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Abstract

We calculate the one-loop corrections to the Kaluza–Klein gauge boson excitations in the deconstructed version
QED. Deconstruction provides a renormalizable UV completion of the 5D theory that enables to control the cut-off dep
of 5D theories and study a possible influence of UV physics on IR observables. In particular we calculate the cut-off-de
non-leading corrections that may be phenomenologically relevant for collider physics. We also discuss the structu
operators that are relevant for the quantum corrections to the gauge boson masses in 5D and in deconstruction.
 2003 Elsevier B.V.

1. Introduction

In the past few years, high energy physics ventured to explore phenomenological aspects of spa
involving more than four dimensions. From the hierarchy to the flavor problem, from supersymme
electroweak symmetry breaking, from proton stability to the number of the Standard Model generation
dark matter abundance to neutrino oscillations, many puzzles that jeopardize our 4D understanding of
field theory could find a solution when extra dimensions are involved. So one is naturally led to wonde
is so special about extra dimensions? The notion of locality/sequestering is definitively an essential
suppressing any dangerous radiative operator. It was then realized [1] that locality in physical extra dim
can be advantageously mimicked by locality in theory space along which 4D gauge symmetry is multi-rep
At tree-level, by a matching in the IR of the mass spectra and the interaction patterns, a precise corresp
has been established between higher-dimensional theories and 4D deconstructed theories. This corresp
believed to hold all the way long from the perturbative to the non-perturbative regime [2].

Higher-dimensional gauge theories are non-renormalizable and valid only below certain physical
scaleΛ. Calculating quantum corrections in such theories requires a careful choice of a regularization
as, in general, there is a clash between the gauge invariance and the need for a cut-off [3]. The que
regularization arises even for those radiative corrections that are expected to be UV finite (i.e., dominate
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physics). Deconstruction can serve as a renormalizable UV completion of higher-dimensional gauge theo
within such scheme, calculation of quantum correction is totally unambiguous. Moreover, in deconstructed
radiative corrections include the effects due to a finite cut-offΛ. Although they are specific for this particular U
completion, they illustrate how the predictions of higher-dimensional theories can be disturbed by UV phy

Recently, one-loop corrections to the masses of the gauge boson excitations have been calculated
the present Letter we calculate analogous corrections in the renormalizable deconstruction setup and co
results. We will restrict ourselves to 5D QED compactified on a circle (see [7] for the corresponding setu
group theory factors associated to the non-Abelian nature of the interactions being identical in the 5D and
computations anyway. In this simple case, it was shown in Refs. [4–6] that the interactions with a single 5D
of electric chargee5 shift all the masses of the 4D KK gauge bosons by an amount

(1)δm2
n = − ζ(3)e2

0

4π4R2 ,

wheree0 = e5/
√

2πR is the 4D gauge coupling andR is the radius of the compact fifth dimension (the 4D mass
photon remains of course massless by gauge invariance). Meanwhile, the massless scalar field correspon
component of the 5D gauge field along the compact dimension acquires a mass given by [8]

(2)δm2 = −3ζ(3)e2
0

4π4R2
.

The phenomenological relevance of one-loop corrections to the 4D gauge boson masses in 5D gauge
has been stressed in Ref. [4] where it was noticed that, due to the degeneracy of KK spectrum at tree-lev
channels are controlled by radiative corrections, thus a slight modification in the modification, in particula
UV physics, can affect collider signals [4] as well as the abundance of dark matter [9]. Thus the impo
of our computation in the deconstruction regularization where we have a full control on the UV physic
us also mention that in models where the Higgs boson is identified as a component of a gauge boson
dimensions [10], the radiative corrections we are interested in ultimately control the electroweak sym
breaking and determine the Higgs mass. Finally, computing the radiative corrections to gauge bosons m
4D deconstructed theories is also important for the following reason: in Ref. [11], it was shown that the sp
of a product ofN = 1 supersymmetricSU(N) gauge theories broken to the diagonalSU(N) exhibit aN = 2
supersymmetry. Even though this extended supersymmetry seems accidental from the 4D point of vi
actually dictated by the underlying 5D Lorentz invariance of the corresponding higher-dimensional theo
computation can be extended to show that theN = 2 supersymmetry indeed survives at one-loop.

