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Abstract

The analogy between combinatorial optimization and statistical mechanics has proven to be a fruitful object of
study. Simulated annealing, a metaheuristic for combinatorial optimization problems, is based on this analogy. In
this paper we show how a statistical mechanics formalism can be utilized to analyze the asymptotic behavior of
combinatorial optimization problems with sum objective function and provide an alternative proof for the following
result: Under a certain combinatorial condition and some natural probabilistic assumptions on the coefficients of
the problem, the ratio between the optimal solution and an arbitrary feasible solution tends to one almost surely, as
the size of the problem tends to infinity, so that the problem of optimization becomes trivial in some sense. Whereas
this result can also be proven by purely probabilistic techniques, the above approach allows one to understand why
the assumed combinatorial condition is essential for such a type of asymptotic behavior.
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1. Introduction

Large combinatorial optimization problems are often hard to solve. This is in particular the case for
NP-hard problems implying that most probably the considered problem is not solvable by any polynomial
time algorithm. In these situations an asymptotic analysis of the problem is needed, where in general the
coefficients of the problem are assumed to be random variables and the behavior of the optimal solution
is investigated as the problem size tends to infinity.

For a number of combinatorial optimization problems, asymptotic results are available in the literature,
e.g., for the linear assignment problem (LAP), the quadratic assignment problem (QAP) and the traveling
salesman problem (TSP). In the LAP of sizeann x n matrix C = (¢;;) is given and one looks for a
permutationy of 1, 2, ..., n that minimizes) ;_; ci¢(). If the coefficients:;; are independent random
variables uniformly distributed of0, 1], Aldous|[3] proved that the optimal value of the LAP is given
by 72/6 — o(1), confirming a conjecture of Mézard and PafiE5] (for earlier work on that problem,
see[10,11,13,16). Thus, for largen, the optimal value becomes independent of the size of the problem
and, heuristically, the larger number of summands is exactly compensated by the larger set of available
permutations.

A completely different asymptotic behavior is exhibited by the QAP: In the Koopmans—Beckmann
QAP of sizen, twon x n matricesA = (a;;) andB = (b;;) are given and one looks for a permutatipn
of 1,2,..., n that minimizesg(¢) = "7 ;1 ap)¢(j)bij- If the coefficientsy;; andb;; are independent
random variables uniformly distributed 0 1], then the optimal value is given lgy¢*)=0 (n?) and thus
depends on the sizeof the problem. However, under certain probabilistic constraints on the coefficients,
the value of the objective function for any feasible solution gets arbitrarily close to the optimal value as
n — o0, and in that way the problem of optimization becomes in some sense trivial (although the QAP
is NP-hard!). Specifically, Burkard and Fincke6] showed that for the Koopmans—Beckmann QAP and
the bottleneck QAP, the ratio of the worst and the optimal feasible solution tends to 1 in probability (for
the QAP this was strengthened to almost sure convergence by Frenk.@l ahder similar probabilistic
constraints, see al§t7,18). In [7], Burkard and Fincke extended the above convergence in probability
result to a whole class of combinatorial optimization problems (including graph-theoretic problems)
characterized by a specific combinatorial condition, which was generalized to almost sure convergence
by SzpankowsKi20]. Sharp convergence rates of the relative difference between best and worst solutions
of bottleneck problems in the above class have recently been obtained by Ald&cher

The above results are derived by purely probabilistic techniques and the characterizing combinatorial
condition appears as a technical requirement. However, the condition itself is structural and since it
describes a class of optimization problems for which any feasible solution is in some sense asymptotically
optimal, this is of considerable relevance in applications and it would be nice to gain additional insight
into the geometry of this condition. This can be achieved to some extent by reconsidering the problem
using a statistical mechanics formalism, which is done in this paper.

For the special case of the QAP, an attempt in that direction can be found in Bonomi and[@{itton
There, however, an invalid convexity argument was applied to exchange the limit and the derivative for a
sequence of functions oved, +00) (see[4], equalities (13) and (14) the exchange step being crucial
for the whole proof.

