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Abstract 

We investigate the largest number of colours, called upper chromatic number and denoted 
~(Jf),  that can be assigned to the vertices (points) of a Steiner triple system J f  in such a 
way that every block H E 9~ contains at least two vertices of the same colour. The exact value 
of ~ is determined for some classes of triple systems, and it is observed further that optimal 
colourings with the same number of colours exist also under the additional assumption that 
no monochromatic block occurs. Examples show, however, that the cardinalities of the colour 
classes in the latter case are more strictly determined. 

I. Introduction 

In the general definition o f  upper chromatic number, introduced by Voloshin [5, 6], 

vertex cotourings o f  the so-called 'mixed hypergraphs '  ~ = (X, 5~) are considered in 

which two kinds o f  sets are distinguished: the edges and the co-edges (originally called 

anti-edges in [5]). In the strict colourings of  J r ,  every edge has at least two vertices 

coloured differently and every co-edge has at least two vertices of  the same colour. 

The maximum number o f  colours that can occur simultaneously in such a colouring is 

the upper chromatic number ~(~¢g). I f  ~ is uniform and contains co-edges only, then 

~ ( ~ )  is obtained as a particular case o f  a more general problem raised by Ahlswede 

et al. [1]. 

In this paper the concepts of  strict colouring and upper chromatic number are applied 

to the Steiner triple systems (STSs).  In particular, we study two different kinds o f  

colourings for STSs. In one o f  them, we view all blocks of  the triple system as co- 

edges; such systems will be termed CSTS, referring to the expression 'co-hypergraph '  

and to indicate that monochromatic blocks are allowed. The other type, where all blocks 

are edges and co-edges at the same time, will be called (Bi-Steiner triple systems) 
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(BSTS). Note that every CSTS is colourable, in the sense that it always admits a strict 

colouring (trivially, for example, with one colour); this is not necessarily the case, 

however, with a BSTS that may as well be uncolourable, as shown in [4]. 

In our previous work [4], we have proved that for every CSTS(v) and BSTS(v) 

on v ~<2 k - 1 vertices the upper chromatic number is at most k, and we have also 

constructed an infinite class o f  colourable BSTSs ~ o f  order v = 2 k - 1 and upper 

chromatic number ~ ( ~ ) =  k. 

In this paper, some further properties o f  the strict colourings o f  CSTSs and BSTSs 

are described, and it is investigated, to what extent the cardinalities o f  the colour classes 

are determined in a strict colouring with a maximum number of  colours. In this respect, 

the BSTSs are more restricted than the CSTSs, because different colour distributions 

may define unequal numbers o f  blocks o f  given colour patterns. 

We also study the CSTSs and BSTSs of  order v ~ 2 k - 1, and construct an infinite 

class with v = 2 k × 10-1  and ~ = k+3 .  Moreover, we indicate a method to build further 

infinite classes o f  colourable BSTSs when a colouring of  any one particular BSTS(v) 

is known. 

1.1. Mixed hypergraphs and upper chromatic number 

A hyper#raph is a pair (X, 8 )  where X is a finite set whose elements are called 

vertices, and g is a family of  subsets o f  X,  called edges. In this subsection we recall 

some definitions from [5,6], some of  which have already been mentioned above less 

formally. A mixed hypergraph ~,~ is a pair (X, 5 e) where X is a finite set o f  vertices, 
and 6 p is a family of  subsets of  X,  written as the union of  two subfamilies: 5 e =  ~¢Ug.  

Here ~¢ and 8 need not be disjoint, and one o f  them may be empty. The elements 

o f  ~¢ are called co-edges or anti-edges, and the elements o f  8 are the edges. I f  8 is 

empty, then ~ = (X, d )  will be called a co-hypergraph, while in the case of  ~¢ = 0, 

~ f  = (X, 8 )  is just a hyper#raph, in the usual sense. 

Definition 1. A strict colourin9 of  a mixed hypergraph ~,~ = (X, 5 p) with k i> 1 colours 

is a mapping from the vertex set X onto the set {1 . . . . .  k} of  'colours '  in such a way 

that 

(1) every co-edge has at least two vertices o f  the same colour, and 

(2) every edge has at least two vertices coloured differently. 

The mixed hypergraph ~ is colourable if  it has at least one strict colouring. In this 

case, the largest and smallest integer k, for which there exists a strict colouring of  9~ 

with k colours, is called the upper and the lower chromatic number, denoted by ~ ( ~ )  
and by Z(9~), respectively. 

