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a b s t r a c t

Asymmetric pairings e : G1 ×G2 → GT for which an efficiently-computable isomorphism
ψ : G2 → G1 is known are called Type 2 pairings; if such an isomorphismψ is not known
then e is called a Type 3 pairing. Many cryptographic protocols in the asymmetric setting
rely on the existence of ψ for their security reduction while some use it in the protocol
itself. For these reasons, it is believed that some of these protocols cannot be implemented
with Type 3 pairings, while for some the security reductions either cannot be transformed
to the Type 3 setting or else require a stronger complexity assumption. Contrary to these
widely held beliefs,we argue that Type 2 pairings aremerely inefficient implementations of
Type 3 pairings, and appear to offer no benefit for protocols based on asymmetric pairings
from the point of view of functionality, security, and performance.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Pairing-based cryptography, though proposed only at the turn of the century, has witnessed a tremendous growth.
The successful application of pairings in the design of novel cryptographic protocols [29,34,8] and their potential use as
a principal building block for many others fueled this growth. The main thrust of research efforts in this area has been, and
still is, in the development of new protocols.

For three groups G1, G2, GT of the same (prime) order, a pairing is a function e : G1 × G2 → GT that is bilinear,
non-degenerate, and efficiently computable. If G1 = G2 then the pairing is symmetric and following [25] we call it a
Type 1 pairing. The pairing is asymmetric when G1 ≠ G2. In the asymmetric setting, if there is an efficiently-computable
isomorphismψ : G2 → G1 then e is called a Type 2 pairing. If no efficiently-computable isomorphism is known from G2 to
G1 (or from G1 to G2) then we call it Type 3. Known examples of such pairings are the Weil and Tate pairings over suitable
elliptic curve groups G1 and G2, and their modifications such as the ate pairing [28] and the R-ate pairing [31].1 Since Type 1
pairings are quite restricted in terms of the choice of curves and are significantly slower than their asymmetric counterparts
at higher security levels [27], they will not be considered in the remainder of this paper.

Recent work [25] suggests that Type 3 is a better choice than Type 2 in terms of the size of elements in G2, the cost of
performing group operations inG2, the cost ofmembership testing inG2, the feasibility of hashing intoG2, and the cost of the
pairing operation. However, these performance advantages do not immediately make Type 3 pairings an obvious choice for
protocols described in the asymmetric setting. Cryptographic protocols are designed to realize some concrete functionality
in a secure way. The question of security is intrinsic to that of functionality for such protocols. The question of efficiency
enters only after issues of functionality and security have been settled. In the context of pairing-based protocols in the
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1 Cryptographically suitable pairings can also be defined from hyperelliptic curves and, more generally, from abelian varieties [24]. Since elliptic curve
pairings are believed to offer superior performance, this paper will only be concerned with pairings derived from elliptic curves.

0166-218X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2011.04.021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82286781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.dam.2011.04.021
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:s2chatte@uwaterloo.ca
mailto:ajmeneze@uwaterloo.ca
http://dx.doi.org/10.1016/j.dam.2011.04.021


1312 S. Chatterjee, A. Menezes / Discrete Applied Mathematics 159 (2011) 1311–1322

asymmetric setting, Type 3 can be considered to be a better choice only if it is possible to argue that whatever is achievable
in terms of functionality and security in Type 2 can also be achieved in Type 3, and moreover if the overall performance of
the Type 3 version of the protocol is at least as good (if not better) than its Type 2 counterpart.

Performance apart, the key difference between Type 2 and Type 3 is the existence or otherwise of themapψ . While there
exist some protocols in the asymmetric setting which do not requireψ to be efficiently computable, there are many others
which do – either in the security proof or in the protocol itself. For example, consider the very first protocol described in
the asymmetric setting – the Boneh–Lynn–Shacham (BLS) short signature scheme [10]. In [10] the authors observed that
the efficiently-computable isomorphism ψ : G2 → G1 is essential for the security of the protocol and can be avoided
only at the cost of making a stronger complexity assumption. The same argument was later echoed by Shacham in his Ph.D.
Thesis [35] which asserts that ‘‘the map [ψ] isn’t merely a proof artifact’’. These observations were likely instrumental in
causing much of the subsequent work in pairing-based cryptography to consider the Type 2 setting as the natural choice
either when proposing a new protocol or when modifying a protocol from the symmetric to the asymmetric setting. While
most of these protocols needψ in the security argument only, some do use it in the protocol itself. The use ofψ in a protocol
might further be construed as evidence that the map ψ cannot possibly be avoided altogether even if one is prepared to
make stronger complexity assumptions.

Galbraith et al. [25] provided an excellent exposition of what is achievable and what is not when a particular type of
pairing is employed. They too comment that for many pairing-based primitives, the ‘‘security proof does not apply if the
cryptosystem is implemented using pairings of the third type’’ (i.e., Type 3). Since Type 3 offers better performance and
flexibility they conclude that it would be desirable if protocol designers prove the security of their protocol in the Type 3
setting.

One possible way to address the need for ψ in some security reductions is to use relativized assumptions as introduced
by Smart and Vercauteren [37]. Here, it is assumed that an underlying hard problem remains hard even when the adversary
is given oracle access to ψ . Such oracle access allows a security reduction to go through in the Type 3 setting even when
one cannot efficiently computeψ . Smart and Vercauteren discuss the security of BLS and the Boneh–Franklin identity-based
encryption (BF-IBE) schemeunder this kind of relativized assumption. Their approachwas further pursued by Chen et al. [19]
to prove the security of some identity-based key agreement protocols in the Type 3 setting.

In [16] Chatterjee et al. took a closer look at the security and efficiency aspects of two signature schemes and two
aggregate signature schemes when implemented with Barreto–Naehrig (BN) elliptic curves [4]. One of the contributions of
that work is to establish that there is no security (or performance) benefit to be gained by using a Type 2 pairing instead of
Type 3 for the particular schemes under consideration. For example, compared to Type 2, the BLS signature scheme in Type 3
doesnot dependon a stronger complexity assumption aswas stated in [10], nor is it necessary to use a relativized assumption
as suggested in [37]. This motivated us to further investigate the exact role played by ψ in pairing-based protocols and in
their security arguments. The current work takes the findings of [16] as its starting point and can be seen as its sequel in a
broader canvas.

Specifically, we find it relevant to raise the following questions. Can any cryptographic protocol originally described
in the Type 2 setting be transformed to the Type 3 setting? What about the security of the transformed protocol — is it
equivalent to the original one? Is there any performance benefit to be accrued by working in the Type 3 setting after such a
transformation?

Our study indicates that given any protocol, Protocol-2, described using a Type-2 pairing, and a security proof for
Protocol-2 with respect to some problem P -2, there is a natural transformation of Protocol-2 to a Protocol-3 that uses
a Type-3 pairing, a natural transformation of P -2 to P -3, and a natural transformation of the security proof to one for
Protocol-3 with respect to P -3. Moreover, Protocol-3 is at least as efficient as Protocol-2, and P -3 is equally as hard as P -2
(for appropriately chosen parameters). In other words, ψ does not play any cryptographically significant role and hence
there is no reason to use Protocol-2 instead of Protocol-3.

We emphasize that our arguments that any Type 2 protocol can be converted to a Type 3 protocol without loss of
functionality, security or efficiency are empirical. In particular, we leave it as an open question to determine the existence
of a (natural) Type 2 protocol that has no (natural, secure and efficient) counterpart in the Type 3 setting.