L1tis not difficult to give examples of sequences of real functions which are conveX amo), where the derivative and
the limit cannot be exchanged in a neighborhood of 0.
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In this paper we correct their proof and show more generally that the statistical mechanics approach car
be applied to analyze the asymptotic behavior of a whole class of combinatorial optimization problems
including the QAP.

The paper is organized as follows. In Section 2 the analogy between combinatorial optimization and
statistical mechanics is described in some detail and the statistical mechanics formalism is introduced.
In Section 3 we introduce the class of combinatorial optimization problems we are dealing with and
formulate the main asymptotic result, which is proved in Section 4. The proof involves six lemmata and
parts of it are quite technical. Finally, in Section 5 we discuss the importance of the conditions imposed
on the problems we deal with, and formulate some open questions.

2. Thermodynamics and combinatorial optimization

In combinatorial optimization one is interested in choosing a solution that minimizes (maximizes,
respectively) the value of a certain objective function among a finite number of feasible solutions. More
formally, a generic combinatorial optimization probléhmay be defined as follows. Letground set E
and acost functionf: E — R™ be given. Afeasible solution 8 a subset of the ground g&tand the set
of feasible solutions is denoted lyy. By means of the cost functidrwe associate costs to the feasible
solutions. One possibility is to define an objective functitn” — R through

F(S) = Z f(e) (1)

eeS

forall § € # (whichis called aumobijective function). The optimization problem can then be formulated
as the task of finding

Lrgr;igF(S). (2

Let us now turn to thermodynamics. A thermodynamical system may exhibit different states which are
characterized by different values of energy. In thermodynamics, one is often interested in low-energy-
states of the considered system, just as one is interested in feasible solutions with a small value of
the objective function in a minimization problem. More precisely, an analogy between combinatorial
optimization and thermodynamics can be built along the following two lines:

e Feasible solutions of a combinatorial optimization problem are analogous to states of a physical system.
e The objective function value corresponding to a feasible solution is analogous to the energy of the
corresponding state.

According to statistical mechanics, the thermal equilibrium of a thermodynamical system is characterized
by the so-called@oltzmann distributionwhere the probability that the system is in statgth energyE;
at temperaturd@ is given by

1 —E;
1) exp<kBT) ! ®)
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with kg being a physical constant knownBsltzmann constapandQ (7') denoting the so-callgghrtition
functiondefined by

o(T) = Zexp(%f) : 4
J

where the summation extends over all possible states of the system.

The statistical mechanics formalism can now be used to investigate combinatorial optimization prob-
lems (for simulation issues, ¢B,9]). The first authors who argued on the use of this formalism to analyze
the asymptotic behavior of the quadratic assignment problem were Bonomi and [4]tt@ve will re-
pair and generalize their approach to a generic combinatorial optimization problem as introduced in the
beginning of this section.

The probabilistic model looks as follows. A probability(By is assigned to each feasible solution
S € & of the problem by

PI(S) = exp(—F(S) - ﬂ), 5)
0]
wherep is a parameter which mimics the reciprocal of the temperatureQanilis the partition function
defined analogously as in the Boltzmann distribution by

Q) =) exp(—F(S) - . (6)
Ses

Denote by(F (S))(r) the expected value of the objective functiBis) in the above probabilistic model,
for fixed . Then(F (S))(p) is given by

1
QW

It can easily be seen that the right-hand side of the above equality is equal to the derivative@®f.)
with respect tqu:

(F()Y(w =—(nQ(w)". 8

Furthermore, the varianaer (S) (1) of the objective functior¥ (S) (in the probabilistic model introduced
above) can be expressed as

AF(S)(w) = ([F(S) = (F()) 1% = (In Q)" €)

(F($)(w) = D F(S)exp(—F(S) - p. (7

Ses

3. The main result

In this section we formulate the main result concerning a specific asymptotic behavior of combinatorial
optimization problems, and introduce the probabilistic and combinatorial conditions to be imposed on
the combinatorial problem so as to guarantee that specific behavior.