2. Framework

2.1. Tree-level matching between the 5D and 4D theories

As outlined in the introduction, we restrict ourselves to the case of 5D QED and a massless Dirac fer
electric chargee, the fifth dimension being compactified on a circle of radiusR. The deconstructed setup (s
also [7]) corresponds to a product ofN copies ofU(1) gauge group1 linked together byN scalar fieldsΦp of
charge(e,−e) underU(1)p ×U(1)p+1 (the site indices being periodically identified asN +p ∼ p). Once the link
fields acquire a VEV,〈Φp〉 = v/

√
2, the product gauge group is broken to the diagonalU(1) and the gauge boso

1 For definiteness we takeN to be odd.
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spectrum is made of a massless photon:

(3)A(0)
µ = 1√

N

N∑
p=1

Aµ,p,

and a tower of massive excitations doubly degenerated in mass (n = 1, . . . , (N − 1)/2)

(4)A(n)
µ =

√
2

N

N∑
p=1

cos
2n(p − 1)π

N
Aµ,p and A(−n)

µ =
√

2

N

N∑
p=1

sin
2n(p − 1)π

N
Aµ,p

with mass

(5)m±n = 2ev sin
nπ

N
.

The shift symmetry of the setup, i.e., the fact that the electric charges and VEVs do not depend on the si
corresponds to the translational symmetry of the fifth dimension compactified on a circle.

The deconstruction setup can be thought of as a discretization of the fifth dimension at pointsyp = 2pπR/N ,
p = 1, . . . ,N , the 5D gauge field being matched to the 4D degrees of freedom in the following way. T
components of the gauge field at the pointyp , Aµ(xν, yp), are identified with the 4D gauge field at the sitep,
Aµ,p(xν). The component along the extra dimension of the 5D gauge field,A5(xν, yp), is matched to the link field
Φp(xν), as it can be seen in the broken phase of the deconstruction theory. Indeed let us split the link fi
Φp = 1√

2
(vI + Σp + iGp). For a number of sites large enough, a gauge invariant renormalizable scalar po

can depend on the link fields only in the combinationΦ∗
pΦp . In consequence, the scalar sector of the the

possesses an additionalU(1)N global symmetry (acting asΦp → eiαpΦp), which is completely broken when th
links acquire VEVs. This global symmetry pattern results in the presence ofN massless Goldstone bosons,N − 1
of which actually being eaten by the massive gauge bosons. The remaining physical Goldstone boson, i
asG(0) = (G1 + · · · +GN)/

√
N , is precisely what matches the zero mode ofA5. Finally, the real parts of the lin

fields,Σp , can acquire a mass of the order of the deconstruction scale and thus they do not match any de
freedom of the 5D theory below its cut-offΛ.

To reproduce the fermionic KK modes, we need to introduceN pairs of chiral fermions(ψp,χp)p=1...N of
charge(e, e) underU(1)p. After the breaking to the diagonalU(1), the correct KK spectrum is recovered in t
largeN limit at the condition to correctly fine-tune the Yukawa couplings of the fermions as follows [11]:

(6)L=
N∑

p=1

(
iψ̄pσ

µDµ,pψp + iχ̄pσ
µDµ,pχp + √

2eΦpχ̄pψp+1 − evχ̄pψp + h.c.
)
,

whereDµ,p stands for the covariant derivative for theU(1)p gauge group,Dµ,p = ∂µ + ieAµ,p. After symmetry
breaking down to the diagonalU(1), the fermionic spectrum is made of one massless Dirac fermion and a
of massive Dirac fermions with the same mass as the gauge boson ones (see [12] for details about t
decomposition). Note that due to the normalization factor appearing in the massless photon (3), all these
carry a chargee0 = e/

√
N under the unbrokenU(1) gauge group.

The comparison of the spectrum and the interactions in both the compactified 5D theory and the decon
4D theory leads to the following identification of the parameters [1]

(7)e0 = e5√
2πR

= e√
N

and
1

R
= 2π

N
ev.

The cut-off scale,Λ, of the 5D theory is also related to the 4D parameters byΛ = ev.
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2.2. Renormalization setup

At the quantum level, the 4D deconstructed theory constitutes a UV completion of the 5D gauge theo
the framework can be arranged to be renormalizable. Therefore, at an arbitrary level of perturbation th
observables are unambiguously determined up to the freedom of adjusting a finite number of counterterm
that the form of the counterterms is additionally constrained by the discrete shift symmetry inherited from
translational invariance.