We note that Freeman [22] recently proposed an abstract framework for converting some composite-order pairing-based
protocols to the setting of prime-order pairings. In contrast, our work looks at the problem of converting protocols from
Type 2 setting to the Type 3 setting, both of which are defined over prime-order groups.

The remainder of the paper is organized as follows. In Section 2, we compare the performance of Type 2 and Type 3
pairings derived fromelliptic curves having even embedding degrees. The complexity assumptions in the asymmetric setting
are reviewed in Section 3 and we demonstrate that for each complexity assumption in Type 2, there is a natural counterpart
in Type 3 such that the two problems are equivalent when parameters are chosen in an appropriate way. Section 4 is
devoted to existing protocols in the asymmetric setting. We show how some known protocols in the Type 2 setting can
be transformed into Type 3 without affecting the functionality or security, and moreover it is sometimes possible to obtain
better performance. These observations are extended in Section 5wherewe provide general guidelines on how to transform
a given protocol as well as its security argument from Type 2 to Type 3. Finally, we conclude in Section 6 with some open
problemswhichwe thinkwill shed further light on the role ofψ in the context of cryptographic protocols in the asymmetric
setting.
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2. Asymmetric pairings

Let Fq be a finite field of characteristic p ≥ 5, and let E be an ordinary elliptic curve defined over Fq. Let n be a prime
divisor of #E(Fq) satisfying gcd(n, q) = 1, and let k (the embedding degree) be the smallest positive integer such that
n | qk − 1. We will assume that k > 1, whence E[n] ⊆ E(Fqk) where E[n] denotes the n-torsion group of E. We further
assume that n3 - #E(Fqk). Let GT be the order-n subgroup of F∗

qk . The (full) Tate pairing is a non-degenerate bilinear function
ê : E[n] × E[n] → GT and can be defined as follows:

ê(P,Q ) =


fn,P(Q + R)

fn,P(R)

(qk−1)/n

, (1)

where R ∈ E(Fqk)with R ∉ {∞, P,−Q , P −Q }, and where theMiller function fn,P is a function whose only zeros and poles in
E are a zero of order n at P and a pole of order n at ∞. For cryptographic applications, one generally restricts the domain of
ê to a product of two order-n subgroups G1 and G2 of E[n]. The first group G1 is taken to be E(Fq)[n], and any other order-n
subgroup can be selected for the second group G2. Then the definition of ê simplifies to ê(P,Q ) = (fn,P(Q ))(q

k
−1)/n for all

P ∈ G1 and Q ∈ G2 [3]. Moreover, one assumes k to be even because then the ‘denominator elimination’ [3] speedup is
applicable for the Type 3 pairings defined next.

2.1. Type 3 pairings

Following [25], we denote by D the CM discriminant of E and set

e =

gcd(k, 6), if D = −3,
gcd(k, 4), if D = −4,
2, if D < −4,

(2)

and d = k/e. For example, BN curves [4] have k = 12, e = 6 and d = 2, whereas MNT curves [33] have k = 6, e = 2 and
d = 3. Now, E has a unique degree-e twist Ẽ defined over Fqd such that n | #Ẽ(Fqd) [28]. Let P̃2 ∈ Ẽ(Fqd) be a point of order
n, and let G̃2 = ⟨P̃2⟩. Then there is a monomorphism φ : G̃2 → E(Fqk) such that P2 = φ(P̃2) ∉ G1. The group G2 = ⟨P2⟩ is
the Trace-0 subgroup of E[n], so named because it consists of all points P ∈ E[n] for which Tr(P) =

∑k−1
i=0 π

i(P) = ∞,
where π : (x, y) → (xq, yq) is the Frobenius map. The monomorphism φ can be defined so that φ : G̃2 → G2 is
efficiently computable in both directions; thereforewe can identify G̃2 andG2, and consequentlyG2 can be viewed as having
coordinates in Fqd (instead of in the larger field Fqk ). The restriction of ê to G1 ×G2 gives a pairing tn : G1 ×G2 → GT that is
of the Type 3 variety because no efficiently-computable isomorphism from G2 to G1 is known. Several Type 3 pairings that
are faster to evaluate have been discovered. Among these are the ate pairing [28], the R-ate pairing [31], and Vercauteren’s
optimal pairing [38]. These pairings, which we will collectively denote by e3 : G1 × G2 → GT , have the property that there
is a fixed integer N (with n - N) such that e3(P,Q ) = ê(Q , P)N for all P ∈ G1, Q ∈ G2.

2.2. Type 2 pairings

If P ′

2 ∈ E[n] with P ′

2 ∉ G1 and P ′

2 ∉ G2, then G′

2 = ⟨P ′

2⟩ is an order-n subgroup of E(Fqk) with G′

2 ≠ G1 and G′

2 ≠ G2.
Bilinear pairings e : G1 × G′

2 → GT are of the Type 2 variety because the map Tr is an efficiently-computable isomorphism
from G′

2 to G1. These pairings have the property that hashing onto G′

2 is not feasible (other than by multiplying P ′

2 by a
randomly selected integer).

Consider now the Type 2 pairing e2 : G1 × G′

2 → GT defined by e2(P,Q ) = ê(Q , P)2N . Notice that this choice of pairing
is without much loss of generality since in any cryptographic application it makes no difference if the pairing is replaced by
its (2N)th power. As first shown in [30], the computation of e2 is easily reduced to the task of computing e3.

Lemma 1 ([30]). Let P ∈ G1 and Q ∈ G′

2. Then e2(P,Q ) = e3(P, Q̂ ), where Q̂ = Q − π f (Q ) and f = k/2.

Proof. First note that Q̂ ≠ ∞ since Q ∉ E(Fqf ). Moreover, Tr(Q̂ ) = Tr(Q )− Tr(π f (Q )) = ∞, and hence Q̂ ∈ G2. Finally,

e2(P,Q ) = ê(Q , P)2N

= ê(2Q , P)N

= ê(Q + Q̂ + π f (Q ), P)N

= ê(Q̂ , P)N · ê(Q + π f (Q ), P)N

= e3(P, Q̂ ),

since Q + π f (Q ) ∈ E(Fqf )whence ê(Q + π f (Q ), P) = 1 [23, Lemma IX.8]. �
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2.3. Comparing the performance of Type 2 and Type 3 pairings

Since points in G′

2 have coordinates in Fqk whereas points in G2 have coordinates in Fqd , it would appear that the ratio
of the bit lengths of points in G′

2 and G2 is k/d. Similarly, the ratio of the costs of addition in G′

2 and G2 can be expected to
be k2/d2 bit operations (using naive methods for extension field arithmetic). These ratios are given in Table 3 of [25]; see
also Table 5 of [19]. However, as observed in [16], points in G′

2 have a shorter representation which we describe next. We
emphasize that this representation can be used for all order-n subgroups G′

2 of E[n] different from G1 and G2.
Let P ′

2 be an arbitrary point from E[n] \ (G1 ∪ G2), and set G′

2 = ⟨P ′

2⟩. Define P1 =
1
kTr(P

′

2) so that the map

ψ : G′

2 → G1, Q →
1
k
Tr(Q ) (3)

is an efficiently-computable isomorphism with ψ(P ′

2) = P1. Finally, set P2 = c−1(P ′

2 − P1) for an arbitrary integer c ∈ Z∗
n .