If  ~ admits no strict colouring (because o f  the collision between the two con- 
straints above), then ~ is called uncolourable; for such a mixed hypergraph we put 
z(H)  = ~(H)  = 0 by definition. 

Note that if the hypergraph has no co-edges, then its strict colourings are precisely 
the proper colourings (i.e., those containing no monochromatic edge), therefore, in this 
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case the lower chromatic number equals the chromatic number in the usual sense; while 
the upper chromatic number is clearly equal to the number of vertices. 

Definition 2. A vertex subset L C_X in a mixed hypergraph ~ is called co-stable if it 

contains no co-edges; and L is stable if it contains no edges. The co-stability number 
~(~vf) is the maximum cardinality of  a co-stable set in ~ .  

One of the basic facts, following directly from the definitions, is the inequality 

~ ( ~ )  ~< ~ ( ~ ) [ 5 ] .  

1.2. Steiner triple systems 

A hypergraph (X, ~ )  is a Steiner triple system if ~ is a family of three-element 
subsets of X, called blocks, such that any two distinct vertices are contained in precisely 

one block. A Steiner triple system of order v (i.e., with IXl = v) will be denoted by 
STS(v). We shall also use the notation STS(X,~).  It is well known that a STS(v) 
exists if  and only if v = 1 or 3 (mod 6). 

Definition 3. 
those blocks 
order of the 

For a STS(X,~),  a subset S of  X is said to induce a subsystem if  all 

which contain at least two vertices of  S are entirely in S; s :--IS I is the 
subsystem that consists of  the blocks B C S, B E ~ .  

Next, we recall a well known way to construct Steiner triple systems from smaller 
ones. 

Doubling-plus-one construction for STS. One can obtain a Steiner triple system of 
order 2v + 1 using the following construction. Let ( X ' , ~ ' )  be a STS(v) with [X'] = v, 

and take a set X "  of vertices with IX" I - -v  + 1 where X'  ~ XI '=  O. Recalling that 

v +  1 is even, consider a l-factorization ~- = {Ft,F2 . . . . .  Fv} of a complete graph Kv+l 
on the vertex set X" ,  and define the collection ~ of triples on X : = X '  U X "  in the 
following way: 

(1) Every triple belonging to ~ '  belongs to ~ ;  

(2) I f x i E X  t (i----- 1,2 . . . . .  v) and Yl, Y2EX '1, then {xi, Yl, y2}E~ if and only if {yl, y2}E 
F~. 

It is easy to see that (X ,~ )  is a STS(2v + 1), (X~,M ' )  is its subsystem, and X"  is 
a stable set. 

2. Strict colourings for CSTS and BSTS 

One may view a STS(X,~)  as a mixed hypergraph where every block is an edge 
and a co-edge at the same time. Let us call such a system of order v a BSTS(v). 
Moreover, if  every block is only a co-edge, call this co-hypergraph a CSTS(v). We 
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shall apply the concepts of strict colouring and of upper chromatic number for CSTS(v) 
and BSTS(v). When the emphasis will be put on the order of such systems, where the 
actual systems are either understood or irrelevant, we shall simply write ~(v) for their 
upper chromatic number. 

For CSTS(v) and BSTS(v), the following upper bound has been proved: 

Theorem l (Mi lazzoandTuza[4]) .  For any integer k>0 ,  a CSTS(X,~) or 

BSTS(X,~) o f  order v =  IX] ~ 2  k - 1 has upper chromatic number at most k. More- 

over, i f  ~ = k, then 
(1) v = 2  k - 1, 

(2) in every strict colouring with k colours, the colour classes have respective cardi- 

nalities 

2°,21, . . . ,2 k-t,  

and all o f  them are co-stable sets, and 

(3) the triple system is obtained by a sequence o f  k -  2 doubling plus one construc- 

tions starting f rom STS(3). 

Consider a strict colouring ~ for the co-hypergraph CSTS(v). Let h be the number 
of colours used in ~ ,  and denote by X/ the set of vertices assigned to colour i. Let 
ni := [Xi[ for 1 ~i<~h. Every block can be coloured in one of the following two ways: 

Type 1: Two vertices are coloured with one colour, and the third vertex is coloured 
with a different colour. 

Type 2: All the three vertices are coloured with the same colour. 
Since every BSTS contains a CSTS of the same order as a subhypergraph, the next 
observations formulated for the latter give relevant information for both, sometimes 
with even stronger consequences for the former. 