The bare and renormalized quantities are related to one another as follows:

(8)AB
µ,p = Z

1/2
A Aµ,p, ΦB

p = Z
1/2
Φ Φp, gB = Z

−3/2
A (g + δg), vB = Z

1/2
Φ (v − δv),

whereZA = 1+ δA, ZΦ = 1+ δΦ are the wave function renormalization of the gauge boson and the link fiel
Let us first discuss the loop corrections to the mass of the massive gauge bosonsA

(n)
µ . Of course, there are n

reasons to expect that the loop corrections are finite, nevertheless, since the setup is renormalizable, all di
can absorbed into counterterms. From Eq. (8) we find that the allowed counterterms corresponding to gau
masses are given by

(9)Lct = 1

2
δMg2v2

N∑
p=1

(Aµ,p −Aµ,p+1)
2,

whereδM can be expressed in terms of the wave function and gauge coupling renormalization asδM = 2δg/g +
δΦ + δA − 2δv/v. Expressing the gauge fields in terms of the mass eigenstates these counterterms
(N = 2s + 1)

(10)Lct = 1

2
δM

s∑
n=−s

m2
nA

(n)
µ A(n)

µ .

By adjustingδM we can remove any divergence proportional tom2
n that may appear in loop calculations of t

gauge boson masses. The finite part ofδM depends on the regularization scheme, and therefore the renormali
of an overall scale of the gauge boson masses cannot be unambiguously calculated in deconstruction
other hand, any loop corrections to the gauge boson masses that are not proportional tom2

n (including a constant
n-independent, shift) are, in the deconstruction formalism, unambiguous predictions.

Consider now how loop corrections to the mass of 4D massless scalar, i.e., the zero mode of the fifth co
of the gauge fieldA5,(0), appear. To this end we need to analyze the possible form of the counterterms con
a mass term for the Goldstone bosonG(0) and which descend from the counterterms involving the link fieldsΦp .
At the level of dimension� 4 operators and assumingN > 4, we have only the following ‘non-holomorphi
operators:

(11)Ld =
N∑

p=1

δd1|Φp |2 +
N∑

p,q=1

δd2|Φp|2|Φq |2.

As a result of the translational invariance along the discrete lattice direction,δd1 is independent of the lattic
positionp while δd2 can only depend in the lattice distance|p − q|. These operators can be induced with
divergent coefficient. However, effectively, they do not introduce any incalculable corrections to the massG(0).
Indeed, once the link fields acquire a VEV, the Lagrangian (11) contains both a mass term for the Goldston
G(0) and a tadpole for the real part,Σp , of the link fields:

(12)Ld = δT

(
2v

N

∑
p

Σp +G2
(0)

)
+ · · · ,
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whereδT is some function of the coefficientsδ’s in Eq. (11)—note that the shift symmetry was essential to facto
theδT dependence in (12). Now adjusting the counterterms in order to remove the tadpoles automatically
the mass term forG(0) as well. However theG(0) mass can be renormalized by gauge invariant ‘holomorp
operators like, e.g.,Φ1Φ2 · · ·ΦN . ForN > 4 the holomorphic operators are non-renormalizable and are ind
at loop level with a finite, calculable coefficient. We conclude that loop corrections to theG(0) mass are
unambiguously calculable in deconstruction, once we fix the counterterms such that theΣp tadpole term is
vanishing.

3. Diagrammatic computation

3.1. Mass corrections to A5

Let us start with computing the radiative correction to the mass of the Goldstone boson that remains m
at tree-level. Similar calculation, but in a non-renormalizable non-linear sigma model setup, was perfor
Ref. [13]. As discussed in the previous section, in the renormalizable formalism the first step is to ca
the diagrams that contribute to the tadpoles of the real part of link scalar fields,Σp , in order to determine
the mass countertermδT , see Eq. (12). Then the mass correction of the physical Goldstone boson,G(0), is
obtained by calculating the two point function of this Goldstone mode and subtracting the contribution ofδT . The
decomposition of the action in terms of the mass eigenstates leads to standard Feynman rules (see for inst
which we can use to compute the two point function. After rather long but trivial manipulations, we obtain

(13)δm2 = −4e2
0

(N−1)/2∑
k=−(N−1)/2

∫
d4lE

(2π)4

l2E cos(2kπ/N)−m2
k

(l2E +m2
k)

2
.