Then P2 ∈ G2 and the map

ρ : G′

2 → G2, Q → Q − ψ(Q ) (4)

is an efficiently-computable isomorphism with ρ(P ′

2) = cP2.
Now, given a pointQ ∈ G′

2, one can efficiently determine the unique pointsQ1 ∈ G1 andQ2 ∈ G2 such thatQ = Q1+Q2;
namely, Q1 = ψ(Q ) and Q2 = ρ(Q ) = Q −Q1. Writing D(Q ) = (ψ(Q ), ρ(Q )), and letting H′

2 ⊆ G1 × G2 denote the range
of D, we have an efficiently-computable isomorphism D : G′

2 → H′

2 whose inverse is also efficiently computable. Hence,
without loss of generality, points Q ∈ G′

2 can be represented by a pair of points (Q1,Q2) with Q1 ∈ G1 and Q2 ∈ G2. Note
that arithmetic in G′

2 with this representation is component-wise. Thus the ratio of the bit lengths of points in G′

2 and G2 is
in fact (d + 1)/d, whereas the ratio of the costs of addition in G′

2 and G2 is (d2 + 1)/d2.
Table 2 of [16] lists the costs of performing basic operations in G1, G2 and G′

2 for a particular BN curve. The table confirms
the expectation that basic operations in G′

2 are only marginally more expensive than the operations in G2. One exception
is that testing membership in G′

2 is several times more expensive than membership testing in G2 since the former requires
two pairing operations.

In summary, we have shown that even though the basic operations in the Type 2 group G′

2 are indeed more expensive
than in the Type 3 group G2, the differences are not as high as previously reported. The same is true for the bit lengths of
points inG′

2 versusG2. The remainder of the paperwill compare the security and efficiency of protocols that use the pairings
e2 or e3. For consistency with the literature on pairing-based protocols, we will use multiplicative notation for elements of
G1, G2 and G′

2. In particular, the generators of these groups will be denoted by g1, g2 and g ′

2, and the identity element will
be denoted by 1.

3. Hardness assumptions in the asymmetric setting

Security of a pairing-based protocol is based on some hard problem in the respective pairing groups. The standard
practice is to argue the security of the protocol in terms of a reduction from the hard problem to breaking the protocol in an
appropriate security model. Suppose that we have a protocol, Protocol-2, described in the Type 2 setting whose security is
based on some hard problem P -2 in that setting. Also suppose that we have somemeans of obtaining a version of Protocol-
2, say Protocol-3, in the Type 3 setting which achieves the same functionality as Protocol-2. Simultaneously, we would like
the assurance that Protocol-3 is at least as secure as Protocol-2. One way to achieve this is to define a version of problem
P -2, say P -3 in the Type 3 setting, and then argue the security of Protocol-3 based on P -3. Now, if P -3 can be shown to
be at least as hard as P -2, then the assurance provided by the reduction for Protocol-3 is at least as high as the assurance
provided by the reduction for Protocol-2. If P -2 and P -3 are computationally equivalent, then the assurances provided by
the reductions are the same. Hence the security of Protocol-2 and Protocol-3 can be compared if one can find away to define
P -3 so that it is at least as hard as P -2.

For example, as shown in [16], security of BLS in the Type 2 setting is based on the co-DHP problem (compute hz given
h ∈ G1 and g ′

2
z

∈ G′

2), whereas security of BLS in the Type 3 setting is based on the co-DHP* problem (compute hz given
h, gz

1 ∈ G1 and gz
2 ∈ G2). Furthermore, these two problems are equivalent if the generators g1, g2, g ′

2 are appropriately
chosen. We next show equivalence of the Type 2 and Type 3 variants of the bilinear Diffie–Hellman (BDH) problem.

3.1. The bilinear Diffie–Hellman assumption

BDHwas originally defined in the symmetric setting [8] and later extended to the asymmetric setting [26,13]. It is possible
to define several versions of the problem in the asymmetric setting — see e.g., [37,12] and Remark 2. We consider the
following version of the problem in Type 2 used by Galindo in [26] and which is the same as the problem discussed in [13]
when specialized to Type 2.
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Definition 1 (Bilinear Diffie–Hellman Problem in Type 2 (BDH-2)). Given gα1 ∈ G1 and g ′

2
β
, g ′

2
γ

∈ G′

2 for α, β, γ ∈R Zn, the
BDH-2 problem is to compute the Type 2 pairing value e2(g1, g ′

2)
αβγ . The BDH-2 assumption asserts that BDH-2 is hard.

The decisional version DBDH-2 of the problem is to decide, given (gα1 , g
′

2
β
, g ′

2
γ
, Z) ∈ G1 × G′

2 × G′

2 × GT , whether or not
Z = e2(g1, g ′

2)
αβγ . The DBDH-2 assumption is that DBDH-2 is hard.

We define a version of the BDH-2 problem in Type 3 as follows.

Definition 2 (Bilinear Diffie–Hellman Problem in Type 3 (BDH-3)). Given gα1 , g
β

1 , g
γ

1 ∈ G1 and gβ2 , g
γ

2 ∈ G2 for α, β, γ ∈R Zn,
the BDH-3 problem is to compute the Type 3 pairing value e3(g1, g2)αβγ . The decisional version DBDH-3 is defined
analogously to DBDH-2. The BDH-3 (resp. DBDH-3) assumption asserts that BDH-3 (resp. DBDH-3) problem is hard.

At first glance itmay appear that BDH-3 is a stronger assumption than BDH-2 as two extra elements, namely gβ1 , g
γ

1 ∈ G1,
are provided as input to BDH-3. However, note that one can easily compute these values in BDH-2 by virtue ofψ . Hence we
consider these two problems as natural counterparts and in fact they are equivalent as we show in Lemma 3. Essentially the
same argument also applies for the decisional versions DBDH-2 and DBDH-3.

Lemma 2. Let g1, g ′

2, g2 be generators of G1,G′

2,G2 with g1 = ψ(g ′

2) and g2 = (ρ(g ′

2))
1/c for some c ∈ Z∗

n . Then
e2(g1, g ′

2) = e3(g1, g2)2c .
Proof. First note that g ′

2 = g1gc
2 . Hence, by Lemma 1, we have

e2(g1, g ′

2) = e3


g1,

g ′

2

π f (g ′

2)


= e3


g1,

g1gc
2

g1(π f (g2))c


.

The result then follows if we can establish that π f (g2) = g−1
2 .

Since G2 is the q-eigenspace of π , we have π(g2) = gq
2 . Hence π

k(g2) = gqk
2 = g2 and so

g(q
f
−1)(qf +1)

2 = 1. (5)

Since n - qf − 1, (5) implies that gqf +1
2 = 1, so π f (g2) = g−1

2 . �

Lemma 3. Let g1, g ′

2, g2 be generators of G1,G′

2,G2 with g1 = ψ(g ′

2) and g2 = (ρ(g ′

2))
1/c for some c ∈ Z∗

n . Then BDH-2 and
BDH-3 are equivalent.