Consider a sequend®,, n € N, of instances of a generic combinatorial optimization problem, where
P, is the instance of size. The ground set, the set of feasible solutions, the cost function, and the sum
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objective function of problen®, are denoted b¥,,, &,, f,, andF,, respectively. Denote b¥", S, the
optimal value and an optimal solution of problep, respectively:

F* = min F,(S) = F,(S}).
SeSy,
Assume that the combinatorial optimization problem has the following properties:

(P1) Foreach € N, all feasible solutions € %, have the same cardinality.

(P2) For some fixed € N, lety,(e) be the number of feasible solutiose %, such that € S. We
suppose that there exists a constgnsuch that;, (e) =y, for all e € E,,.

(P3) The costg, (e),n € N, e € E,, are random variables identically and independently distributed on
[0, M1, whereM > 0, with expected valu& := [E (f,,(e)) and variance := Var( f,,(e)).

(P4) The cardinality of the set of feasible solutidiss,| and the size of a feasible solutiop tend to
infinity asn tends to infinity. Furthermore

. In|¥
lim |n|:

n— 00 Sn

0. (10)

(P5) The size of the feasible solutiofsgrows monotonically im, i.e.s,+1>s, foralln € N, and

lim " — 0. (11)

n—oo |n n

We are interested in the asymptotic behaviotgfasn tends to infinity and we will show that under
(P1)—(P5), the ratio of the optimal solution and an arbitrary solution tends to 1 almost surely (a.s.). For the
ease of exposition, let us restate this behavior as follows: the Fgfifs | tends toE as the size of the
problem tends to infinity, a.s. with respect to the probability measure Pr defined as the product measure
on the probability spac@?, .«7, Pr), whereQ is the cartesian product of the individual probability spaces

on which the random variable (¢) are defined, and’ is the corresponding produetalgebra (note that

due to the strong law of large numbers this formulation is equivalent to the former one). Summarizing,
the main result is given by the following theorem:

Theorem 3.1. Let a combinatorial optimization problem be given(Byand let the propertie@P1)—(P5)
be fulfilled. Then

Pr( lim F—’T = ) =1. (12)

n—oo §,

4. Proof of the main result
The proof of Theorem 3.1 is based on the following lemmata:

Lemma 4.1. Under the conditions of Theoregl,we have
F, 0
Pr( jim (SO _ E) _1 (13)
n

— 00 Si’l
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Proof. By applying equality (7) fo;u =0 we get

(Fa($) Q) = " Fu(S) -

SeSy

Considering property (P2), the last equality can be transformed as follows:

(Fa(85))(0) = Z > fale) = Z My fule) = f (e).
Se,), eeS eckE, | IeeE,,
From (P2) we have
| Sl - sn = |Enl - n, (14)

and by substitution we obtain:

(Fu($)©)  Yecr, fn(e)
se |Ell

Due to the Chernoff-Hoéffding bound we have

2
Pr ( > fale)—E >s) <2 exp( 28[‘/'12“),

eckE,
and thus, by the Borel-Cantelli lemma, (13) follows, if the sum

- 2:2|Ey|
> exp( - e

n=1

(15)

|Enl

converges for alk > 0. But this is indeed the case, since from (11), (14) and |, | we have that

Lemma 4.2. Under the conditions of TheoreBinlfor eachw € Q there exists a convergent subsequence
(F ())/sn, of the sequenceF;(w))/s, with limit /(w).

