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R E C O M M E N D A T I O N S A N D G U I D E L I N E S

Cell Tracking and the Development of
Cell-Based Therapies
A View From the Cardiovascular Cell Therapy Research Network

Martin Rodriguez-Porcel, MD,* Marvin W. Kronenberg, MD,† Timothy D. Henry, MD,‡
Jay H. Traverse, MD,‡ Carl J. Pepine, MD,§ Stephen G. Ellis, MD,�
James T. Willerson, MD,¶ Lemuel A. Moyé, MD, PHD,# Robert D. Simari, MD*
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Cell-based therapies are being developed for myocardial infarction (MI) and its consequences (e.g., heart failure)

as well as refractory angina and critical limb ischemia. The promising results obtained in preclinical studies led to

the translation of this strategy to clinical studies. To date, the initial results have been mixed: some studies

showed benefit, whereas in others, no benefit was observed. There is a growing consensus among the scientific

community that a better understanding of the fate of transplanted cells (e.g., cell homing and viability over time)

will be critical for the long-term success of these strategies and that future studies should include an assessment

of cell homing, engraftment, and fate as an integral part of the trial design. In this review, different imaging

methods and technologies are discussed within the framework of the physiological answers that the imaging

strategies can provide, with a special focus on the inherent regulatory issues. (J Am Coll Cardiol Img 2012;5:

559–65) © 2012 by the American College of Cardiology Foundation
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ell-based therapies are being devel-
oped for cardiac dysfunction as well
as refractory angina and critical limb
ischemia. Promising results ob-

ained in preclinical studies led to the trans-
ation of this strategy to clinical studies. To
ate, several clinical trials of cell therapy after
yocardial infarction (MI) have been com-

leted, providing initial evidence of the
afety of stem cell delivery of many cell types
ncluding bone marrow cells (BMCs) (1) and

esenchymal stem cells (2). In terms of
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ecovery of cardiac function, the initial re-
ults have been mixed: some studies have
hown an improvement in cardiac function
3), whereas the results of others have been
eutral (4) or associated with a transient im-
rovement in the left ventricular (LV) ejection
raction (5). Meta-analysis of these trials (6,7)
howed that cell therapy after MI has potential
enefit, by increasing the LV ejection fraction,
educing LV end-systolic volume, infarct size,
nd a trend toward a decrease in major adverse
ardiac events.
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The Cardiovascular Cell Therapy Research Net-
work (CCTRN) was established by the National
Heart, Lung, and Blood Institute to develop, coor-
dinate, and conduct multiple collaborative protocols
testing the effects of stem cell therapy on cardiovas-
cular disease. The initial step is to prove that these
therapies are safe for use in patients and will not
lead to adverse events, such as arrhythmias (as
previously seen with skeletal myoblasts). The
CCTRN builds on contemporary findings by the
cell therapy basic science community, translating
newly acquired information to the cardiac clinical
setting in the phase I/II study paradigm (8).

The CCTRN is simultaneously conducting 2
trials in patients with acute MI, TIME (Transplan-
tation in Myocardial Infarction Evaluation) (9) and
LateTIME (Late Transplantation in Myocardial

Infarction Evaluation) (10), and 1 trial in
patients with chronic heart failure and
ongoing ischemia, FOCUS (First Mono-
nuclear Cells injected in the US) (11). In
these initial studies, the CCTRN initial
focus is on the clinical feasibility and safety
of these strategies, together with measur-
ing their effect on LV function. The vari-
ability in the response to cell transplanta-
tion underscores the importance of
determining the fate of transplanted stem
cells and whether it correlates with
changes in cardiac function. There is a
general consensus among the CCTRN
and the scientific community that a better
understanding of the fate of transplanted
cells (e.g., cell homing and viability over
time) (12,13) will be critical for the long-
term success of these strategies and that

future studies should include an assessment of cell
homing, engraftment, and fate as an integral part of
the trial design.

In this review, the different imaging methods and
technologies available are discussed within the
framework of the physiological answers that they
can provide. Furthermore, focus is placed on the
advantages and disadvantages of each strategy and
the inherent regulatory issues.

