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Abstract

We obtain the one-loop quantum corrections to the Kählerian and superpotentials in the generic chiral superfield model on the nonanticommu-
tative superspace. Unlike all previous works, we use a method which does not require to rewrite a star-product of superfields in terms of ordinary
products. In the Kählerian potential sector the one-loop contributions are analogous to ones in the undeformed theory while in the chiral potential
sector the quantum corrections contain a deformation parameter.
 2006 Elsevier B.V.

Low-energy dynamics of open strings coupled to a constant self-dual graviphoton field strength Cmn can be efficiently described
in the terms of field theories with deformed supersymmetry [1]. Remarkable class of such theories is formulated in nonanticom-
mutative (NAC) N = 1

2 superspace [2]. Nonanticommutativity means that the multiplication of superfields is described in terms of
so-called star-product, which is a fermionic version of the Moyal product. This allows us to work out the details of nonanticom-
mutative supersymmetric field theory using a calculus on conventional N = 1 superspace. The component actions of such theories
contain the additional couplings with a parameter Cmn what leads to reduction of supersymmetry. Study of the various aspects of
supersymmetric theories on deformed superspaces has been carried out in a number of recent papers (see, e.g., [3–5] for D = 4
models, [6] for D = 2 models and [7] for extended supersymmetric models in harmonic superspace).

One of the most interesting problems in nonanticommutative supersymmetric theories is a structure of divergences and renor-
malizability. It is has been demonstrated that N = 1

2 supersymmetric Wess–Zumino [3,4] and Yang–Mills [5] models are renor-
malizable. To be more precise: at the one-loop level renormalizability is lost literally but it can be restored not only at one loop
but to all orders of perturbation theory after adding to the classical action the specific terms depending on deformation parameter
[3,4]. Divergences are only logarithmic so the induced supersymmetric breaking is soft. From the field-theoretical point of view
this property looks rather mysterious because such models contain the higher-dimensional operators and the naive power-counting
arguments formally show that the theories are not renormalizable at any order of perturbation theory. However since all such models
are consistent only in the Euclidean space, where dotted and undotted spinors are unrelated, the new vertices appearing with the
deformation parameter are not accompanied by their conjugates and that provides renormalizability.

Nonlinear sigma-models (bosonic or supersymmetric) attract much attention due to the possibilities of an effective description of
infra-red physics. Generic chiral superfield model, which is a generalization of the supersymmetric sigma-model, plays an important
role because its relation with the superstring theory as a subsector of an effective theory of N = 1 supersymmetric string vacua [8].
Action of this model is written in terms of the Kählerian effective potential K(Φ, Φ̄) and chiral W(Φ) and antichiral W̄ (Φ̄)

superpotentials. Such a model of chiral superfields can be treated as an effective theory, suitable for description of phenomena at
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energies much less than some fundamental scale. Besides, in some cases, a vacuum structure of supersymmetric gauge theories is
defined in terms of nonperturbatively induced superpotentials W(Φ) and W̄ (Φ̄).

In ordinary D = 4 supersymmetric theories there exists the nonrenormalization theorem [9] which states that quantum correc-
tions to the (anti)holomorphic superpotential are very much constrained and sometimes remains nonrenormalizable, whereas the
Kähler potential in general gets quantum corrections. Full one-loop corrections to the Kähler potential have been computed, both in
the Wess–Zumino model (see, e.g., [10]), in most general renormalizable models [11] and in general supersymmetric sigma-models
[12,13].

The component structure of the generic N = 1
2 supersymmetric chiral model defined in the two-dimensional [6] and in the

four-dimensional [14,15] nonanticommutative superspaces has been investigated in details recently. It has been shown that these
theories are described in a closed form by enough simple deformations of the Kähler potential and (anti)holomorphic superpotential.
Geometrically, this deformation can be interpreted as a fuzziness in the target space controlled by the vacuum expectation value
of the auxiliary field. However the quantum properties of such models have never been studied. In particular the problem of the
renormalizability and the problem constructing of the effective action have not been addressed so far.