Proof. Since|(F, (w))/sx|<(Ms,)/s, = M, the sequencéF, (w))/s, is bounded. Therefore, it has
at least one cluster point, which we denote/by), and a subsequencé,; (w))/sy, converging to it,
so that
. Fy (0)
l(w) = lim —2—. O (16)
m—00

Sn

m

If S¥ is an optimal solution of problen®,, the following inequalities hold for the partition function
0, (w) for eachw € Q:

XP—Fy(S)) - 1)< On (W) <| | - €XP—Fo(S]) - 1) (17)
—FF - u< N Q<IN ISl = Ff - (18)
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Let us now introduce the continuous and differentiable functiGpéw) = (In Q,,(w))/s,, defined on
[0, 00), for all n € N (note thatG, (n) is a function ofw also, however in the sequel we do not explicitly
indicate this dependence for the ease of notation). Dividing both sides of (k3 mmy get

F In|% F*
S e P AL NS (19)
Sn n Sn

Lemma 4.3. Under the conditions of Theoregnl,for eachw € Q andl(w) defined in(16),there exists
a subsequence,, (1) of the sequence of functios, (1), such thatG,, (1) and the sequence of its
derivativesG,, (1) converge uniformly ife, ] for anye, f >0, and

Jim G () =~ (@), (20)
k”m G;lk(u) = —[(w). (22)

Proof. We apply the following classical result: Let a sequence of differentiable functonsy) be
given, which are pointwise convergent on an intefwal3] (herex > 0, andp is an arbitrarily large, but
finite real number). Assume that the sequence of derivati/eq ) is equicontinuous and uniformly
bounded orie, f]. Then, there exists a subsequentg of G,,, such that both sequencés, andG,,,
are uniformly convergent ofx, ] (see, e.g.[19]).

Note that the pointwise convergence®f, (x) follows from Lemma 4.2, (10) and (19). Thus, in order
to prove the lemma it is sufficient to show that the sequence of funotignss uniformly bounded and
equicontinuous ofw, 3].

First, let us show that the sequence of derivat&¥ess uniformly bounded of, ]. Note thav's € .,
we have

Fu($) =) fu(e)<M-|S|=M -s,. (22)
eeS
The following inequalities show tha/, (1) is uniformly bounded:
Y oseo, [ Fn(S) €Xp(—p- Fu(8)  sp-M -3 gcq XP(—pt- Fu(S)) iy
Sn - On() A S+ On(p) B

Secondly, we show that the sequence of functiGfi$s equicontinuous of, ], i.e.,Ve > 0 36 > 0, such
thatVu,, py € [o, fl @andvr € N

G, (W<

i — ol <o = G, () — G, (up)|<e
holds. Let us evaluate the differen@®, (11) — G/, (u)|, for o< uq <pp andn € N.

expl—ug - Fu(S))  exp(—pup - Fu(S))

F,(S
Gy — Gl < 3 220

Se, Sn Qn (#1) Qn (,“2)
M-y exp(—py - Fu(S)) ) 1 Onlm) - exp—pip - Fu(S)) | (23)
b O (1) On (1) - €XP(—pg - Fu(S))

SeS
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Next, we show that there existsTa> 0 such that the following inequality holds for & € .#,, and for
alln e N:

‘1 ~ On(uy) - explug - Fr(So)) <T - (1o — py). (24)

On () - €Xplug - Fn(S0))

The following elementary transformations prove the existence of stichssume w.l.0.g. that

S expup(Fa(S0) — Fa(®)) — Y explus(Fa(S0) — Fa(5))

S F,(S)>F,(So) S:Fy (S)>F,(So)

> . (29)

Y eXp(Fu(So) = Fu(SH) = Y expluy(Fu(So) — Fu(S)))

S F,(S)<F,(So) S F,(S)<Fy (So)

(The other case can be handled analogously.) Then we have

‘ _ Dnu) - eXpp - Fu(S0) | _ |y L1+ 5,55 &P - (Fa(So) — Fu(S)))
Qn(12) - XPuz - Fu(S0)) | 1+ 2 seo,:55 EXPuz - (Fu(S0) — Fu($)))

I sih 50 50 [P - (Fa(S0) — Fu(5)) — €Xplpy - (Fa(So) = Fu(S))]]
h 5 (8= Fa (o) EXP(Lz - (Fa(S0) — Fa(S)))

since the sign of expu(F,(So) — FL(S))) — exp(ur(Fn,(So) — F,(S))) depends on the sign of
F,.(S) — F,(Sp) and together with (25) the above inequality holds. It follows that