Proposition 1. I f  ~ is a strict colouring with h colours for  CSTS(v), then there are 

(1) (c/2) blocks o f  Type 1, where 

1 (2 )  I~1 - (c/2) blocks of Type 2, where I~1 = ~ (2) is the number of blocks in 
CSTS(v). 

Proof. The number of pairs of vertices coloured with different colours is equal to 
c, and in every block of Type 1 there are precisely two distinct pairs of vertices 
coloured differently. This proves the first assertion, from which the second one is 
evident, too. [] 

Denoting s i := nl --k n2 q- • • • q- ni, the argument given in Proposition 1 also yields 
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Lemma 1. I f  ~ is a strict colouring for  CSTS(v), then the number 

j = l  

is even for  all 2 <<. i <~ h. 

From the above observations, the following set of inequalities (first proved in [4]) 
can be deduced easily. 

Lemma 2. I f  ~ is a strict colouring for  CSTS(v), then the inequalities 

i 
si(si - l ) <~ 3 ~ nj(nj - 1) 

j = l  

are valid for  all 1 <<. i <~ h. 

(1) 

i X Proof. The set S i :=  U j = I  J contains no more than [~i1 = S i ( S  i -- 1)/6 blocks, and at 
least ci/2 blocks, therefore, I~i] >~ci/2, and so (1) follows by Lemma 1. [] 

In the case of a strict colouring ~ for BSTS(v), all the blocks must be of Type 1. 
Consequently, Lemmas 1 and 2 are valid, and, in particular, the further fact I~1 = c/2 
yields: 

Lemma 3. I f  ~ is a strict colouring for  BSTS(v) with h colours, then 

h 
v(v - I) = 3 ~ ni(ni - 1). 

i=1 

If we know the upper chromatic number ~(v) for a CSTS(v) or BSTS(v) where 
v ~ 2 k - 1, then we can obtain estimates for an infinite family of Steiner systems as 
follows. 

Theorem 2. I f  a CSTS(v) [BSTS(v)] is colourable and has upper chromatic number 

~(v), then all the systems CSTS(v p) [BSTS(v~)] with v ~ =2k(v + 1 ) -  1 obtained by a 

sequence o f  k >>. 1 doubling plus one constructions starting f rom CSTS(v) [BSTS(v)] 
are colourable and 

;,(v) + k ~< ;~(v') < t  + k (2) 

where t is the smallest integer such that v < 2 t - 1. 

ProoL Let us begin with the inequality on the left-hand side of (2). We apply induction 
on k. If k = 0, 1, then the inequality is true. Suppose that it holds for k - 1. Then, 
for every CSTS(v')  [BSTS(v')] with v" =2k-l(V + 1 ) -  1, a strict colouring ~ with 
k -  1+ ~(v) colours exists. If CSTS(v') [BSTS(v~)] with v t =2k(v + 1 ) -  1 is obtained 
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from CSTS(v") [BSTS(v")] by the doubling plus one construction, it is then possible 
to colour its vertices in the following way: all the vertices of the subsystem STS(v")  

are coloured with the colouring ~, and the other vertices with one new colour. It is 
easy to verify that this colouring is a strict colouring with k + ~(v) colours, therefore, 
the CSTS(v') [BSTS(v')] is colourable, and the first inequality of (2) is valid. 

The inequality on the right-hand side also holds, because 

(v + 1)2 k <2  k + 2k(2 / - 1 ) = 2  k+t, 

and from Theorem 1 we obtain ~ ( v ' ) < k + t .  [] 

The following assertion concerning the growth speed of some increasing sequences 
will be essential. 

Lenuna 4. Let  1 <~nl <<.nz <~ • • • <~nh <~ • • • <~nk be an increasing sequence o f  k natural 

numbers, and denote si :=hi  + n2 + . . .  + ni fo r  1 <~ i <~ k. I f  

h 
Sh(Sh -- 1 ) = 3 Y~ nj(nj -- 1 ) (h) 

j = l  

f o r  some h < k, and 

i 
Si(S i -- 1 ) ~ 3 ~ nj(nj - 1 ) ( i )  

j = l  

f o r  all h < i <~ k, then 

ni ~ 2i-h - 1 (s h ÷ 1 ). 

Proof. With some modifications, we apply the ideas of [4] where a less general result 
without the condition (h) has been shown. We begin with two observations. First, it 
is easily seen by induction that for the particular sequence with ni = 2i-h-l(Sh ÷ 1 ) for 

h + 1 <~i<~k, equality holds in each (i). Second, 

( . )  assuming n i=2 i -h - l ( sh  + 1) for all h<i<~k - 1, the inequality (k) implies 
nk >~2k-h-l(sh ÷ 1). 