Proof. Given a BDH-2 problem instance (gα1 , g
′

2
β
, g ′

2
γ
), we apply ρ : G′

2 → G2 to obtain gβ2 = (ρ(g ′

2
β
))1/c and

gγ2 = (ρ(g ′

2
γ
))1/c and apply ψ : G′

2 → G1 to obtain gβ1 = ψ(g ′

2
β
) and gγ1 = ψ(g ′

2
γ
). The resulting BDH-3 problem

instance (gα1 , g
β

1 , g
γ

1 , g
β

2 , g
γ

2 ) is given to the BDH-3 solver which returns e3(g1, g2)αβγ fromwhich the solution e2(g1, g ′

2)
αβγ

of the original BDH-2 problem is obtained by Lemma 2. This establishes that BDH-2 ≤ BDH-3.
Conversely, given a BDH-3 problem instance (gα1 , g

β

1 , g
γ

1 , g
β

2 , g
γ

2 ), we compute g ′

2
β

= gβ1 (g
β

2 )
c and g ′

2
γ

= gγ1 (g
γ

2 )
c . The

resulting BDH-2 problem instance (gα1 , g
′

2
β
, g ′

2
γ
) is given to the BDH-2 solver which returns e2(g1, g ′

2)
αβγ . Thereafter, the

solution e3(g1, g2)αβγ of the original BDH-3 problem is obtained showing that BDH-3 ≤ BDH-2. �

Remark 1 (Knowledge of c). The formal equivalence between (D)BDH-2 and (D)BDH-3 is established under the condition
that the parameter c is known. No such equivalence is known if c is unknown, nor is there any indication that one problem
is weaker than the other. Note that BDH-2 can be solved either by solving the Diffie–Hellman problem (DHP) in G1 or G′

2 or
by solving co-DHP. Similarly, BDH-3 can be solved either by solving DHP in G1 or G2 or by solving co-DHP*. Currently there
is no evidence to suggest that DHP is any easier in G2 than in G′

2, or, for that matter, co-DHP* is any easier than co-DHP
(see Section 2.3 of [16] for a discussion on the relationship between co-DHP and co-DHP*).

Remark 2 (Variants of BDH). As already noted, it is possible to formulate different versions of BDH in the asymmetric
setting. Some of these variants have been used to argue the security of some existing protocols. For example, Smart and
Vercauteren [37] discuss several such variants (including the relativized versions) and their relationships and show that the
security of different versions of BF-IBE relies on different versions of the BDH problem. Boyen provides a general statement
of the problem (called BDH’) in [12] for all knownpairing types, the earliestmention ofwhich can be traced to [13].2 In Type 2
the problem is to compute e2(g1, g ′

2)
αβγ given gα1 , g

β

1 ∈ G1 and g ′

2
β
, g ′

2
γ

∈ G′

2; we call this problem BDH-2b. Clearly BDH-2b
and BDH-2 are equivalent. The analogous problem in Type 3, which we call BDH-3b, is obtained by replacing elements of G′

2
by elements ofG2 and the task is to compute e3(g1, g2)αβγ . However, it is not knownwhether BDH-3b is equivalent to BDH-3
(or for that matter to BDH-2 or BDH-2b). Still another variant in Type 3, which we call BDH-3c, is to compute e3(g1, g2)αβγ

given gα1 ∈ G1 and gβ2 , g
γ

2 ∈ G2. BDH-3c is attributed to Galbraith in [12]. It is easy to see that BDH-3 ≤ BDH-3b ≤ BDH-3c,
but currently we do not know anything in the reverse direction.

2 The statement allows uniform description of the problem across different settings. However, that does not imply that the problem remains equivalent
in different settings. In other words, though the ‘‘statement complexity’’ remains the same the computational complexity might be quite different!
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3.2. Other assumptions

A large array of complexity assumptions have been proposed so far in pairing groups; see [12] for a listing of such
assumptions. Most of these assumptions come in two flavors — computational and decisional as in the case of BDH. Many
of these assumptions were initially introduced in the symmetric setting to be generalized later in the asymmetric setting.
As we have noted, some authors [37,19,18] also used the notion of relativized assumption in the Type 3 setting — assuming
that the problem remains hard even when the adversary is given oracle access to ψ .

Their apparent diversity notwithstanding, the complexity assumptions in pairing groups can be broadly classified into
two categories.

(i) Assumptionswhere the problemdoes not explicitly involve any element fromGT —examples are co-DHP, Linear, Strong
DH, Hidden SDH, and Poly-SDH.

(ii) Assumptions where the problem involves a pairing computation and hence element of GT — examples are BDH, Bilinear
DH Inversion, and Bilinear DH Exponent.

Given a hardness assumption in the Type 2 setting, our primary concern here is to formulate its natural counterpart in
Type 3. Note that if one is given some element g ′

2
z

∈ G′

2, then one can easily obtain gz
1 = ψ(g ′

2
z
) without knowing z. So

if the input to problem P -2 includes g ′

2
z then that implies that gz

1 ∈ G1 is also part of the input. However, that is not the
case for Type 3 as ψ is not known in that setting. Hence, as in the case of BDH and co-DHP, we insist that both gz

1 and gz
2

be included in the input to P -3 in order to make it the natural counterpart of P -2 in the Type 3 setting. For an assumption
in Category (i) above, we can then use the argument of Lemma 2 of [16] (which establishes the equivalence of co-DHP and
co-DHP*) to show that P -3 is equivalent to P -2, while the argument put forth in Lemma 3 above for the case of BDH can be
readily adapted to show equivalence between P -2 and P -3 for an assumption in Category (ii).

Remark 3 (Weakening Assumptions). For some cryptographic protocols in Type 3, it might be possible to drop one or more
elements ofG1 from the statement ofP -3without affecting the reduction. For example, BF-IBE-3 can be proven secure under
BDH-3b (see Section 4.1.1). However, we do not know any protocol that can be proven secure under the seemingly weaker
assumption BDH-3c. Note that the input to BDH-3c includes only gα1 ∈ G1 along with gβ2 , g

γ

2 ∈ G2, whereas all known
security reductions based on BDH in the asymmetric setting require at least one of gβ1 or gγ1 as part of the problem input.
The situation is similar for the ‘‘weaker statement’’ of the Linear assumption in Type 3 as stated in [12] (also attributed to
Galbraith). In fact an interesting open question is to what extent one can prune P -3 and still use it in the security reduction
of a natural cryptographic problem.

4. Protocols in the asymmetric setting

We revisit some existing pairing-based protocols in the asymmetric setting. Some of these protocols employ the
isomorphism ψ in the protocol itself and some others only in the security reduction. The purpose of this investigation is
twofold— to determine the exact role played byψ in the functionality and security of these protocols and then to investigate
whether it is possible to avoid the use of ψ altogether.

4.1. Protocols where ψ is used in the security argument only

Several authors have usedψ to argue the security of pairing-based protocols in the asymmetric settings— these protocols
include signature [10,5,7], encryption [8,18], and key agreement [19] schemes.

The case of the BLS signature scheme has already been discussed in detail in [16]. Several other signature schemes also
useψ in the security reduction including Boneh–Boyen short signature scheme [5], the Boneh–Boyen–Shacham short group
signature scheme [7], and the Delerablé-Pointcheval anonymous short group signature [15]. In a later version [6] Boneh
and Boyen modified the security argument of their short signature scheme in [5] to remove the necessity of ψ; the same
argument can also be used for the Boneh–Boyen–Shacham short group signature scheme.

We would like to argue in general that it is possible to avoid ψ in the security argument. As illustrative examples
we consider the case of BF-IBE and an identity-based key agreement protocol. Our arguments are quite general and are
applicable to other protocols.