Unanswered Questions in Cell Therapy After MI

Currently, the evaluation of cell delivery for MI has
been based on evaluating the recovery of cardiac
function (14), as well as myocardial perfusion and
ischemia (15). However, the efficacy of delivery,

ll

irus

ssion
homing, and fate of these cells remains poorly i
understood. Hou et al. (16) delivered BMCs, la-
beled with indium 111 (111In), to a swine model of

yocardial ischemia and showed that cell retention
aried with the delivery route with a high per-
entage of pulmonary cell trapping. Kraitchman
t al. (17,18) confirmed these findings and
howed that within days, cells ultimately homed
n the myocardium and other organs. Further-

ore, the effect of other factors, such as vascular
eakage (19), extravasation, and lymphatic drain-
ge can account for the variability observed in cell
herapy studies.

The original premise was that BMC delivery
fter MI had a direct regenerative effect (20). More
ecently, it was postulated that the improvement
an be achieved through a paracrine effect and by
ccelerating the healing process after MI (21). It is
ikely that the ratio of direct/paracrine beneficial
ffect depends, among other biological variables, on
he cell type used and the conditions of the host
issue. Regardless of the mechanisms of the bene-
cial response, whether through a direct regenera-
ive effect or a paracrine effect, the presence (even if
rief) of transplanted cells in the damaged myocar-
ium appears to be an important factor. Further-
ore, numerous questions, such as the ideal timing,

ose, and delivery route (e.g., intracoronary, intra-
enous, coronary sinus, intramyocardial) remain to
e answered. To better understand these factors and
o optimize the beneficial effect of these therapies, it
s important to be able to monitor the presence of
ransplanted cells and the kinetics and biology of
ransplanted cells over time and to integrate this
ith the evaluation of LV structure and function.
Strategies to address these questions can be

roadly divided into short- and long-term assess-
ents of cell therapy. Short-term assessment can

nclude the study of the retention and homing of
ransplanted cells. The long-term assessment in-
ludes the monitoring of the viability of trans-
lanted cells over time as well as the post-
ngraftment biology of the transplanted cells.
nderstanding issues like the functionality of trans-
lanted cells (e.g., differentiation, interaction of
ells with the host tissue) will be of critical impor-
ance for the optimal translation of these ap-
roaches. However, short- and long-term assess-
ent should not be considered separate concepts

ecause they are closely connected. For example,
he functionality of injected cells (long-term assess-
ent) may not be relevant if those cells do not
A B B R E V I A T I O N S

A N D A C R O N YM S

BMC � bone marrow cell

CCTRN � Cardiovascular Ce

herapy Research Network

SV1-tk � herpes simplex v

ype 1 thymidine kinase

V � left ventricular

MI � myocardial infarction

MRI � magnetic resonance

imaging

PET � positron emission

tomography

SPECT � single-photon emi

computed tomography

SPIO � superparamagnetic
nitially home and engraft (short-term assessment).
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Short-Term Assessment of Transplanted Cells

To assess homing and engraftment, the most com-
monly used monitoring strategy is that of direct
labeling (22,23), when different labeling agents are
introduced into the cells exogenously (Fig. 1A) and
cells are then transplanted and imaged in the living
subject (Fig. 1). Imaging of the introduced mole-
cules is performed, and the signal obtained is used
as a surrogate for the number of stem cells. In
direct-labeling strategies, signal originates from the
labeling compounds and is independent of progen-
itor cell viability. Direct strategies have the advan-
tage of the relative ease of labeling and that many
probes are already used clinically (albeit for different
purposes), facilitating their clinical translation. No-
tably, the signal from direct-labeling strategies may
decrease over time due to cell division and “dilu-
tion,” which will decrease the utility of the strategy
for serial imaging. Imaging of direct labels may
include magnetic resonance imaging (MRI) and
nuclear techniques (single-photon emission com-
puted tomography [SPECT] and positron emission
tomography [PET]).

Monitoring of stem cells using MRI is based on
the imaging of superparamagnetic iron oxide
(SPIO) particles, which are highly magnetic parti-
cles that cause magnetic field perturbations that can
be identified on T2*-weighted images (24,25) (Fig. 1B).
The detected signal is used as a surrogate for the
number of cells. However, SPIO particles may not
stay inside the transplanted cells over time (26), but
may be phagocytized by macrophages, resulting in
an uncoupling between the MRI signal and the
viability of stem cells (26,27). Furthermore, consid-
eration should be given to the potential toxicity of
ferromagnetic compounds and transfection agents
(28,29) as well as the potential interaction between
certain SPIO particles with metalloproteins (28).
Because MRI has high spatial resolution, this strat-
egy appears to be a good modality to define cardiac
delivery and short-term (e.g., 1 to 2 days) homing
of transplanted cells (Fig. 1B) (23,25). MRI label-
ing agents and/or the transfection agents used to
introduce iron particles can affect cell viability of
stem cells (27), whereas others have not (30), likely
depending on the dose and cell type used. Although
used in animal and small patient studies (29,31),
direct-labeling MRI tracking has not yet been used
in clinical studies.