In this Letter we study the quantum aspects of generic chiral superfield model in NAC superspace. We compute the divergent
and leading finite one-loop corrections to the Kähler potential and superpotential using a superfield loop expansion (see, e.g.,
[16,17]) and the approximation of slowly variating field. Calculation techniques is formulated by a way which preserves the local
star-product structure of classical action on the all stages of quantum analysis. The divergence structure of the model is clarified.
We show that besides the divergences preserving N = 1 supersymmetry there is a new divergent structure explicitly containing the
nonanticommutativity parameter.

The classical action for the generic chiral superfield model

(1)S =
∫

d8zK�(Φ, Φ̄) +
∫

d6zW�(Φ) +
∫

d6z̄ W̄�(Φ̄),

up to two derivatives is encoded in three functions of the chiral multiplet: the Kähler potential K� that is only required to be a real
function and (anti)chiral superpotentials W̄�,W� that are required to be (anti)holomorphic. The Kähler potential and superpotentials
are arbitrary functions of chiral Φ(y, θ) and antichiral Φ̄(y, θ, θ̄ ) superfields. The subscript � implies that all functions are under-
stood as expansions in the power series with �-product. The expansions of the Kähler potential and the superpotential are defined
as follows

(2)K� =
∞∑

n,n̄=0

Knn̄

1

n!n̄! Φ � · · · � Φ︸ ︷︷ ︸
n

� Φ̄ � · · · � Φ̄︸ ︷︷ ︸
n̄

∣∣∣∣∣
s

, W� =
∑
n=0

Wn

1

n! Φ � · · · � Φ︸ ︷︷ ︸
n

,

and analogously for another superpotential W̄�. Further we will use notation and definition given in papers [2,16,17].
To calculate the one-loop correction we imply a background-quantum splitting of the (anti)chiral fields Φ → Φ + φ and Φ̄ →

Φ̄ + φ̄. In contrast to our previous paper [4] we do not reduce the star-products of superfields to their ordinary products. Instead of
that, we find the explicit operator Ĥ� which is the second variation of the classical action (1). This operator is formulated completely
in terms of �-product and defines the spectrum of quantum fluctuations on a given background. It leads to the following form of the
one-loop effective action1

(3)Γ (1) = Tr ln� Ĥ�.

The operator Ĥ� is a natural generalization of the superspace type operators for the case of a deformed superspace.2 Analogously to
Ref. [18] we call a functional of DA and Φ,Φ̄ a star-local polynomial functional if it includes an integral over superspace of a finite
sum of monomials so that every monomial is given in terms of star-products of a finite number of DA and Φ,Φ̄ taken in the same
superspace point. We will see that there are two type of contributions to the effective action. Leading contributions are star-local.
However there can be some kind of nonlocal contributions, which are similar to the contributions from nonplanar diagrams. But for
the effective potential calculation in the approximation of slowly varying background fields such nonlocal contributions not enter
into the game since they lead to higher derivative operators. We mainly focus on the approximation of the constant background

(4)Dα,(αα̇)Φ = 0, D̄α̇,(αα̇)Φ̄ = 0,

where D̄α̇ = ∂

∂θ̄ α̇ , Dα = ∂
∂θα + iθ̄ α̇ ∂

∂yαα̇ .

1 Note that the functional integral in the Euclidean space is defined as
∫
DΦ e−S[Φ] and therefore the one-loop effective action for a complex superfields is

defined as Γ = Tr lnS′′[Φ].
2 The subscript � at the logarithm ln needs for consistency with the definition of the Green function G = − 1

H�
� δ(z − z′) = ∫ ∞

0 ds esH�
� � δ(z − z′). Then an arbi-

trary variation δH� of the operator H� in formal definition Γ (1) gives a correct expression δΓ (1) = Tr H−1
� � δH� = ∫ ∞

0 ds Tr esH�
� � δH� = ∫ ∞

0
ds
s Tr (δesH�

� ) =
δ Tr ln� H�.
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Firstly we emphasize the basic properties of �-product used in the further calculation. Because for the mixed powers in the
power expansion of the Kähler potential we have Φ � Φ̄ �= Φ̄ � Φ , we consider the products of superfields to be always fully
symmetrized [15]

(5)Φ1 � · · · � Φn � Φ̄1 � · · · � Φ̄m
∣∣
s
= 1

n!m!
(
Φ1 � · · · � Φn � Φ̄1 � · · · � Φ̄m + Perm.