1255, (8)> Fy (So) EXP(1 - (Fu(S0) — Fr($))[EXp((up — p1) - (Fu(So) — Fu(S))) — 11|
D S:F,(8)> Fy (So) EXP(2 - (F(So) — Fu(S5)))

_ 1255, (8)> F, (50) [EXP((1t2 — 1) - (Fu(So) — Fu(S))) — 1l
h D S:F,(8)> F, (So) EXP(2 - (F(So) — Fu(S5))) '

We now show that

D [exp(az — 1) - (Fa(So) — Fu($))) — 1]

S:Fn (8)>Fn(So)

1
<S-(p—p)- Y. exXplup - (Fu(So) — Fa(S)). (26)
” §:F(8)> Fa (S0)
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Indeed, inequality (26) is a consequence of the following inequalities, which hold fSrall”,, such
that F,, (S) > F,, (So):

L (Fu(S) — Fy(S0))
i!

lexp((up — p1) - (Fu(So) — Fu(85))) — 1< (up — 1q) - Z (2 — p1)
i=1

1 L (Fy(S) — F,(Sp))!
<(#2_#1).;‘2(@ ( (; (So))

i=1
1
<(ug — ) - o explup - (Fr(S) — Fu(So))l,
and we obtain (24) witll" := 1/«. Returning to (23),

exp(—puy - Fu(S))
On(ug)

/ / 1 1
Gn(u) = G| <M — - (g — ) - >, =M~ (2 = m),

SeSy,

from which the equicontinuity o/, on[«, ] obviously follows.
Due to (10), (16) and (19) we have lim « G, (1) = —ul(w). Then, uniform convergence of the above
sequence together with the sequence of its derivatives implies

/
lim G;k(u) = ( lim Gnk(u)) = —l(w). O
k—o00 k— o0
Lemma 4.4. For almost allo € Q we havd (w) < E.

Proof. Since for eachw € Q andn € N we haveF, (5*) <(F,(S))(0), the assertion follows from
Lemma4.l. O

For eachn € Q and each cluster poi{w) as defined in Lemma 4.2, there are now two possibilities:
(i) eitheri(w) = E andE is the (unique) limit of(F,*(w))/s, or (ii) there exists a cluster poihfw) of
(Ff(w))/s, such that (w) < E. If (i) is true for almost allw € Q, the main result follows immediately.
We show that the second case almost surely cannot happen:

Assume thai(w) < E throughout the rest of this section. Clearly, in this case the convergence of
Gp, (1) andG;k (w) is notuniform over the whole intervgd, ] (cf. Lemma4.1). Accordingto Lemma4.3,
however, Iimc_moG;lk (1) =—I(w) uniformly on[e, ] for eachx > 0, and Iimc_,ooG;lk 0)=—E <—I(w),
due to Lemma 4.1. Under these conditions, foal- 0 and for alln € N there must be someg >0 and
somekg € N, kg > m, such thaG;/k (up) > K . Indeed, given & > 0, we may choose= (E — [(w))/4
andoa= (E —[(w))/2K, and apply the above mentioned convergence resuti, g} and atu = 0. Forkg
large enough we hav(é;ko () > — l(w) — ¢ andG;k0 (0) < — E + ¢. Thus, by the mean value theorem,

E —l(w)
2 1
for someyg € [0, «]. The last equality implies thaﬂ;{ko (11p) > K and hence the second derivatives (1)

are unbounded dsapproaches infinity andapproaches 0. We show that almost surely this cannot be the
case, because: (a) The third derivaiig (u) is almost surely nonpositive far>>0 and (b) the sequence

4G}, (o) = Gy, () — G, (0)> E —l(0) — 26 =
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of second derivatives (0) is almost surely bounded. Combining (a) and (b) with the nonnegativity
of the second derivative’), (1) = (AF,(S)(w) /s, (cf. (9)) for alln € N andu>0, yields the desired
contradiction. The facts (a) and (b) are proven in the next two lemmata.