Radionuclide labeling of cells has also been used
for direct cell labeling and imaging (Figs. 1C and 1D)

(22,32). The half-life of the radionuclides used
(e.g., 6 h for technetium-99m [99Tc], 109 min for
uorine 18 [18F]) determines the duration of time
hat cells can be monitored after labeling.

SPECT and PET are more sensitive (nano- and
emto-molar detection, respectively) compared with
PIO MRI (micromolar) (12,13,33). However, the
ellular detection sensitivity should be considered to-
ether with the spatial resolution (MRI � SPECT or
ET). The recent development of integrated PET–
omputed tomography and SPECT–computed to-
ography provides a better anatomic guide for the

ocation of the PET or SPECT signal.
Hofmann et al. (22), using 18F-fluorodeoxyglucose as

the label and PET as the imaging modality, moni-
tored cells after intravenous or intracoronary deliv-
ery of unselected BMCs or CD34-enriched cells
(Fig. 1C), demonstrating that intracoronary delivery,

Figure 1. Direct Cell Labeling Strategies

(A) Labeling agents (for either magnetic resonance or radionuclide
introduced into the stem cells exogenously and are then transplant
and/or organ of interest. Noninvasive imaging is subsequently perfo
mal stem cells (2.8 � 107), labeled with superparamagnetic particle
ides], 25 �g Fe/ml), were imaged after direct transmyocardial delive
unit. The black signal (yellow arrow) represents the superparamagn
has been used to monitor the delivery of stem cells. (C) Bone marr
(BMCs), labeled with 18F-FDG (100 MBq), were delivered to the myo
coronary injection, and then imaged using PET. The white arrowhe
transplanted cells in the heart. There is also liver and spleen uptake
elimination). (D) BMCs (8 � 108) were labeled with 99Tc-HMPAO (10
and infused via intracoronary injection in patients with chronic isch
thy and imaged with SPECT at different times after delivery (shown
image obtained 1 h after cell delivery). 18F-FDG � fluorine 18–labe
cose; LV � left ventricle; MRI � magnetic resonance imaging; PET �

tomography; RV � right ventricle; SPECT � single-photon emission
phy; SPIO � superparamagnetic iron oxide particles; 99mTc-HMPAO
labeled hexamethylpropylenamineoxime. Adapted, with permission
al. (23), Gousettis et al. (32), and Hofmann et al. (22).
imaging) are first
ed to the tissue
rmed. (B) Mesenchy-
s (Feridex [ferumox-
ry using a 1.5-T MRI
etic signal, which
ow cells (1.25 � 108)
cardium via intra-
ads point to the
(route of tracer
0 MBq/1 � 108 cells)
emic cardiomyopa-
is a representative
led fluorodeoxyglu-
positron emission

computed tomogra-
� technetium 99m–
, from Kraitchman et
especially of CD34-enriched populations, enhanced
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homing to the infarct border zone compared with
unselected populations. Also noted was the signal
from noncardiac sites such as the liver and spleen,
which could represent free 18F- or actual labeled cells.

Another consideration is that the radionuclide’s
biological half-life or the amount of time that the
radionuclide stays in the intracellular compartment
may vary depending on the radionuclide and may
differ between cell types and cell characteristics
(e.g., senescence, phenotype). Furthermore, all ra-
dionuclides emit a certain level of ionizing radia-
tion, with its potential toxicity to both the cell and
host. Previous studies used an average of 100 MBq