First we perform the momentum integration using dimensional regularization (we present at the end of App
a computation of the mass correction where the summation over the KK modes is first performed). Diverge
cancel forN > 22 and for the finite part we get:

(14)δm2 = − 4e2
0

(4π)2
(2ev)2

(−S2(N) + 2S4(N)+ 3Σ2(N) − 4Σ4(N)
)
,

where the sumsS2m andΣ2m are defined by (N = 2s + 1)

(15)S2m(N) =
s∑

k=−s

sin2m kπ

N
and Σ2m(N) =

s∑
k=−s

sin2m kπ

N
logsin2 kπ

N
.

The sumsS2m are trivially performed (see Appendix A) and quite remarkably the sumsΣ2m can also be performe
analytically and they are expressed in terms of the digamma functionΨ (z) ≡ 0′(z)

0(z)
(see Appendix A for details)

So the mass correction is finally written as

(16)δm2 = − 2e2
0

(4π)2
(2ev)2

(
Ψ (1+ 1/N)−Ψ (1− 2/N)+Ψ (1− 1/N)−Ψ (1+ 2/N)

)
.

2 For 2<N � 4 the behaviour of the two-point function is softer than expected from the discussion renormalizability because of t
Higgs mechanism [13]. However forN > 4 the mass correction in deconstruction is calculable at any order of perturbation theory irrespe
of the little-Higgs arguments.
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By Taylor expanding the digamma functionΨ around the unity, we easily obtain an 1/N expansion of the mas
correction. In particular, using Eq. (A.16), the leading terms in the correction are given by

(17)δm2 = − 3e2
0

4π2

(
2ev

N

)2(
ζ(3)+ 5ζ(5)

N2 + · · ·
)
.

Identifying the parameters of the 5D and 4D theories as in Eq. (7) we can translate this result as

(18)δm2 = − 3e2
0

4π4R2

(
ζ(3)+ 5ζ(5)

(2πΛR)2
+ · · ·

)
.

The first term agrees with the mass correction (2) obtained by directly performing the computations in the 5D
[4–6], while the second represents a correction due to a finite value of the 5D cut-off realized in the decons
setup.

3.2. Mass corrections to Aµ

Let us now turn to the more involved computation of the corrections to the gauge boson masses. To
we need to evaluate the two point function of the tree-level mass eigenstate gauge fieldA

(n)
µ which we split into a

transverse and a longitudinal part:

(19)Mn = (
pµpν − ηµνp

2)Πn
1

(
p2)+ ηµνΠ

n
2

(
p2).

Then the shift of the mass at thekth level is given by

(20)δm2
n = Πn

2 −m2
nΠ

n
1 .

After some algebra, the two form factorsΠn
i are calculated to be (N = 2s + 1)

(21)Πn
1

(
p2)= 8e2

0

s∑
k=−s

1∫
0

dx F
n,k
1 (x) and Πn

2

(
p2)= −4e2

0

s∑
k=−s

1∫
0

dx F
n,k
2 (x)

with

(22)F
n,k
1 (x) =

∫
ddlE

(2π)d

x(1− x)

(l2E + xm2
k + (1− x)m2

n+k − x(1− x)p2)2
,

(23)F
n,k
2 (x) =

∫
ddlE

(2π)d

(1− 2/d)l2E +mkmn+k coskπ
N

− x(1− x)p2

(l2E + xm2
k + (1− x)m2

n+k − x(1− x)p2)2
.

In the previous integrals,d = 4 is the dimension of the space–time and it will be promoted tod = 4 − ε in order
to compute the integrals over the momenta using the usual recipes of dimensional regularization. The ma
then written as

(24)δm2
n = − 2e2

0

(4π)2

(
−1

3
N

(
2

ε
− γ + log(4π)

)
m2

n +
(N−1)/2∑

k=−(N−1)/2

1∫
0

dx f n,k(x)

)

with

f n,k(x)= (
m2

n+k +m2
n −m2

k + 2x
(
m2

k − 2m2
n −m2

n+k

)+ 4x2m2
n

)
(25)× log

(
m2

n+k − x
(
p2 −m2

k +m2
n+k

)+ p2x2).