)
.

Then, using the cyclic property
∫

Φ1 � Φ2 � · · · � Φn = ∫
Φn � Φ1 � · · · � Φn−1 and rules

δΦ(z)

δΦ(z′)
= −1

4
D̄2δ8(z − z′), δΦ̄(z)

δΦ̄(z′)
= −1

4
D2δ8(z − z′),

where D2 = DαDα, D̄2 = D̄α̇D̄α̇ , one obtains the equations of motion for the model under consideration

(6)−1

4
D̄2K1 + W1 = 0, −1

4
D2K1̄ + W̄1̄ = 0,

where K1 = ∂K�(Φ,Φ̄)
∂Φ

, etc.
According to (3) we have to calculate a second functional derivatives of the classical action (1). Part of the action dependent on

the Kähler potential leads to three types of the derivatives: mixed derivative δ2S/δΦδΦ̄ and two nonmixed derivatives δ2S/δΦ2,
δ2S/δΦ̄2. These derivatives contain both right and left star multiplications. It is easy to check that nonmixed second functional
derivatives are equal to zero. Really, the power expansion of the Kähler potential is defined by (2) where all powers are given
according to the rule (5). Then second nonmixed derivative leads to the expression

(7)
δ2

δΦ(z′)δΦ(z)

∫
d8zK� =

∑
nn̄

Knn̄

1

(n − 1)!n̄!
(

−1

4
D̄2

)
Φ � · · · �

(
−1

4
D̄2

)
δ8(z − z′) � · · · � Φ︸ ︷︷ ︸

n−2

� Φ̄ � · · · � Φ̄

∣∣∣∣
s

= 0,

where we also suppose a sum over all possible permutations of Φ and (− 1
4 D̄2)δ8(z − z′) according to the definitions (2), (5). The

same property is true for another nonmixed variation δ2

δΦ̄(z)δΦ̄(z′)
∫

d8zK� = 0. The mixed derivative has a quite different structure

δ2

δΦ̄(z′)δΦ(z)

∫
d8zK� =

∑
nn̄

Knn̄

1

(n − 1)!n̄!
(

−1

4
D̄2

)
Φ � · · · � Φ︸ ︷︷ ︸

n−1

� Φ̄ � · · · �
(

−1

4
D2

)
δ8(z − z′) � · · · � Φ̄︸ ︷︷ ︸

n̄−1

∣∣∣∣
s

(8)= K11̄ �
1

16
D̄2D2δ8(z − z′).

This is a consequence of the following property for the star-product [14]

f1(θ) � · · · � fn(θ) � δ(θ − θ ′) � g1(θ) � · · · � gm(θ)

(9)=
∫

d2π f1(θ + Cπ) � · · · � fn(θ + Cπ) � g1(θ − Cπ) � · · · � gm(θ − Cπ)e(θ−θ ′)π .

Therefore using the approximation (4) (f (θ + Cπ) = f (θ) + CπDf (θ) + · · · = f (θ)) we obtain

(10)f1(θ) � · · · � fn(θ) � δ(θ − θ ′) � g1(θ) � · · · � gm(θ) = f1(θ) � · · · � fn(θ) � g1(θ) � · · · � gm(θ) � δ(θ − θ ′).
The results (7), (8) for the second functional derivatives and the totally symmetrical form of the expansion (2) lead to simplification
of the calculation procedure.

For the parts of the action dependent on the chiral superpotential we have

(11)
δ2

δΦ(z′)δΦ(z)

∫
d6zW� =

∑
n

Wn

1

(n − 1)! Φ � · · · �
(

−1

4
D̄2

)
δ8(z − z′) � · · · � Φ︸ ︷︷ ︸

n−2

∣∣∣∣
s

= W2 �

(
−1

4
D̄2

)
δ8(z − z′),

and analogously for antichiral superpotential.
The one-loop correction to the effective potential is written as follows

(12)Γ (1) = Tr ln� Ĥ� =
∫

d8z ln� Ĥ� � δ8(z − z′)
∣∣∣∣
z=z′

,

where the operator of second functional derivatives has, according to (7), (8) and (11), the form

(13)Ĥ� =
(

K11̄
1
16D2D̄2 W̄2̄(− 1

4D2)

1 ¯ 2 1 ¯ 2 2

)
.