We shall prove the lemma by induction on k. For k = h + 1 the lemma is true by 
(*). For k > h + 1, let us suppose, for contradiction, that the assertion is false for some 
k, and let k be the smallest integer for which some counterexample exists. Among all 
counterexamples nl,n2 . . . . .  nk, consider those which contain the longest subsequence 
nh+l,nh+2 . . . . .  np-I with nl=21--h--l(Sh ÷ 1) for all h + l < ~ l < ~ p -  1 and p -  l < k  
( p -  1 = h  is allowed, in this case the subsequence is empty). Finally, among these 
latter restricted counterexamples, let nl,n2 . . . . .  nk be one in which np is minimum. 

It is clear that np ~ 2 P - h - l ( s h ÷  1), and, by (*), np >~2P-h-l(sh÷ 1), i.e., np >12 p-h-1 

(Sh + 1) + 1. Now we have three possibilities. 
Case 1: k = p +  1, or k >i p + 2  and np+l <np+2. In this case, we modify the sequence 

/ ! ! as follows: n p = n p  - 1 and np+lr __ np+l ÷ 1. The sequence nl,n2,. • .,np, np+l, . . . ,nk 
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cannot be a counterexarnple for k, because np < n p  and we assumed that np is as small 
as possible. On the other hand, the inequalities (i) for h + 1 <~i<~k hold. Indeed, 
• (h + 1),(h + 2) . . . . .  (p  - 1) remain unchanged, 
• (p)  is valid since np>>.2P-h-l(sh + 1), 
• every (i) is again valid for i >  p since its left-hand side remains unchanged, while 

its right-hand side has increased because the only change in it is that np(np - 1) + 

n p + l ( n p + l  --  1) is replaced by the larger number ( n p  --  1 ) ( n p -  2 ) +  (np+l + 1 )np+l. 

This contradiction completes the proof of Case 1 when k ~> p + 2  or np+l >~2P-h(sh + 1 ); 
and one can verify by a simple calculation that the inequality (k) does not hold when 
k = p + 1 and np+l  = 2 P - h ( s h  + 1 ) --  1. 

Case 2: k = p + 2 ,  or k >>. p + 3  and np+l = np+2 <np+3. Now we make the following 
t = np - 1 and r + 1. Again, to obtain a contradiction, it modifications: np np+ 2 = np+2 

suffices to prove that (i) holds for all h + 1 ~< i ~< k in the modified sequence. Analogous 
to the proof of Case 1, we obtain that (h+  1) , (h+2)  . . . . .  ( p ) , ( p + 2 )  . . . . .  (k) are valid; 
the only inequality to prove is (p  + 1 ). Let us suppose that (p  + 1 ) is not valid, i.e., 

p--1 
(Sp+ 1 -- 1)(Sp+ 1 -- 2 ) > 3  ~ n j ( n j  --  1) + 3 ( n p  --  1)(np -- 2) + 3 n p + l ( n p + l  --  1). 

j=l 

We recall that the inequality ( p + 2 )  is valid for the original sequence by assumption, 
and since np+! = np+z, we can write it as follows: 

p+l 
(Sp+l "~-np+l)(Sp+l + n p + l  --  1)~<3 Y]~ n j ( n j -  1 ) + 3 n p + l ( n p + l -  1). 

j=l 

Taking the sum of these last two inequalities, we obtain 

Sp+lnp+l + sp+l - 1 <np+l(np+l - 1) + 3np - 3. 

This is impossible, however, because the condition np+l >~np >~ 1 implies 
2 Sp+lnp+l + Sp+l - 1 >>. npnp+l + np+ 1 + np + np+t - 1 

n p + l ( n p + l  - 

np+l(np+l - 

> n p + l ( n p + l  --  

1) + npnp+l + 2np+l + np - 1 

1) + 4 n p -  1 

1) + 3np - 3. 