242 A. Falkowski et al. / Physics Letters B 581 (2004) 236–247

of
ut,
tional to
mulae
thy
d

ulae

sive

se terms
given in

the
e UV
n the

physics,

ilson
nt setting
einberg
Let us first note that the mass of the massless gauge boson does not get shifted (δm2
0 = 0) as a consequence

the unbrokenU(1) gauge symmetry. For the massive gauge bosons (n �= 0), the mass correction is divergent, b
as it should be according to our general analysis of the renormalization setup, the divergence is propor
tree-levelm2

n and so it can be absorbed into counterterms. We keep only the finite part in the following for
and evaluate the mass correction on-shell, forp2 = m2

n. After integration over the Feynman parameter and leng
trigonometric manipulations and after absorbing the finite terms proportional tom2

n into the counterterms, we en
up with the expression

δm2
n = −2e2

0e
2v2

3π2

(
S2(N)+

(
1− 3nπ

N
sin

2nπ

N

)
S4(N)− 2

nπ

N
cot

nπ

N

(
1− 4 sin2 nπ

N

)
S6(N)

)

(26)− e2
0e

2v2

π2

(
Σ2(N)+ 2Σ4(N) − 4Σ6(N)

)
,

where the sums areS2m(N) andΣ2m(N) have been defined previously, see Eq. (17). Using again the form
from Appendix A to evaluate these sums, we obtain:

δm2
n = −e2

0e
2v2

8π2

(
3Ψ

(
1+ 1

N

)
+ 3Ψ

(
1− 1

N

)
− 4Ψ

(
1+ 2

N

)
− 4Ψ

(
1− 2

N

)
+Ψ

(
1+ 3

N

)

+Ψ

(
1− 3

N

))

(27)− e2
0e

2v2

24π2

(
10N− 9nπ cot

nπ

N
− nπ

cos3nπ
N

sin nπ
N

)
.

The first term of the sum does not depend on the mass leveln and corresponds to the constant shift of the mas
KK levels which, in the 5D setup, was found in Ref. [4]. The second term does depend onn and it appears
here because deconstruction is a regularization that does not preserve 5D Lorentz invariance in UV. The
however vanish when the continuum limit is taken. Indeed, using the expansion of the digamma function
Appendix A, the leading terms in 1/N expansion of Eq. (27) read

(28)δm2
n = − e2

0

4π2

(
2ev

N

)2(
ζ(3)− 5ζ(5)

N2

)
+ 11π2e2

0

108

(
ev

N

)2n4

N
+ · · ·

which, in terms of 5D parameters, translates into

(29)δm2
n = − e2

0

4π4R2

(
ζ(3)− 5ζ(5)

(2πRΛ)2
− 11π3n4

216ΛR
+ · · ·

)
.

In the continuum limitΛ → ∞ we recover the mass correction (1) obtained by directly performing
computations in the 5D theory [4–6]. But for a finite value of the cut-off the correction depends on th
completion of the 5D theory. In particular, we can infer that, for a cut-off scale not much higher tha
compactification scale, the prediction of the constant shift of the massive levels can be disturbed by UV
which may then play an important role for collider experiments.

4. Operator analysis

In Section 2 we signaled that operators responsible for the mass correction to the Goldstone bosonG(0) are of
the holomorphic structureΦ1Φ2 · · ·ΦN . From the 5D point of view such operators correspond to non-local W
lines winding around the extra dimension. The renormalizable deconstruction setup offers thus a convenie
to study loop induced non-local operators in a higher-dimensional theory. Indeed, the one-loop Coleman–W
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Fig. 1. One-loop diagram contributing to the mass shift of the KK gauge bosons. In the 5D language, an effective non-local operator
derivative of Wilson lines is generated.

potential for the gauge invariant phaseφ ≡ 1
2iN log

(
Φ1Φ2···ΦN

Φ∗
1Φ

∗
2 ···Φ∗

N

)
can be expressed [7,13] as

(30)V (φ) = −e4v4

π2

(N−1)/2∑
k=−(N−1)/2

sin4
(
kπ

N
+ φ

2

)
logsin2

(
kπ

N
+ φ

2

)
.