ne Imaging Strategies

imaging. 18F-FHBG is a substrate molecular probe that is phos-
1-tk enzyme resulting in intracellular trapping of the probe in
V1-tk gene. (B) Receptor-based PET imaging. 18F-FESP is a ligand
cting with the D2R to result in trapping of the probe in cells
ne. (C) Symporter-based SPECT imaging. 99mTc is taken up by the
ing the NIS reporter gene in exchange for Na�. (D) Receptor-
the cell through transferrin receptors. The signal detection by
* effect (as in direct labeling). (E) Representative PET-CT image of
stems cells, transduced with Ad-CMV-HSV1-sr39tk and trans-
dium of swine. 18F-FHBG was administered intravenously and
d PET-CT imaging was performed after 4 h. Small arrows depict
yocardial injection site, whereas large arrows point to the post-
r delivery. Ad-CMV-HSV1-sr39tk � mutant version of the herpes
riven by the cytomegalovirus in adenoviral capside; CMV � cyto-
opamine-2 receptor; 18F-FESP � 3-N-(2-[18F]fluoroethyl)spiperone;
uoro-3-(hydroxymethyl)butyl]guanine; HSV1-sr39tk � mutant her-
1 thymidine kinase; NIS � sodium iodide symporter; TfR � trans-
bbreviations as in Figure 1. Adapted, with permission, from
d Wu et al. (33).
to label 1 � 108 BMCs and did not observe t
significant cell toxicity (22,34). The potentially
harmful risk of ionizing radiation from medical
procedures is a hypothetical one and stems from
studies of the radiation exposure experienced by
survivors from the atomic bombs in Hiroshima and
Nagasaki. However, there are no definitive studies
on the effects of ionizing radiation from medical
procedures (35). Further studies are needed to
precisely and accurately determine the consequence
that this level of low radiation may or may not have
on the host. Therefore, the use of amounts of
radionuclides as low as reasonably appropriate ap-
pears to be a reasonable strategy.

In summary, direct-labeling methods are good
strategies to confirm successful cell delivery and short-
term retention of transplanted cells. Furthermore,
their implementation is relatively straightforward and
has already been used in clinical studies (Fig. 1C) (22).
However, these imaging modalities are less suitable
for providing answers on the long-term viability and
biology of transplanted cells.
Long-term assessment of cell therapy. To address
issues such as cell functionality and/or long-term
viability, imaging modalities that are dependent on the
viability of the cell should be used. Recent advances in
noninvasive imaging and reporter gene technology
have provided novel tools with which to study trans-
gene expression noninvasively (13,33,36). Reporter
gene constructs produce proteins that interact with an
exogenously given probe, producing a signal that can
be monitored noninvasively (13,33,36,37).

The most common use of reporter genes in vivo
is for the longitudinal study of cell viability (11,38–40),
and this strategy can be used to investigate the
activity of a specific biological pathway when a
reporter gene is driven by a cell-specific promoter
(41). Commonly used reporter gene systems are
either based on an intracellular enzyme (e.g., herpes
simplex virus type 1 thymidine kinase [HSV1-tk],
an enzyme that phosphorylates an exogenously
administered substrate, which in turn is retained
inside the cell and imaged with PET (Fig. 2A); a
cell membrane receptor, such as mutant dopamine
receptor D2R, imaged with PET (Fig. 2B) (42); or
he cell membrane sodium-iodine symporter NIS
Fig. 2C), whose activity can be imaged with PET
r SPECT (41,43). Recently, efforts have been
evoted to developing MRI reporter genes (44),
ased on the production of different proteins,
ostly intracellular metalloproteins (transferrin,

erritin, tyrosinase) (Fig. 2D) (45), that accumulate
ron intracellularly, creating a paramagnetic effect
Figure 2. Reporter Ge

(A) Enzyme-based PET
phorylated by the HSV
cells expressing the HS
molecular probe intera
expressing the D2R ge
progenitor cell express
based MRI. Iron enters
MRI is based on the T2
3 � 107 mesenchymal
planted to the myocar
transverse nonenhance
the signal at the intram
operative changes afte
symplex virus type 1 d
megalovirus; D2R � d
18F-FHBG � 9-[4-[18F]fl
pes simplex virus type
ferrin receptor; other a
hat can be detected on T2*-weighted images.
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Many of the MRI reporter genes are based on the
intracellular accumulation of iron for signal produc-
tion, thus necessitating a critical steady intracellular
iron level and having also potentially experiencing a
dilution effect of ferritin iron when cells divide (45).
Novel MRI reporter genes are targeted to produce
amino acids with specific diamagnetic characteristics
(chemical exchange saturation transfer) (46). Cur-
rently, MRI-based reporter genes have not yet become
widely available (45).

Different from direct labeling, reporter gene sys-
tems have the advantage that the signal emitted is
based on the viability and biology of the cell. The
introduction of reporter genes into progenitor cells is
mostly done using technologies of random reporter
gene integration into the genome. Although there are
risks of insertional mutagenesis, the risk may be low
(47,48). Novel developments in site-specific integra-
tion technology may even circumvent this issue (49).