W2(− 4D ) K1̄1 16D D
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It should be especially noted that because we deal with nonanticommutative superspace, all functions are understood as power
expansions containing the star-products of superfields. In principle, one can extract for nonanticommutative theories both star-local
and star nonlocal contributions but we focus only on the star-local approximation.

Using matrix operator (13) we calculate the leading (Kähler potential) and next-to-leading (chiral potential) contributions. It
means that

(14)Γ (1) = Γ
(1)
K + Γ

(1)
W .

To find Γ
(1)
K it is sufficient to consider in the operator (13) the constant background superfields W̄2̄ and W2. For getting the Γ

(1)
W we

have to treat these superfields as slowly varying and take into account the leading terms in their spinor derivatives. It is obviously
that the contribution to the antichiral potential Γ

(1)

W̄
will be equal to zero (see, e.g., consideration in [4]).

Let us begin with Γ
(1)
K . In this case one can note that the diagonal and off-diagonal blocks of the matrix operator Ĥ� are commute

between each other and, therefore, the logarithm of the matrix can be splitted off into two parts. This fact allows us to rewrite such
a contribution in the effective action as

(15)Γ
(1)
K = Tr ln�

(
K11̄

1
16D2D̄2 0

0 K1̄1
1

16 D̄2D2

)
+ Tr ln�

(
1 +

(
0 1

K11̄
� W̄2̄(−D2

4� )

1
K1̄1

� W2(− D̄2

4� ) 0

))
.

After calculations the matrix trace and using the projector property we obtain

(16)Γ
(1)
K = Tr ln�(K11̄)

1

16

D2D̄2

� + 1

2
Tr ln�

(
1 − 1

K11̄
� W̄2̄ �

1

K1̄1
� W2

1

�
)

1

16

D2D̄2

� + c.c.

Next point is to analyze the structure of divergence and renormalization properties. The first term in the dimensional regularization
scheme is equal to zero. The second term (along with the complex conjugated) gives us

Γ
(1)
K = µ4−d

∫
ddp

(2π)dp2
ln�

(
1 + 1

K11̄
� W̄2̄ �

1

K1̄1
� W2

1

p2

)

(17)= 1

(4π)2

(
4πµ2)2−d/2 d/2


(d/2 + 1)

∫
dp2 (

p2)d/2−2 ln�

(
1 + 1

K11̄
� W̄2̄ �

1

K1̄1
� W2

1

p2

)
,

where µ is a regularization parameter and d is the space–time dimension. Putting d = 4 − ε we have

(18)Γ
(1)
K = 1

2(4π)2

∫
d8z

1

K11̄
� W̄2 �

1

K1̄1
� W2 �

(
1

4πµ2

1

K1̄1
� W̄2̄ �

1

K11̄
� W2

)−ε/2




(
ε

2

)
.

Using the scheme of minimal subtractions one gets the divergent

(19)Γ
(1)
K div = 1

16π2ε

∫
d8z

1

K11̄
� W̄2̄ �

1

K1̄1
� W2,

and finite part

(20)Γ
(1)
K fin = − 1

32π2

∫
d8z

1

K11̄
� W̄2̄ �

1

K1̄1
� W2 �

(
ln�

(
1

K11̄
� W̄2̄ �

1

K11̄
� W2

1

µ2

)
+ γ

)
,

of Γ
(1)
K . Here γ is the Euler constant. When the deformation parameter Cmn = 0, the obtained results coincides with ones for

undeformed theory [10,11,13]. We point out that in the Kählerian effective potential sector the whole dependence on nonanticom-
mutativity is stipulated only by star-product.

Let us analyze now a structure of the next-to-leading contribution to the effective action Γ
(1)
W . For this purpose we take up a

simple form for K11̄ = 1 +O(Φ̄) and W̄2̄ = m̄+O(Φ̄). The arguments for such a choice of approximation are quite natural [9,19]:
contribution to the effective superpotential cannot dependent on the coefficients of the antichiral superpotential. Indeed we can
promote each of these coefficients to an antichiral superfield field, whose vev then gives the coupling constants. Holomorphy tells
us that these fields cannot appear in an integral over chiral superspace. Since we are interested in computing the effective chiral
superpotential, we can consider the antichiral superpotential to be simplest what leads to W̄2̄ = m̄.