Using the expressions for the sumsΣ2m(N) introduced previously, we can easily find the Taylor expans
aroundφ = 0. In particular we can obtain this way the mass of the Goldstone boson. Indeed at linear
φ = G(0)/(v

√
N), thus the quadratic term in this expansion of the effective potential (30) is directly related

one loop mass ofG(0). We obtain

(31)V (φ) = cst − e4v4

π2

(
6Σ2(N)− 8Σ4(N)+ 7S2(N) − 8S4(N)

)(φ

2

)2

+ · · ·
and using the formulae of Appendix A we end up for the mass ofG(0) with the same expression (16) obtained
a diagrammatic calculation.

Quite analogously, the constant shift of the heavy gauge boson mass levels can be ascribed to holo
operators that are interpreted as non-local from the 5D point of view. For instance, the diagram in Fig. 1
an operator of the form

(32)L∼ (Aµ,pΦp · · ·Φq−1Aµ,qΦq · · ·Φp−1).

This operator is invariant only under global transformations of the product group and so it must be a part
locally invariant operator. Let us define the ‘Wilson-line’ operators,W(p,q) ≡ Φp · · ·Φq−1, and their covarian
derivatives,DµW(p,q) ≡ ∂µW(p,q) + ieAµ,pW(p,q) − ieW(p,q)Aµ,q . Then locally (and shift symmetry
invariant operator which contains that of Eq. (32) is given by

(33)L∼
N∑

p,q=1p �=q

DµW(p,q)DµW(q,p)+ h.c.

when the links get VEVs such operators yield mass terms for the gauge bosons of the form

(34)L∼ v2
N∑

p,q=1

(Aµ,p −Aµ,q)
2.

Inserting the mode decomposition forAµ,p we get precisely the constant shift of the massive KK modes

(35)L∼ v2
∑
n�=0

A(n)
µ A(n)

µ .



244 A. Falkowski et al. / Physics Letters B 581 (2004) 236–247

atives of

able to
(32) but

n open

he mass

in the
n of the
cut-off
sults are
t
gically
ge boson

ns later
orem.

uropean
2002–

ed Polish
ity. His

e collect
The 5D non-local operator that corresponds to the deconstructed operator of (33) involves covariant deriv
the Wilson lines

(36)S ∼ 1

R4

∫
d4x

2πR∫
0

dy1dy2D
µ
(
e
i
∫ y2
y1

dỹ g5A5
)
Dµ

(
e
i
∫ y1
y2

dỹ g5A5
)
.

This operator yields a constant shift of the massive KK gauge bosons of the form (1). However to be
determine the exact value of the mass shift, one should compute not only the coefficient of the operator
also the coefficients of infinite number of other holomorphic operators, like for instance

(37)L∼ (
Aµ,pΦ

k
p · · ·Φk

q−1Aµ,qΦ
k
q · · ·Φk

p−1

)
,

and non-holomorphic operators like

(38)L∼ (
Aµ,pΦp · · ·Φq−1Aµ,qΦq · · ·Φr−1|Φr |2kΦr · · ·Φp−1

)
.

Whether it exists an appropriate choice of variable, like in (30), that allows to sum all those operators is a
question that deserves further scrutiny.

In any case the 4D analysis leads to an identification of non-local operators that are responsible for t
shift of bothAµ andA5 in five-dimensional gauge theories.

5. Conclusions

In this Letter we calculated one-loop corrections to the Kaluza–Klein gauge boson excitations
deconstructed version of the 5D QED. The deconstructed setup, being a renormalizable UV completio
5D theory, is a useful framework for studying quantum corrections. Moreover, it enables to control the
dependence of 5D theories and study a possible influence of UV physics on IR observables. Our re
consistent with those obtained in Refs. [4–6] by direct computations in the 5D theory. We calculate theΛ-dependen
non-leading corrections and point out that sensitivity of the 5D theory to UV physics may be phenomenolo
relevant. We also discuss the structure of operators that are relevant for the quantum corrections to the gau
masses in 5D and in deconstruction.
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Appendix A. Reference formulae

In this appendix we present formulae for various sums appearing in diagrammatic computations and w
various properties of the digamma function.
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in

0

ed
The sums,S2m, involving even powers of sines can be computed using a Chebychev decomposition of s2m θ :

(A.1)S2m(2s + 1) =
s∑

k=−s

sin2m
(

kπ

2s + 1

)
= (2m− 1)!!