Lemma 4.5. The third derivativeG,’ (u) is almost surely nonpositive for atl>ko, >0, wherekg is
some fixed natural number

Proof. We have

2 e_Fnk (S):“
G (i) = [AFnk<S) W] == > [Fu(® = (F)(wP——— |,
S€F an ()

where(-)(u) denotes the expectation w.r.t. the Boltzmann distribution with paramelefollows that

e S ((FZ2) ()
G (w)=— 2(Fp (S) — (Fy, UL (Fy,)?
W= LZ/ (Fn (8) = (Fn) 4D =55 (an(ﬂ) (Fa)?(0)

2 eﬁFnk(S).u eﬁFnk(S),u
+ Y [F(S) = (Fu ) 1P | = F () ——— + (Fu () ————

S€Sn, an (,u) an (ﬂ)
1 ze ((Fup — (Fu) ()3 (1)
=—|0- § Fy, (S) — (Fy =— :
e ( Seynk( S k>('“)) O (1) Sni

Hence it is enough to show thé, (S) — (F,,) (1) >0 Vu>0 for all k>ko almost surely. Indeed, for
all S € Sy, Fu(S) =) ,c5 fu (e) is the sum ofs,, independent and identically distributed random
variables withE( f,,, (e)) = E. The Chernoff-Hoéffding bound thus gives

2
Pr( Fu(S) _ E‘ >s> <2 exp(—%) 27)

S
for all e > 0, and by the Borel-Cantelli lemma we obtain

Pr( lim
k— 00
since the growth rate (11) is in particular satisfied for any subsequengeTdfus, for almost ally € Q,

lIMg— 00 (Fy (S))/sn, (w0) = E. At the same time, we have from Lemma 4.3 that

im ) ()

k— 00 Sng

Fn (S) E' _ 0) _1 (28)

Sny

(@) =~ lm G, () =1()

for all x> 0. The inequalityi () < E, together with Lemma 4.1 for the cage= 0, thus implies that
F, (S) — (Fy ) (@) >0 for all k > ko almost surely for alt. >0, as desired. O

Lemma 4.6. The sequence of the second derivatiGég0) is almost surely bounded
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Proof. SinceG/ (0) = (AF,(S)(0))/s, >0, we have by Markov’s inequality

Pr(G,(0) > K)< EG.O)

for every K >0, whereE denotes the expectation w.r.t. the distribution of the random variables
fu(e), e € E,. Now we have

E(G,(0) =E

Sl nl

2
> FAS) - Sn;nz(z Fn(S))

SeS SeSy

Se, \eeS Se¥,), eeS

_Sn;nlm(z (an(e)>2 T ;nZ[E(Z an(e))z

2
() -y e
Sn " 5n|<¢n|2 "

eeS KeeEn
2

My 212
—— (| Ex|D + |Ey|E®)
sn|yn|2 " "

—D <1— Sn ) <D,
|Ey|

where we have used the equality E,, | = s, | »|. Thus, for anyK > 0,

1
= —(SnD + S,%Ez) -
Sn

D
Pr(G/(0) > K) < <
SinceD = Var(f,(e)) is finite, it follows thatG), (0) is almost surely bounded.OI

Summarizing, for almost alb € Q, if /[(w) < E, the second derivativd@j{k (1) have to be bounded
and unbounded at the same time. This impliesttat < E almost surely cannot happen. TH¢s) = E
a.s. and Theorem 3.1 holds.