According to the procedure described in [4], the quantity Γ
(1)
W can be found from (13) in the following form

(21)Γ
(1)
W = 1

2
Tr ln�

(
1 +

(−m̄D2D̄2

16�2 W2 0

− D̄2

4�W2 0

))
= 1

2
Tr

D2D̄2

16� ln�

(
1 − m̄

�W2

)
.
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Further consideration is done analogously to one presented in [4]. After writing the integral over whole superspace as
∫

d8z =∫
d6z D̄2 we obtain the expression for the one-loop correction to the chiral superpotential in the form

(22)Γ
(1)
W = 1

2

∫
d6z ln�

(
1 − m̄

�W2

)
�

(
−1

4
D̄2

)
δ8(z − z′)

∣∣∣∣
z=z′

.

Analogously to [16,19] such a form can be also obtained after integrating out the antichiral field from the action

(23)S(Φ, Φ̄) =
∫

d8z Φ̄Φ +
∫

d6zW�(Φ) +
∫

d6z̄
m̄

2
Φ̄2.

For this purpose ones rewrite the linear and quadratic over Φ̄ part of the above action as follows

(24)
∫

d8z

(
m̄

2

(
Φ̄ + 1

m̄
D2Φ

)
1

� D̄2
(

Φ̄ + 1

m̄
D2Φ

)
− 1

2m̄
D2Φ

1

� D̄2D2Φ

)
.

Now the antichiral superfield can be integrated out in the functional integral. Replacing in the last term
∫

d2θ̄ with D̄2 we obtain
the action

(25)S(Φ) =
∫

d6z

(
− 1

2m̄
Φ�Φ + W�(Φ)

)
.

This action leads to the one-loop effective action in the form (22).
Note that in the undeformed model the expression (22) is equal to zero as it should be in accordance with [9]. In the case

under consideration the nonzero result is stipulated by nonanticommutativity. After enough simple calculations within dimensional
regularization one gets

(26)Γ
(1)
W = m̄2

64π2

∫
d6zW2 � W2 �

(
m̄W2

4πµ2

)−ε/2




(
ε

2

)
� δ2(θ − θ ′)

∣∣∣∣
θ=θ ′

.

To clarify a structure of this result we transform the expression (26) in the form without �-product and keep only the leading term
in deformation parameter. One can obtain

(27)Γ
(1)
W = − m̄2

64π2

∫
d6z

1

2
C2W2Q

2W2

(
m̄W2

4πµ2

)−ε/2




(
ε

2

)
.

This expression has the divergent part in the form

(28)Γ
(1)
W div = − m̄2

64π2ε
C2

∫
d6zW2Q

2W2,

and a finite part. We point out that the divergent part (28) explicitly contains the deformation parameter which cannot be absorbed
into �-product.

In the finite part we will try to restore the �-product under the integral over chiral subspace. It leads to

(29)Γ
(1)
W fin = m̄2

128π2
C2

∫
d6zW2Q

2W2 � ln�

(
m̄W2

µ2

)
,

where Q = i∂/∂θ . It is clear that in the expression (29) the deformation parameter cannot be absorbed into initial �-product. We
already pointed out the analogous situation in the expression (28).

The relations (28) and (29) define the one-loop chiral effective potential in the model under consideration. In the case of Wess–
Zumino nonanticommutative model, the divergent term Γ

(1)
W div takes the form ΦQ2Φ which was recently found (see, e.g., [3,4]).

To conclude, we have presented calculations of the one-loop effective potential for the nonanticommutative generic chiral su-
perfield model. We used the approximation of slowly variating superfields and developed the method which allows to carry out the
calculations procedure without explicit rewriting the �-product in terms of ordinary products. The divergence structure of the model
is analyzed, we show that besides the divergences analogous to ones for undeformed model, there is a new divergent structure
containing the nonanticommutativity parameter and destructing the star-product structure of the model on a quantum level. As a
result, the divergent and finite one-loop Kählerian and chiral effective potentials are found in the explicit forms.
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