So (p + 1) is true for the new sequence. This contradiction completes the proof of 
Case 2 when k >_, p + 3 or np+2 ~>2P+l-h(sh + 1); and by a simple calculation one can 
show that the inequality (k) does not hold when k = p  + 2 and np+l = np+2 = 2 p-h+l  

(Sh + 1) -- 1. 
Case 3: np+l =np+2=np+3.  In this case we obtain an immediate contradiction, 

showing that the inequality (p  + 3) is not valid. Indeed, denoting n :=Sp+3, we have 
nj <~ n/3 for all 1 ~<j ~< p + 3, thus 

/ n / n \ \  
3 ( n l ( n l -  1 ) +  n2(n2-  1 ) +  . . .  + n p + 3 ( n p + 3 -  1))~<9 ~ ~ -- 1) )  < n ( n  1). 

This final contradiction completes the proof of the lemma. [] 
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We conclude this section with an observation that shows how a fairly strong lower 
bound on the cardinalities of 'large' colour classes in a strict colouring can be obtained 
if the cardinalities of the 'small' classes correspond to a strictly coloured triple system. 

Let cg be the set of strict colourings of a BSTS(v) with ~(v) colours. Consider a 

BSTS(v I) or CSTS(v I) with v~>v, and let ~ be one of its strict colourings with, say, 
k colours. Denote by ni, 1 <~ i <<. k, the cardinalities of colour classes of ~. 

Theorem 3. With the notation above, i f  c£ contahzs a strict colourin9 in which the 

first ~(v) colour classes have respective cardinalities nj, 1 <~j<~(v), then for  the 
larger subscripts 

ni ~>2i-z~v~-l(v + 1) 

holds for  all ~ ( v ) +  l <.i<~k. 

Proof. Since ~ is a strict colouring for CSTS(v') [BSTS(v')], the inequalities (1) are 
valid by Lemma 2. Moreover, applying Lemma 3 for a suitably chosen strict colouring 
of BSTS(v) with ~(v) colours, we obtain 

~(v) 
3 ~ nj(nj - 1) = v(v - 1). 

j=l 

Now the theorem follows by Lemma 4. [] 

One interesting point in the above result is that it does not require any structural 
relationship between the systems of orders v and v t. 

3. Infinite classes of  colourable CSTS and BSTS 

In this section we determine the upper chromatic number for an infinite class of 
colourable CSTSs and BSTSs. 

Let us consider first the system STS(9). It is presented in Table 1 and it is known 
to be unique up to isomorphism [2]. 

For CSTSs or BSTSs in general, more than one strict colouring with the same number 
of colours may exist, even with different cardinalities for the colour classes. A strict 
colouring ~ with h colours, in which each colour i occurs precisely ni times, will be 
associated with the ordered h-tuple (nl, n2 . . . . .  rt h )  termed the colourin9 sequence in ~. 
For convenience, n i ~ ni+ 1 will always be assumed for all i <h.  

Table 1 

{1,2,3} {4,5,6} {7,8,9} 
{1,4,7} {2,5,8} {3,6,9} 
{1,5,9} ,[2,6,7} {3,4,8} 
{1,6,8} {2,4,9} {3,5,7} 
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Proposition 2. For BSTS(9), ~ ( 9 ) =  3 and there is a unique colourin9 sequence: 

(1,4,4). 

Proof. Let us note first that every colouring sequence (of an arbitrary BSTS(v) for any 
v > 3) has length at least 3, because Steiner triple systems are well known to admit no 
blocking set (i.e., no 2-colouring). Now, for v = 9, one can easily verify that the three 
sets { 1 }, {2, 3, 4, 7}, {5, 6, 8, 9} as colour classes of the BSTS(9) exhibited in Table 1 
form a strict colouring, i.e., (1,4,4) is indeed a possible colouring sequence. 

Beside (1,4,4), there is one further sequence of length 3 satisfying the inequalities 
of Lemma 2 and the equality of Lemma 3, namely (2, 2, 5). We are going to show that 
the latter is not a colouring sequence for any strict colouring, not even for CSTS(9). 
Suppose the contrary, and let {ll, 12} and {m~,m2} be the two 2-element colour classes. 
Since {ll, 12,ml,m2} can contain at most one block of STS(9), at least one of the two 
distinct blocks containing the pairs {/1,ml} and {12,m2} has a vertex from the third 
colour class, a contradiction. 

Finally, no colouring sequence of length 4 or more can exist, because ~(9)<4 by 
Theorem 1. [~ 

Proposition 3. For CSTS(9), ~(9) = 3 and there are two possible colourin9 sequences: 

(1,4,4) and (1,2,6). Moreover, in colourings o f  the latter type, precisely two mono- 

chromatic blocks occur. 