4.1.1. Boneh–Franklin IBE
For simplicity we focus on the basic version of the BF-IBE protocol (called BasicIdent in [8]). This protocol was originally

described in the symmetric setting but can also be implemented in the asymmetric setting [26,37]. In contrast to previous
findings, our study indicates that Type 3 is indeed a better choice than Type 2 for BF-IBE taking into account functionality,
security and efficiency.
BF-IBE-2. Themaster secret of the key generation center (KGC) is x∈R Zn and the corresponding public key is gpub = g ′

2
x
∈ G′

2.
Given a user identity id ∈ {0, 1}∗, the public key of the user is hid = H1(id) ∈ G1, where H1 : {0, 1}∗ → G1 is a publicly
computable hash function. The corresponding private key is did = hx

id. To encrypt a message M ∈ {0, 1}n a sender chooses
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r ∈R Zn and sends ⟨g ′

2
r
,M ⊕ H2(e2(hid, gpub)r)⟩ where H2 : GT → {0, 1}n is another publicly computable hash function. The

receiver computesH2(e2(did, g ′

2
r
)) and then xors it with the second component of the ciphertext to obtainM . The decryption

process succeeds since e2(did, g ′

2
r
) = e2(hx

id, g
′

2)
r

= e2(hid, gpub)r . The security of BF-IBE-2 is argued by a reduction from
BDH-2 to the breaking of BF-IBE-2.
BF-IBE-3. The above scheme can be directly implemented in Type 3 — the KGC’s public key is gpub = gx

2 ∈ G2 and the
ephemeral key in the ciphertext will be g r

2 ∈ G2. The security of BF-IBE-3 is argued by a reduction from BDH-3b to the
breaking of BF-IBE-3.

A variant of BF-IBE in Type 3 can be obtained by hashing the identities into G2. We call this variant BF-IBE-3bwhich gives
a smaller ciphertext overhead. Such an optimization is not possible for BF-IBE-2 as we do not know how to hash into G′

2.
BF-IBE-3b. The KGC’smaster public key is gpub = gx

1 ∈ G1 whileH1 : {0, 1}∗ → G2 and so both hid = H1(id) and did are inG2.
To encryptM ∈ {0, 1}n a sender chooses rR ∈ Zn and sends ⟨g r

1,M ⊕H2(e(gpub, hid)
r)⟩. The receiver computes H2(e(g r

1, did))
and xors it with the second component of the ciphertext to obtain M . The security of BF-IBE-3b is argued by a reduction
from BDH-3b.

The ciphertext overhead in BF-IBE-3b is one element of G1 (namely g r
1), while that in BF-IBE-2 is one element of G′

2.
Furthermore, exponentiation in G1 is faster than exponentiation in G′

2, and hence BF-IBE-3b is a better choice as far as
performance is concerned.

Smart and Vercauteren [37] observed that the security of BF-IBE-3 can be reduced to either BDH-3c with oracle access to
ψ or to BDH-3b without such oracle access. In the first case one does not know how to simulate the oracle and in the second
case they consider the problem (which they call coBDH1,2) to be ‘‘somewhat unnatural’’. Based on these observations they
conclude that one should use a pairing with an efficiently-computable isomorphism, i.e., Type 2 for BF-IBE. However, as we
have already noted, BDH-3b is at least as hard as BDH-2 and so Type 3 is overall a better choice for BF-IBE.

4.1.2. SCK-1 identity-based key agreement
In [19], Chen, Cheng and Smart examine the security and efficiency of several identity-based key agreement protocols in

the context of different types of pairings. They show that the protocol originally proposed by Smart [36] and later modified
by Chen and Kudla [20] (called SCK-1 and SCK-2 in [19]) and an enhanced version due to McCullagh and Barreto [32,21]
(called e-MB-2 in [19]) can be proven secure in the asymmetric setting. Both reductions employ the map ψ and hence in
Type 3 depend on a relativized assumption, i.e., oracle access to ψ . It should be noted that the protocols themselves do not
require ψ .

The security reductions are quite involved (and run into several pages). However, it is possible to avoid the mapψ in the
security argument by including some extra elements of G1 in the problem instance of the respective complexity assumption
for Type 3 in the manner described in Section 3. Here we provide a high-level description of how this can be achieved for
the security argument of SCK-1. A similar approach is applicable for SCK-2 and e-MB-2.
Protocol SCK-1 in Type 3. The KGC’s master secret key is s∈R Zn and the corresponding master public key is R = g s

2. Given
an identity string ID ∈ {0, 1}∗, the KGC obtains the public key as hID = H1(ID), where H1 : {0, 1}∗ → G1 is a publicly
computable hash function. The corresponding private key is dID = hs

ID ∈ G1. Two parties, A and Bwith key pairs (hA, dA) and
(hB, dB) respectively, run the protocol as follows:

A → B : EA = gx
2, where x∈R Zn

B → A : EB = gy
2, where y∈R Zn.

A (resp. B) checks whether EB (resp. EA) belongs to G2. If the check is successful A computes K = e3(hx
B, R) · e3(dA, EB) and

(EB)x = gxy
2 while B computes K = e3(h

y
A, R) · e3(dB, EA) and (EA)y = gxy

2 . The session key is SK = H2(A, B, EA, EB, g
xy
2 , K),

where H2 is another publicly computable hash function.
The authors consider the randomoraclemodel. Session key security of SCK-1 in the Type 3 setting is established assuming

the hardness of BDH-3c with oracle access to ψ , and forward secrecy under the computational Diffie–Hellman (CDH)
assumption in G2 with oracle access to ψ . We do not elaborate on the security arguments — interested readers can consult
Theorem 1 and 2 in [19]. Instead, we only indicate how ψ can be avoided.

In Theorem 1, the simulator invokes the oracle ψ to compute either ψ(gβ2 ) or ψ(gβr2 ) where gβ2 is part of the
BDH-3c problem instance and r ∈R Zn is chosen by the simulator. The simulator can easily compute the corresponding values
without the oracle if it is provided with gβ1 ∈ G1 as part of the problem instance, which means the security now depends
on BDH-3b. This is perfectly acceptable, because the security of SCK-1 in Type 2 depends upon BDH-2 and we know that
BDH-3b is at least as hard as BDH-2.

In Theorem 2, given ga
2 , g

b
2 and oracle access toψ , the simulator interacts with the adversary to compute gab

2 . The oracle is
used in a pairing computationwhich is either of the form e3(ψ(X), Y ) or e3(ψ(Y ), X)where (X, Y ) are the protocolmessages
exchanged in a key agreement session. At least one of thesemessages, sayX ∈ G2, is chosen by the simulator and set to either
gar
2 or gbr

2 , where r ∈R Zn is chosen by the simulator. So the simulator can computeψ(X)without oracle access toψ if she is
also provided with ga

1 and gb
1 as part of the problem instance. This together with the fact that e3(ψ(Y ), X) = e3(ψ(X), Y )

now allows the simulation to go through. Note that the alternative formulation of CDH in G2 used here (i.e., compute gab
2

given ga
1 , g

a
2 , g

b
1 , g

b
2 ) is equivalent to CDH in G′

2 if the generators are appropriately chosen.
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4.2. Protocols employing ψ

Some protocols employ ψ in the protocol itself. For example consider the verifiably encrypted signature scheme and
ring signature scheme of Boneh, Gentry, Lynn and Shacham (BGLS) [9] and the group signature scheme with verifier-local
revocation of Boneh and Shacham [11]. Here we describe the ring signature scheme and its security argument in the original
Type 2 setting and then show how one can easily modify both to allow working in the Type 3 setting. A similar argument
applies to the verifiably encrypted signature scheme. As observed in [37], the Boneh–Shacham group signature scheme
cannot be implemented in either Type 2 or Type 3 (cf. footnote 3).