Currently, there is a larger number of reporter
genes for PET (compared with SPECT) that have
been used for cell imaging, which gives PET-based
reporter gene imaging more flexibility in the num-
ber of biological events that can be studied in a
single subject, albeit not simultaneously. However,
PET probe production is more complex, needing
advanced radiochemistry, and in many cases, it
requires an on-site or nearby cyclotron. SPECT, on
the other hand, can detect simultaneous signals of
different energies by varying the detection windows,
allowing the monitoring of cell therapies together
with tissue perfusion with 201Tl or 99Tc, or even the
concomitant monitoring of multiple cell types.
SPECT tracer labeling is less complex but more
limited and, for the most part, can be performed in
a radionuclide pharmacy.

Reporter gene systems have been used in small
animal studies under different pathophysiological
conditions. In 2003, Wu et al. (39) demonstrated
the feasibility of PET reporter genes to monitor the
survival of murine cardiomyoblasts transfected with
a mutant of the HSV1-tk after transplantation to
the myocardium. Since then, a number of studies
have used reporter genes to monitor the survival and
biology of cells after transplantation to the myocar-
dium (39–41,50–52), also combined with studies
of myocardial perfusion (39,41). However, due to
the complexity of the system and the need for a
multidisciplinary approach, there is limited experi-
ence in large animals on the monitoring of transgene
expression (53,54), the assessment of cell viability
(Fig. 2E) (19,55), and only 1 reported experience (in

oncology) in the use of reporter genes to monitor cell
survival of immune T cells expressing HSV1-tk in
patients by PET (56). In summary, reporter genes
offer a promising alternative for long-term assessment
of cellular viability and functionality.

A multimodality imaging approach may prove
useful to better characterize the success of cardiac
cell delivery. The success of delivery might be
assessed by direct labeling using SPIO MRI or
18F-fluorodeoxyglucose PET, whereas viability
might be assessed using reporter gene techniques
(e.g., HSV1-tk–PET). This information can be
complemented with the evaluation of myocardial
perfusion and the assessment of cardiac structure
and function.

Regulatory Issues

It is important to ensure that any imaging strategy
does not alter the survival, viability, and phenotype
of the transplanted cells, the host organ, or the
patient. For direct imaging approaches, most of the
labeling compounds that will be useful clinically
have been previously used. For example, 111In (57)
and 18F-fluorodeoxyglucose (22,34) have been used
for labeling of leukocytes and for studies of myo-
cardial viability, respectively. Although previous
experience relating to the safety of these compounds
may be reassuring, we anticipate that each strategy
will need to be tested in the specific cell of interest
because not all cells may behave similarly. Thus, if
direct-labeling agents (for SPECT, PET, or MRI)
are to be used, it seems reasonable to test each cell
type for toxicity before clinical implementation.
Focus should be placed on cell viability, survival,
and/or phenotype, including the assessment of the
functions that are expected from the transplanted
cells. Preclinical studies of these labeling com-
pounds will be an important aspect of any Investi-
gational New Drug application to the U.S. Food
and Drug Administration.

Reporter gene strategies also present some regu-
latory issues that need to be addressed. In addition
to the concepts related to the radionuclide probes
described here, it is important to evaluate the
potential effect of the introduction of reporter genes
into the cell of interest. Preclinical studies have
shown that the introduction of reporter genes did
not significantly alter the phenotype of embryonic
stem cells (47), but caution should be exercised
when using different reporter genes and different
vectors and different cell types. Successful use of
these strategies in other patient populations (e.g.,

oncological) may pave the road for cardiac applica-
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tions. A possible approach will be that, after defin-
ing the cell and the reporter gene vector to be used,
studies be performed to test the safety of the
strategy. Genetic manipulation of cells will also
necessitate the review by the Recombinant DNA
Advisory Committee of the National Institutes of
Health, a step that can take place in parallel with
review by the U.S. Food and Drug Administration
but must be complete before initiation of the study.

Conclusions

Cell therapy has great potential for the treatment of
CJ, Stanworth SJ, Mathur A, Watt

1

1

1

1

1
Intracoronary bon
about the efficacy of cell delivery and the fate of
delivered cells. Direct labeling and reporter gene
strategies may be used to begin to define and track
cell fate and should be strongly considered in
early-phase clinical trials of cardiovascular cell
delivery.
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