Proof. We have seen in the proof of Proposition 2 that (1,4,4) is indeed a colouring 
sequence for CSTS(9), and that every colouring sequence has length at most 3. We have 
already excluded (2,2,5); moreover, (2,3,4) and (3,3,3) contradict the case i = 3  of 
Lemma 2. One can also exclude the sequence (1,3, 5) by applying a simple argument 
similar to that for (2, 2, 5), considering the two small colour classes. Hence, beside 
(1,4,4), the sequence (1,2, 6) remains the only possibility to consider for CSTS(9). In 
a colouring of this type, Proposition 1 yields that the number of monochromatic blocks 

equals 1~1 - c /2=2 .  [] 

We next consider larger systems built from STS(9). 

Theorem 4. All the systems CSTS(v') [BSTS(v')], where v' = 10 × 2 k - 1, obtained by 

a sequence o f  doublin9 plus one constructions startin9 from CSTS(9), are colourable 
and have ~(v') = k + 3. 

Proof. We can apply the inequality (2) of Theorem 2 with t = 4  (as 9 < 2 4 -  1). Since 
~(CSTS(9))=3 by Propositions 2 and 3, we obtain ~(v l )=k  + 3. [] 

Corollary 1. I f  a CSTS(v ~) [BSTS(vt)] with v~= 10 × 2 k - 1 has a colouring with 
k + 3 colours and the first three colour classes have cardinalities nl = 1, n2 = n3----4, 
then the other colour classes have cardinalities 

10×20 , 10×21 . . . . .  10×2  k. 
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Proof. By Theorem 3 we have ni>~ 10 × 2 i -4  for i~>4, so 

k+3 k+3 
10 × 2 k - 1 = ~ ni~>9 + 10 ~ 2 / - 4  = lO × 2 k -- 1, 

i=1 i=4 

therefore, equality must hold throughout. [] 

On applying Theorem 4, one can determine the upper chromatic number of  an infinite 
class of  colourable CSTSs and BSTSs. 

The above procedure can be repeated. In fact, if  we know the exact value of ~(v) 
for a CSTS(v) or BSTS(v), with v # 2 k - 1 or v # 9, it is possible to find an infinite 

class of colourable CSTSs or BSTSs, and, under particular conditions, to determine the 

upper chromatic number for each of them. 

We can use this procedure, for example, for CSTS(13) and BSTS(13). In fact, the 
first author [3] has verified that ~ (13)=3 ,  and based on this fact, by a sequence 

of  doubling plus one constructions starting from STS(13), it is possible to determine 
an infinite class of colourable CSTS(v ~) and BSTS(v~), where v ~ = 14 × 2 k - 1, with 
~(v ' )  = k + 3. 

Finally, we show a consequence of Theorem 3 for CSTS(v) and BSTS(v) where 
v < 1 0  x 2 k - 1. 

Theorem 5. Suppose that a colourable CSTS(v) [BSTS(v)] of  order v < 2  k × 1 0 -  1 

has a strict colourin9 ~ with ~(v) colours where the first three colour classes are of  

cardinalities nl = 1, n2 ~-n3 =4. Then ~ ( v ) < k  + 3. 

Proof. The assumptions together with Theorem 3 imply 

1 0 x 2  k - l > v = ~ n i > ~ 9 +  10)]~ 2i-4 = 9 + 10(2 ~-3 - 1), 
i=1 i=4 

therefore, ~ < k  + 3 follows. [] 

It is worth noting that, without the condition of type (1, 4, 4) on the first three 
colour classes, the conclusion does not necessarily hold. This fact is shown, e.g., by 
the BSTS(v) and CSTS(v) with v = 2  k+3 - 1, ~ ( v ) = k  q-3, obtained by the repeated 

application of the doubling plus one construction. 

4. Concluding remarks 

In [4] we found an upper bound on the upper chromatic number of  CSTSs and 
BSTSs, and also described an infinite class of  colourable BSTSs with an extremal 
upper chromatic number. 

In this paper, we presented further infinite classes of  colourable STSs whose upper 
chromatic number can be found explicitly. Moreover, by using Theorems 2 and 3, 
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a method is shown that permits further tight estimates for other infinite (colourable) 
classes. 

Also, from Theorem 5, under particular conditions on the types of colourings, it is 
possible to obtain an upper bound better than the one in [4] for the upper chromatic 
number. 

One important tool is the investigation of the colour patterns of the blocks in the 
Steiner triple systems. In particular, it can be useful to determine which (or, how many) 
of the blocks are monochromatic. Information of this kind may lead to sharper results 
and a better description of the different colourings. 
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