∣∣∣> �

)
= 0 ∀�>0.

Conditions (P1) and (P2) describe the combinatorial structure of the set of feasible solutions. (P1) char-
acterizes the feasible solutions from a quantitative point of view stating that all feasible solutions have the
same cardinality. (P2) describes the set of feasible solutions from a structural point of view showing how
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often an element of the ground set appears in some feasible solution. The fact that this frequency index is
constant among different elements from the ground set means that the feasible solutions are distributed
somehow uniformly in the ground set. It is an open question whether condition (P1) can be dropped or
substituted by a weaker one. Szpankowski[20] showed in his purely probabilistic proof of Theorem 3.1,
that (P2) can be dropped, if in additionF ∗

n is a nonincreasing function ofn and |Sn+1|� |Sn| for all
n ∈ N.
Conditions (P1) and (P2) are fulfilled by many combinatorial optimization problems. (P4) is a more

restrictive condition and it is essential for the correctness of the main result. As an illustrating example
consider that the QAP fulfills all these conditions whereas the linear assignment problem (LAP) fulfills
only (P1) and (P2) but not (P4). Indeed, the QAP of sizen can be formulated as a general combinatorial
optimization problem with a ground set

En = {(i, j, k, l): 1�i, j, k, l�n such thati = j if and only if k = l},
feasible solutions

S� = {(i, j,�(i),�(j)): 1�i, j�n}
for � being a permutation of 1,2, . . . , n, and the set of feasible solutions

Sn = {S�:� is a permutation of 1,2, . . . , n},
(see also[7]). Clearly|En| =O(n4), |S�| = n2 for any permutation�, |Sn| = n!, and condition (P4) is
fulfilled, since(ln(n!))/n2 = o(1). Each element(i, j, k, l) of the ground set appears in(n− 2)! feasible
solutions, namely in allS� corresponding to some permutation� for which �(i) = k, �(j) = l. Thus
�n = (n− 2)!
For the linear assignment problem of sizen the ground set̄En is given byĒn={(i, j): 1�i, j�n}, the

feasible solutions are given bȳS� = {(i,�(i)): 1�i�n}, for some permutation� of 1,2, . . . , n, and the
set of feasible solutions̄Sn is given as

S̄n = {S̄�:� is a permutation of 1,2, . . . , n}.
In this case we have|S̄n| = n!, |S̄�| = n for all permutations�, |Ēn| = n2, and each pair(i, j), belongs
to (n− 1)! feasible solutions corresponding to permutations which assigni to j. Thus�n= (n− 1)!. Note
that here condition (P4) is not fulfilled because(ln n!)/n tends to∞ asn→ ∞. It can be checked that the
result of Theorem 3.1 does not hold in the case of the LAP. Indeed, consider an LAPwith cost coefficients
uniformly and independently distributed on[0,1]. As shown by Karp[13], the expected optimal value of
this problemE(F ∗

n ) is bounded fromaboveby2.Theorem3.1would now implyPr(limn→∞F ∗
n /n= 1

2)=1,
leading to

Pr
(
∃ n0 such thatF ∗

n �
n

4
for n�n0

)
= 1,

which contradicts the boundedness ofF ∗
n . Thus Theorem 3.1 cannot hold in this case. The fact that for

any�>0, limn→∞(ln n!)/n1+� = 0 is another indication that condition (P4) is rather sharp.
Now let us turn to condition (P3). A standard assumption in the literature concerning the asymptotic

behavior of combinatorial optimization problems is that the coefficients of the problem are independent
and identically distributed randomvariables (not necessarily bounded).Also, the finiteness of varianceand
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higherordermoments is frequentlyassumed.Szpankowski[20] showed that in suchacaseunderadditional
monotonicity assumptions onF ∗

n and|Sn|, Theorem3.1 can be proved by purely probabilistic techniques.
One can ask, however, what happens in the proof of the main theorem with our set of assumptions in
case that the cost coefficientsfn(e) are not bounded, while fulfilling all other requirements in (P3). In
this case, Chernoff–Hoëffding bounds for deviations from the mean are no longer available. In addition,
the boundedness of the coefficients has been exploited in the proofs of Lemmas 4.2 and 4.3 to show that
the sequences(F ∗

n )/sn andG
′
n(�), ��0, are bounded. If the boundedness condition onfn(e) is dropped,

then the boundedness of the above sequences cannot be guaranteed.
However, given that the first twomoments offn(e)are finite, theprobability that(Fn(S))/sn is bounded,

tends to 1 for anyS ∈ Sn, asn→ ∞. Indeed, recall thatE(Fn(S))=snE, Var(Fn(S))=snD, and therefore
E((Fn(S))/sn)= E and Var((Fn(S))/sn)=D/sn. By applying Chebyshev’s inequality, one obtains

Pr

(
Fn(S)

sn
�K

)
� Pr

(∣∣∣∣Fn(S)sn
− E

∣∣∣∣ �K − E
)

�
D2

sn(K − E)2 ,

for anyK >E. Sincesn → ∞ asn approaches infinity, Lemma 4.2 holds in probability. Chebyshev’s
inequality shows that Lemma 4.1 also holds in probability and so do the remaining lemmata. This implies
that Theorem 3.1 holds in probability in the case that the coefficients of the problem are unbounded.
It remains an open question whether an a.s. convergence result for unbounded cost coefficients can be

obtained through the statistical mechanics formalism.
Another question of general interest arises in connection with simulated annealing as a statistical

mechanics approach in combinatorial optimization. Is there any class of problems which is well suited
for simulated annealing? Is this class characterized by a combinatorial property? Clearly, this is a rather
complex question and its answer is left to future research.
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