(2m)!! (2s + 1).

The sumΣ2m is defined as

(A.2)Σ2m(2s + 1)=
s∑

k=−s

sin2m
(

kπ

2s + 1

)
logsin2

(
kπ

2s + 1

)
,

and it can be performed analytically by the use of the Gauss’ theorem about the digamma function. For< p <

2s + 1 we have

(A.3)Ψ

(
p

2s + 1

)
= −γ − log(4s + 2)− π

2
cot

(
pπ

2s + 1

)
+

s∑
k=1

cos

(
2pkπ

2s + 1

)
logsin2

(
kπ

2s + 1

)
.

Hereγ ∼ 0.577. . . is the Euler–Mascheroni constant andΨ (z) stands for the digamma function, which is defin
as the logarithmic derivative of the Euler gamma function,0(z):

(A.4)Ψ (z) = 0′(z)/0(z).
From the Gauss’ digamma theorem one can derive the general expressions (0< 2m<N ):

(A.5)Σ0(N) = logN − (N − 1) log2,

(A.6)Σ2m(N) = 1

22m−1

(
−
(

2m

m

)
(γ +N log2)+

m∑
k=1

(−1)k
(

2m

m− k

)(
2Ψ

(
k

N

)
+ π cot

(
kπ

N

)))
.

In particular, using the following relations about the digamma function

(A.7)Ψ (z) = Ψ (1− z)− π cot(πz),

(A.8)Ψ (1+ z) = Ψ (z)+ 1

z
,

(A.9)Ψ (1)= −γ,

one obtains:

(A.10)Σ2(N) = −1

2
Ψ

(
1+ 1

N

)
− 1

2
Ψ

(
1− 1

N

)
− (N log2+ γ )+ N

2
,

(A.11)

Σ4(N) = −1

2
Ψ

(
1+ 1

N

)
− 1

2
Ψ

(
1− 1

N

)
+ 1

8
Ψ

(
1+ 2

N

)
+ 1

8
Ψ

(
1− 2

N

)
− 3

4
(N log2+ γ )+ 7N

16
,

(A.12)

Σ6(N) = −15

32
Ψ

(
1+ 1

N

)
− 15

32
Ψ

(
1− 1

N

)
+ 3

16
Ψ

(
1+ 2

N

)
+ 3

16
Ψ

(
1− 2

N

)

− 1

32
Ψ

(
1+ 3

N

)
− 1

32
Ψ

(
1− 3

N

)
− 5

8
(N log2+ γ )+ 37N

96
.

In order to find the 1/Nexpansion of these results we introduce thenth polygamma function,Ψ (n)(z), which
is defined as the(n − 1)th derivative of theΨ (z) function. From the series representation of the0 function, the
polygamma function can be related to the Hurwitzζ function defined byζ(s, a) = ∑′∞

k=0(k + a)−s (the prime
meaning that the possible value ofk such thatk + a = 0 is omitted in the sum)

(A.13)Ψ (n)(z) = (−1)n+1n!ζ(n + 1, z).
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nd, the

egration
In particular, we get that

(A.14)Ψ (2)(1)= −2!ζ(3),
(A.15)Ψ (4)(1)= −4!ζ(5),

whereζ(s) =∑∞
k=1 k

−s is the usual Riemannζ function. We thus find

(A.16)
1

2

(
Ψ

(
1+ a

N

)
+Ψ

(
1− a

N

))
= −γ − ζ(3)a2

N2 − ζ(5)a4

N4 + · · · .

Let us finally mention that we can alternatively compute the mass correction (16) toA5 by first performing
the summation over the KK mode in Eq. (13) and then performing the momentum integration. To this e
following sum is needed

(A.17)
(N−1)/2∑

k=−(N−1)/2

1

sinh2x + sin2 kπ/N
= 2N cotanhNx

sinh2x
.

This relation can be proved by a pole decomposition of the right-hand side. And the resulting momentum int
reduces to

(A.18)

∞∫
0

dx
sinh3(x/2)cosh(x/2)

sinh2(Nx/2)
= 1

2N2

(
Ψ

(
N + 1

N

)
−Ψ

(
N − 2

N

)
+Ψ

(
N − 1

N

)
−Ψ

(
N + 2

N

))
.
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