A ring signature on a message is constructed using the public keys of a set U of users and the private key of a single user
u ∈ U . The verification process gives the assurance that the signature was produced using one of the private keys of U but
the verifier should not be able to determinewhich particular u ∈ U signed themessage. This is the so-called signer-ambiguity
property of a ring signature.
BGLS-2 ring signature scheme. Let e2 : G1 × G′

2 → GT be a Type 2 pairing and ψ : G′

2 → G1 be an efficiently-computable
isomorphism with ψ(g ′

2) = g1. The signature scheme employs a hash function H : {0, 1}∗ → G1.
An individual signer’s private key is an integer x∈R Zn and her public key is X = (g ′

2)
x. Given the public keys X1, . . . , Xℓ

of a set U of ℓ users, a message M ∈ {0, 1}∗, and a private key xs corresponding to one of the users in U whose public key
is Xs, the signer chooses ai ∈R Zn for each i ≠ s and computes h = H(M) and σs = (h/ψ(

∏
i≠s X

ai
i ))

1/xs . She also computes
σi = gai

1 for each i ≠ s. The ring signature on M is σ = ⟨σ1, . . . , σℓ⟩. Given (M, σ ), the verifier computes h = H(M) and
accepts if and only if e2(h, g ′

2) =
∏ℓ

i=1 e2(σi, Xi).
The correctness of the verification algorithm can be easily checked using the bilinear property. We show this for ℓ = 2

and s = 1. For h = H(M), we have σ1 = (h/ψ(Xa2
2 ))

1/x1 = (h/ga2x2
1 )1/x1 and σ2 = ga2

1 . Thus

e2(σ1, X1)e2(σ2, X2) = e2((hg
−a2x2
1 )1/x1 , g ′

2
x1)e2(g

a2
1 , g

′

2
x2) = e2(h, g ′

2).

There are two aspects of security for a ring signature scheme— signer ambiguity and unforgeability. Using a probabilistic
argument it was shown in [9] that the signer’s identity is unconditionally protected. Unforgeability is based on the following
complexity assumption: given gab

1 and g ′

2
b it is hard to compute ga

1 . We call it the co-divisible computational Diffie–Hellman
(co-DCDH) assumption — see [2] for the statement of DCDH in the Diffie–Hellman setting. Here we briefly reproduce the
original security argument.

Security argument. For simplicity, we assume ℓ = 2; the argument can be easily extended to any ℓ > 2. Given gab
1 and g ′

2
b,

the challenger S sets X1 = g ′

2
b and X2 = (g ′

2
b
)x2 for some x2 ∈R Zn, and gives X1, X2 to the adversary A. On receiving a

hash query, S flips a coin which shows 0 with some probability p and 1 otherwise; S selects r ∈R Zn and returns (gab
1 )

r if the
outcome of the coin flip is 0, and returns ψ(g ′

2
b
)r in the other case. On receiving a signing query for a message M , S aborts

if the outcome of the coin flip on the hash query for M was 0. Otherwise, H(M) = ψ(g ′

2
b
)r where r was chosen by S, and

S returns the signature σ = ⟨g r−a2x2
1 , ga2

1 ⟩ for some a2 ∈R Zn. When A outputs a valid forgery on some message M , S first
checks that the output of the coin flip for the corresponding hash query onM was 0; otherwise it aborts. Then, H(M) = gabr

1
for some r chosen by S and S returns (σ1σ

x2
2 )

1/r as the solution to its own challenge. This completes the argument.
The mapψ is used in the protocol itself when the signer computesψ(Xai

i ), and also in the security argument to compute
ψ(g ′

2
b
)when simulating the random oracle H . Both these uses, however, can be easily avoided as we detail below.

BGLS-3 ring signature scheme. Let e : G1 × G2 → GT be a Type 3 pairing and H : {0, 1}∗ → G1 a hash function. The private
key of an individual signer is x∈R Zn and her public key is (W = gx

1, X = gx
2). A certification authority entrusted with

certifying the public key should verify that W ∈ G1, X ∈ G2, W ≠ 1, X ≠ 1, and e(g1, X) = e(W , g2). Note that the public
key effectively gives ψ(X) = W though we do not have any means to compute ψ when supplied with a random element
of G2. Except for this modification BGLS-3 is identical to BGLS-2. In the signing algorithm, the signer now uses Wi in place
of ψ(Xi). The unforgeability of BGLS-3 can be established under the co-DCDH* assumption that given gab

1 , gb
1 , g

b
2 it is hard

to compute ga
1 ; co-DCDH and co-DCDH* are equivalent under the assumption that the parameter c (cf. Lemma 2) is known.

The security argument for BGLS-2 can be modified in the obvious way by setting gb
1 = ψ(gb

2). Breaking BGLS-3 is thus seen
to be equivalent to solving co-DCDH∗.

Note that in BGLS-3 the signer only needs theG1 component of the public keys of the other users inU whereas the verifier
only needs the G2 component of the public keys of users in U . They can respectively ignore the other component from G2
or G1, thus leading to decreased communication bandwidth and computational cost than in BGLS-2.

5. Transforming a protocol from Type 2 to Type 3

As case studies we have discussed in the last section how some known protocols in the Type 2 setting can be transformed
to the Type 3 setting without affecting the functionality or security. We generalize these observations and propose some
guidelines on how to transform an arbitrary Type-2 protocol, Protocol-2, to a Type-3 protocol, Protocol-3, where Protocol-3
is at least as secure as Protocol-2 and it is possible to achieve a better performance.



S. Chatterjee, A. Menezes / Discrete Applied Mathematics 159 (2011) 1311–1322 1319

Before delving into the guidelines let us consider a (hypothetical) situation where such a transformation is not possible.
Suppose that a protocol in the Type 2 setting involves a hash function H : {0, 1}∗ → G′

2 and the following steps – given a
public string str ∈ {0, 1}∗, first obtain X = H(str) ∈ G′

2 and then computeψ(X) ∈ G1. This protocol cannot be transformed
into Type 3 because given a random X ∈ G2 one does not know how to computeψ(X) ∈ G1. However, the protocol cannot
be implemented in Type 2 either, because we do not know how to hash into G′

2 in the first place.3 Hence in the following we
assume that Protocol-2 does not require hashing into G′

2 and argue that it is always possible to naturally transform it into
Protocol-3.