Remark 1. The proof technique can also be interpreted as follows: Sit&Eg (v))/s, = |G, (| <M
is bounded, for eaclw € Q and for all x>0 there exists a convergent subsequence such that

lIM g 00 ((Fup ) () /50, = [(w). In the proof it is shown that almost surelg) does not depend opn
and! = E a.s., from which it follows that

im ) (W)

n—o0 Sn

= E almost surely for any: € [0, ]. (29)

Recallthat F,,) (1) denotes the expectation Bf (S) w.r.t. the Boltzmann weight with paramejeaissigned
to each admissible solutiof € .#,,. The right-hand side of (29) being independenjpTheorem 3.1
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can now be deduced far— oo, since for anySg € ., we have (see, e.d1])

efF,, (So)u e*Fn (So)u
lim ——— = lim
p—00 O, (w) U—>00 ZSEQ’,, e Fn(S)u

lim Pr(Sop)
H—>00

for Sg € %,
EA 0= T
0 for So € S\,

e H(Fu(S0)—Fy) {

lim =
100 | L3 4 Yoseo o e 1(F($)—Fy)

where ¥ C &, is the set of optimal solutions of proble®,, and thus for allz € N we have
Iimu—>oo(Fn>(H) = F:-

Remark 2. As emphasized earlier, Theorem 3.1 can be proved in a much shorter way by using the
following purely probabilistic argument: Under conditions (P1)—(P5), we have the Chernoff—-Hoéffding
bound (27) so that

Pr( sup
SeS )y
from which Theorem 3.1 can be deduced using the Borel-Cantelli lemma, since the right-hand side of
(30) is summable for all > 0 provided that the growth condition (11) holds.

However, our alternative approach to prove Theorem 3.1 gives additional insight into the structure of
the problem and the way the conditions (P1)—(P5) enter (see Section 5). In particular, the origin of the
crucial growth condition (P4) receives a geometric interpretation in view of (19). Moreover the statistical
mechanics formalism is of independent interest in view of applications such as simulated annealing
(cf. [14]).

Fu(S)

Sn

2 2
_ E‘ > s) <2|y,,|exp(— L;") (30)

5. Discussion and open questions

Let us shortly discuss conditions (P1)—(P5). (P4) is a crucial, purely combinatorial condition, which
is used in Lemma 4.3 to show the pointwise convergencé,Qfx) and this is the simplest kind of
convergence which has to hold in order to get through with the other lemmata. A nice feature of our proof
of the main result is that it explicitly shows the importance of condition (10). Note that (10) is essential
for deriving any of the results existing in the literature on problems which show an asymptotic behavior
similar to the one described by Theorem 3.1.

Condition (P5) is needed to guarantee the almost sure convergence of the result. If (11) is not fulfilled,
then Lemmata 4.1, 4.4 and 4.5 hold in probability only, from which it follows that the main result holds
only in probability, i.e.,

lim Pr(
n— oo

Conditions (P1) and (P2) describe the combinatorial structure of the set of feasible solutions. (P1) char-
acterizes the feasible solutions from a quantitative point of view stating that all feasible solutions have the
same cardinality. (P2) describes the set of feasible solutions from a structural point of view showing how

*

F
—”—E‘>s>=0 Ve > 0.

Sn
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often an element of the ground set appears in some feasible solution. The fact that this frequency index is
constant among different elements from the ground set means that the feasible solutions are distribute
somehow uniformly in the ground set. It is an open question whether condition (P1) can be dropped or
substituted by a weaker one. Szpankow?2Ki| showed in his purely probabilistic proof of Theorem 3.1,

that (P2) can be dropped, if in additidf} is a nonincreasing function of and |.#,,1| >|%,| for all

n e N.

Conditions (P1) and (P2) are fulfilled by many combinatorial optimization problems. (P4) is a more
restrictive condition and it is essential for the correctness of the main result. As an illustrating example
consider that the QAP fulfills all these conditions whereas the linear assignment problem (LAP) fulfills
only (P1) and (P2) but not (P4). Indeed, the QAP of sizan be formulated as a general combinatorial
optimization problem with a ground set

E,=1{G, j, k,1):1<i, j, k,I<n such thati = j if and only if k =1},
feasible solutions
S¢ =A{@, J, (D), ¢(j)):1<i, j<n}
for ¢ being a permutation of,2, . . ., n, and the set of feasible solutions
Sn =1{S¢: ¢ is a permutation of 12, ..., n},