Suppose we have a protocol, Protocol-2, and its security reduction with respect to some hard problem P -2. Let P -3 be
the natural counterpart of P -2 in Type 3 as described in Section 3. Our aim is to obtain the corresponding Protocol-3 with
an analogous security reduction with respect to P -3. Protocol-2 will typically include elements from G1,G′

2 and GT and so
also the corresponding security reduction. (In the security reduction, the challenger simulates the protocol environment for
an attacker based on the given instance of the hard problem.) The elements of G1 and GT will not be affected in any way
when we convert Protocol-2 and its security reduction to Type 3. So our primary concern will be with the elements of G′

2.
Let g1, g ′

2, g2 be the generators of G1, G′

2 and G2 respectively, where g1 = ψ(g ′

2) and g2 = ρ(g ′

2) (for simplicity we
assume c = 1). Recall from Section 2.2 that for any elliptic curve with an even embedding degree, the task of computing the
Type 2 pairing e2 : G1 × G′

2 → GT can be easily reduced to the task of computing the Type 3 pairing e3 : G1 × G2 → GT .
Recall also from Section 2.3 that every element X ∈ G′

2 can be represented by the pair (X1, X2) = (ψ(X), ρ(X)) ∈ G1 × G2.
Given Protocol-2 and its reductionist security argument with respect to P -2, let us first consider the following ‘preliminary’
transformation. Represent each X ∈ G′

2 appearing in Protocol-2 by (X1, X2) ∈ G1 × G2. Also make similar changes in the
problem instance of P -2 and the security reduction.

It is easy to see that any protocol in the Type 2 setting as well as its security argument can be rewritten in this way where
elements of G′

2 are represented by elements of G1 × G2. By Lemma 2, computing a Type 2 pairing e2(·, X) is equivalent to
computing the Type 3 pairing value e3(·, X2), and hence it is possible to employ e3 directly instead of e2 in the protocol. It is
now possible to argue the security of this ‘‘modified’’ protocol with respect to P -3. This new representation allows a better
performance than the conventional representation of a protocol in the Type 2 setting without affecting functionality and
security.

However, just because the protocol is now described in terms of elements of G1, G2 and GT does not necessarily mean
that we are no longer in the Type 2 setting. What really changed is the representation of elements of G′

2, i.e., each X ∈ G′

2
involved in Protocol-2will nowbewritten as (ψ(X), ρ(X)) ∈ G1×G2. But for some protocols (and their security arguments)
it might be sufficient to work only with the G2 component of X and the G1 component is actually redundant. In that case
one can drop those redundant elements of G1 from the protocol description without affecting functionality and security.
Themodified protocol will now be in the Type 3 setting and (in most cases) allows a still better performance.

We illustrate this process of transformation with an example — the SCK-1 protocol of Section 4.1.2. We start with the
protocol in Type 2 with new representation of G′

2. Then for each X = (X1, X2) ∈ G′

2 in the protocol description, check
whether X1 = ψ(X) ∈ G1 is necessary for the protocol or the security argument; if not then X1 is dropped. At the end we
get the corresponding protocol description in Type 3.
Protocol SCK-1 in Type 2. The KGC has amaster secret key s∈R Zn and a correspondingmaster public key R = g ′

2
s
= (g s

1, g
s
2) =

(R1, R2) ∈ G1 × G2. Given an identity string ID ∈ {0, 1}∗, the corresponding public and private keys are obtained as
in Section 4.1.2, i.e., hID = H1(ID) ∈ G1 and dID = hs

ID ∈ G1. Two parties, A and B with key pairs (hA, dA) and (hB, dB)
respectively, run the protocol as follows:

A → B : X = g ′

2
x
= (gx

1, g
x
2) = (X1, X2), where x∈R Zn

B → A : Y = g ′

2
y
= (gy

1, g
y
2) = (Y1, Y2), where y∈R Zn.

On receiving Y , A first checks whether Y belongs to G′

2. If the check is successful she computes K = e2(hx
B, R) · e2(dA, Y ) and

then the session key SK = H2(A, B, X, Y , Y x, K). B follows an analogous procedure to compute the same session key.
In our new representation of G′

2, testing whether Y belongs to G′

2 amounts to deciding whether Y1 belongs to G1 and
Y2 belongs to G2 and then computing a product of pairings. Similarly, computing Y x

∈ G′

2 amounts to computing Y x
1 ∈ G1

and Y x
2 ∈ G2. Also note that e2(·, R) can be easily computed from e3(·, R2) and similarly e2(·, X) and e2(·, Y ). So the new

representation of G′

2 allows a much better performance than the conventional representation (cf. Section 2.3). However, we
are still in the Type 2 setting.

Now we consider whether it is possible to drop any of the G1 components R1, X1, Y1 of the G′

2 elements R, X, Y from the
protocol description without affecting functionality and security. This can be a two-step process. First we check whether,
for example, X1 = ψ(X) (and not just X) is explicitly used at any stage in the protocol or the security argument. If there is
no such use we discard X1 from the protocol description. Otherwise in the next step we check whether it is still possible to
obtain X1 without recourse to ψ . In that case also we drop X1 from the protocol description.

Investigating this way we observe that R1 is not used in the protocol but the simulator needs it in the security argument.
However, in the simulation R1 is provided as part of the original problem instance so we can drop it from the protocol

3 For example, the Boneh–Shacham group signature scheme with verifier-local revocation [11] requires precisely these two steps and hence cannot be
implemented in either Type 2 or Type 3. The scheme can be implemented in Type 1 and Type 4 [17].
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description. Next consider the G1 component of the protocol messages, i.e., X1 and Y1. They too do not play any independent
role in the protocol (apart from being a part of the representation of X and Y ) while in the security argument one of them
(but not both) is explicitly used by the simulator. So it may appear at first sight that we have to provide X1 and Y1 as part
of the protocol message. However, in a typical simulation of a key agreement session at least one of the messages (say X)
is chosen by the simulator. As we already argued in Section 4.1.2, the simulator can directly compute X1 based on what she
received as part of the problem instance. Sowe can drop X1 and Y1 andmodify the protocol so that the protocolmessages are
elements of G2 only (i.e., X2, Y2). Note that in the modified protocol A derives the session key as SK = H2(A, B, X2, Y2, Y x

2 , K)
(and analogously for B).

This modified protocol achieves a better performance both in terms of communication bandwidth and computational
cost because the users are no longer burdened with the unnecessary G1 components of the messages and the master public
key. Once these G1 components are dropped there is noway to obtain the conventional representation of the corresponding
elements of G′

2 or to apply ψ to them and we are actually in the Type 3 setting.
The transformation discussed above gives us the essential cue for the actual transformation from Protocol-2 to

Protocol-3. Namely, for each X ∈ G′

2 involved in a particular step of Protocol-2 or its security argument, the corresponding
step in Protocol-3 or its security argument requires the computation of X2 ∈ G2, and also X1 ∈ G1 ifψ(X) is necessary for the
protocol or its security argument.4 Note that in Protocol-3 and its security argument, X2 can be obtained in the same way as
X in the case of Protocol-2. However, we must have somemeans to obtain X1 in Type 3 when necessary. The transformation
will fail only when we are unable to do so.

In Protocol-2, X can be part of the static data such as the private key, the public key or the public parameters, or the
‘‘run-time’’ data, e.g., a signature, a ciphertext, or the ephemeral key in a key agreement protocol. Given Protocol-2 and its
security reduction, we consider these situations separately for the conversion.
Private data contains an element X ∈ G′

2. If either the protocol or the security reduction requires ψ(X) then include both
X1 ∈ G1 and X2 ∈ G2 in the private information in Protocol-3. If neither requires ψ(X) then include only X2.
Public data contains an element X ∈ G′

2. X can be part of the public key of a user when in the traditional public key setting
or it can be part of the KGC’s public parameters when in the identity-based setting. Whatever be the case, the entity who
generated X must also know its discrete log with respect to a known base in G′

2 (since hashing into G′

2 is not feasible). There
are two possibilities depending on whether the protocol uses ψ(X) or not.
1. Protocol-2 employs ψ(X): Replace X = g ′

2
x in the public data of Protocol-2 with X1 = gx

1 ∈ G1 and X2 = gx
2 ∈ G2

in Protocol-3. This is always doable because the entity who generated X must know x. In the traditional PKI setting a
certification authority entrusted with certifying the public key can easily verify whether they are properly generated or
not, and in the identity-based setting they are assumed to be properly generated by the trusted KGC. If in Protocol-2 a user
Alice requires only ψ(X) (resp. X) then she will be concerned with only X1 (resp. X2) in Protocol-3. This is the case for the
BGLS-3 ring signature schemewhich, aswe have already noted, performs better than the BGLS-2 ring signature because now
the ring signer is concerned only with the G1 component of the public key of the other signers in the group whereas the
verifier is concerned only with the G2 components. They can respectively ignore the G2 and G1 components of the public
key leading to decreased communication bandwidth.
2. ψ(X) is necessary for the security argument of Protocol-2: Replace X = g ′

2
x in Protocol-2 with X2 = gx

2 in Protocol-3,
as was done in the case of BF-IBE-3 in Section 4.1.1, and BLS-3 and Waters-3a in [16]. This allows smaller public keys and
hence (sometimes) less computation in Protocol-3. In some protocols it might still be necessary to include X1 = gx

1 in the
public key. For example, X1 may be required for the reduction to go through as in the BGLS-3 aggregate signature scheme
(see [16]). Note that even if X1 were included in the public key or the public parameters, it would never be required in the
actual protocol run. So the userswill effectively ignore X1 in their computation, which in turnwill lead to better optimization
in terms of communication bandwidth and perhaps even computational cost compared to Protocol-2.
Protocol message contains elements of G′

2. Suppose that in Protocol-2 Bob receives a message from Alice containing some
Y ∈ G′

2. Alice may compute Y either solely based on her secret information or in combination with some public data, such
as Bob’s public key or the system-wide public parameters. If Bob requires ψ(Y ) then in Protocol-3 Alice should send both
Y1 ∈ G1 and Y2 ∈ G2 to Bob. This is doable but, to the best of our knowledge, is not required by any existing protocol.
If Bob’s computation in Protocol-2 depends only on Y then it is sufficient in Protocol-3 to send only Y2. However, for the
known security argument of some protocols to go through, it might be necessary to send Y1 also. For example, in the security
argument of BF-IBE-3 it is sufficient to send the G2 component only of the ephemeral key, while for the security argument
of theWaters-3b signature scheme (see [16]) we need both the G1 and G2 components for one of the signature components.
In the former case, Protocol-3 will be more optimized than Protocol-2 while it will be at least as efficient as Protocol-2 in
the latter.

Now consider the security reduction for Protocol-3 where the challenger simulates the protocol environment for an
adversary based on the problem instance in the given security model. Note that Protocol-3 is derived based on both
Protocol-2 and its security reduction. Once we have obtained Protocol-3 in this manner, it is relatively straightforward to
modify the security argument of Protocol-2 to get an analogous security argument for Protocol-3.

4 Intuitively, we consider ψ(X) to be ‘necessary’ if either ψ(X) or some ψ(Y ) is required in the protocol or the security argument where Y ∈ G′

2 is
‘derived’ from X . We do not know how to formulate this statement rigorously.
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Like the protocol, our only concern here is with those elements X ∈ G′

2 for which the challenger needs to computeψ(X)
in the simulation. Note that if X is part of the problem instance of P -2 then by definition both X1 and X2 must be part of the
problem instance of P -3. So we only need to consider the following two situations in the simulation in Type 2 and show
how one can obtain X1 in each case in Type 3.
1. X is part of the message sent by the adversary: This can only happen if there is an analogous step in Protocol-2 and has
been taken care of when we transformed it into Protocol-3. Namely the corresponding message in Protocol-3 includes both
X1 and X2 and hence the adversary must send both to the challenger.
2. The challenger generates X: The challenger cannot generate this by hashing into G′

2. So the challenger can generate X
either solely based on its own random coin tosses, or along with that randomness it may also depend on the adversary’s
input or the problem instance P -2. Whatever be the case, the challenger will have enough information to generate both X1
and X2 in the security reduction of Protocol-3.

6. Concluding remarks

Many pairing-based protocols in the asymmetric setting rely on the existence of an efficiently-computable isomorphism
from G2 to G1, i.e., the Type 2 setting. Some earlier works in pairing-based cryptography gave the impression that such an
isomorphism is necessary for the functionality or the security of the protocols (or both). In contrast, we have argued that
relying on such an isomorphism is more of an artifact of initial research in this area rather than an actual necessity as far
as the functionality and security of the protocols are concerned. Moreover, restricting a protocol to such a setting in most
cases has a negative impact on performance.

In particular, we have provided evidence in support of the following assertions:

(1) For any hard problemP -2 in the Type 2 setting, there is a natural counterpartP -3 in the Type 3 setting which is equally
hard.

(2) Any protocol Protocol-2 and its security argument based on P -2 in the Type 2 setting can be naturally converted to
Protocol-3 with an analogous security argument based on P -3 in the Type 3 setting.

(3) Protocol-3 is at least as efficient as Protocol-2 and in most cases outperforms Protocol-2. In some situations one
can further optimize Protocol-3, for example, by hashing into G2 instead of G1 as is the case with BF-IBE-3b. Such
optimizations are not possible for Protocol-2 as it is not known how to hash into G′

2.

Setting aside the question of performance, our study indicates that there is no major difference of cryptographic
significance when a protocol originally described in the Type 2 setting is transformed into Type 3. This leads us to posit the
question ofwhether there exists a cryptographic protocolwhichnecessarily has to be restricted to Type2 for implementation
or security reasons. We conclude with the following remarks and question.

(1) Some authors have used the extended Diffie–Hellman (XDH) assumption to argue the security of their protocols [7,14,
15]. The XDH assumption requires that the decision Diffie–Hellman (DDH) problem is hard in G1. If it is also required
that DDH is hard in G2 then the corresponding assumption is called symmetric XDH (SXDH) [1]. Note that in the Type 2
setting, DDH is easy in G′

2 because of ψ . Hence, the protocols described in [1,39] where security is based on the SXDH
assumption cannot be instantiated securely in Type 2 (but can be implemented in Type 3 since DDH is believed to be
hard in G2). On the other hand, if some Protocol-2 or its security argument requires DDH to be hard in G1 but easy in G′

2,
then it may appear at first glance that Protocol-2 cannot be converted to the Type 3 setting. However, we expect that
the conversion would be possible by adding the appropriate elements from G1 to the protocol or its security argument
in the same manner as was used earlier to avoid ψ . We are not aware of the existence of any such protocols.

(2) In Type 3 it is possible to make aminimalist complexity assumption such as BDH-3c as proposed by Galbraith [12]. Such
minimalist assumptions do not have any counterpart in Type 2. The question is whether there exists a protocol whose
security is based on such an assumption.

(3) Some protocols, such as the Boneh–Shacham group signature scheme with verifier-local revocation [11] and the SYL,
RYY and BMP identity-based key agreement protocols (see [19]), that involve hashing intoG2 followed by an application
ofψ on the resulting hash values cannot be implemented in either Type 2 or Type 3. However, they can be implemented
using Type 1 and Type 4 pairings (cf. [17]).
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