(see alsq7]). Clearly |E,| = O (n%), MIES n? for any permutationp, |.#,| = n!, and condition (P4) is
fulfilled, since(In(n!))/n? = o(1). Each elementi, j, k, [) of the ground set appears(m — 2)! feasible
solutions, namely in alb, corresponding to some permutatigrfor which ¢(i) = k, ¢(j) = . Thus

For the linear assignment problem of sizéhe ground sek, is given byE, ={(i, j): 1<i, j <n}, the
feasible solutions are given tiy, ={(i, ¢(0)): 1<i <n}, for some permutation of 1, 2, ..., n, and the
set of feasible solutiong’,, is given as

Fn=1{Sy: ¢ is apermutation of 12, ..., n}.

In this case we havg?,| = n!, |S,| = n for all permutationsp, | E,| = n?, and each pai¢i, j), belongs

to (n — 1)! feasible solutions corresponding to permutations which ass@jn Thusy,, = (n — 1)!. Note

that here condition (P4) is not fulfilled becaugen!) /n tends taco asn — oo. It can be checked that the
result of Theorem 3.1 does not hold in the case of the LAP. Indeed, consider an LAP with cost coefficients
uniformly and independently distributed @ 1]. As shown by Kargl13], the expected optimal value of

this problent(F,") is bounded from above by 2. Theorem 3.1 would now imp@imrn_)ooF:/nzé)zl,

leading to

Pr (EI no such thatr; 2% for n >n0) =1,

which contradicts the boundednessKjf. Thus Theorem 3.1 cannot hold in this case. The fact that for
anye > 0, lim,_ o (Inn!)/nlt = 0 is another indication that condition (P4) is rather sharp.

Now let us turn to condition (P3). A standard assumption in the literature concerning the asymptotic
behavior of combinatorial optimization problems is that the coefficients of the problem are independent
and identically distributed random variables (not necessarily bounded). Also, the finiteness of variance and
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higher order moments is frequently assumed. Szpankd2@}showed thatin such a case under additional
monotonicity assumptions dfjf and|.#, |, Theorem 3.1 can be proved by purely probabilistic techniques.
One can ask, however, what happens in the proof of the main theorem with our set of assumptions in
case that the cost coefficients(e) are not bounded, while fulfilling all other requirements in (P3). In
this case, Chernoff—Hoéffding bounds for deviations from the mean are no longer available. In addition,
the boundedness of the coefficients has been exploited in the proofs of Lemmas 4.2 and 4.3 to show that
the sequence&) /s, andG,, (n), ©>0, are bounded. If the boundedness conditiorf,gia) is dropped,
then the boundedness of the above sequences cannot be guaranteed.

However, given that the first two momentsffe) are finite, the probability that, (S)) /s, is bounded,
tendsto1lforany € &,,an — oo.Indeed, recall that(F, (S))=s, E, Var(F,(S))=s, D, and therefore
E((F,(S))/sy) = E and Val(F,(S))/s,) = D/s,. By applying Chebyshev’s inequality, one obtains

Pr(Fn(S) >K) < Pr<

Sn

Fu(S)

Sn

—F

D2
K - E) <
sp(K — E)

for any K > E. Sinces,, — oo asn approaches infinity, Lemma 4.2 holds in probability. Chebyshev’s
inequality shows that Lemma 4.1 also holds in probability and so do the remaining lemmata. This implies
that Theorem 3.1 holds in probability in the case that the coefficients of the problem are unbounded.

It remains an open question whether an a.s. convergence result for unbounded cost coefficients can be
obtained through the statistical mechanics formalism.

Another question of general interest arises in connection with simulated annealing as a statistical
mechanics approach in combinatorial optimization. Is there any class of problems which is well suited
for simulated annealing? Is this class characterized by a combinatorial property? Clearly, this is a rather
complex question and its answer is left to future research.
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