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a b s t r a c t

In this paper, we show that if we decompose a polygon into two smaller polygons, then by
comparing the number of extremal vertices in the original polygon versus the sum of the
two smaller polygons, we can gain at most two globally extremal vertices in the smaller
polygons, as well as at most two locally extremal vertices. We thenwill derive two discrete
Four-Vertex Theorems from our results.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

There are many notions of extremality in polygons, the earliest appeared circa 1813 in [2]. Recently, a very natural type
of extremality was introduced in [5], one which very consistently adhered to that of curvature in the smooth case. A closely
related global analogue had already appeared much earlier, and it as well has a smooth and discrete interpretation. While
it is debatable to whom we attribute this discrete global notion of extremality, closely related ideas are presented in [1].
In this paper, we will expound on these two types of extremality by providing a few observations and facts to build

intuition. We will then discuss the notion of decomposing a polygon and investigate how this impacts our two types of
extremality. We then derive fresh results relating the number of extremal vertices of the larger polygon versus the two
smaller polygons of decomposition. While our results will be relevant geometrically on their own, we will observe that
they are closely tied to two discrete Four-Vertex Theorems pertaining to our two types of extremality, which follow almost
immediately from our stronger results.
We note that we will skip proofs of the more simple results. All results in this paper are considered with much more

detail in [4].

2. Global and local extremality

We denote by P a polygonal curve, which is a simple piecewise linear curve with vertices V1, V2, . . . , Vn. When we speak
of a closed polygonal curve, we will refer to it as a polygon. Also, we restrict our consideration simply to the planar case and
all indices will be taken modulo the number of vertices of the polygonal curve. The following definition was coined in [6]:

Definition 2.1. We say that a polygonal curve is generic if the maximal number of vertices that lie on a circle is three and
no three vertices are collinear.

Observe that all regular polygons are not generic.
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Definition 2.2. Let Cijk be a circle passing through any three vertices Vi, Vj, Vk of a polygonal curve. We say that Cijk is empty
if it contains no other vertices of the polygonal curve in its interior, and we say that it is full if it contains all of the other
vertices of the polygonal curve in its interior.

For simplicity, we will denote a circle passing through consecutive vertices Vi−1, Vi and Vi+1 by Ci.

Definition 2.3. We call a full or empty circle Ci an extremal circle. We refer to the corresponding vertex Vi as a globally
extremal vertex.

Some of our results will use triangulation arguments. Consider all of the empty circles passing through any three distinct
points of a polygon. In [3] Delaunay shows that the triangles formed by each of the three points corresponding to an empty
circle form a triangulation of the polygon P . This triangulation is called a Delaunay triangulation.
Analogously, if we assume convexity on our polygon and consider the full circles passing through any given three points,

the triangles given by each of the three points corresponding to a full circle also form a triangulation. This triangulation is
commonly known as the Anti-Delaunay triangulation.

Definition 2.4. A vertex Vi is said to be positive if the left angle with respect to orientation, 6 Vi−1ViVi+1, is at most π .
Otherwise, it is said to be negative.

Definition 2.5 (Discrete Curvature). Assume that a vertex Vi is positive. We say that the curvature of the vertex Vi is greater
than the curvature at Vi+1 (Vi � Vi+1) if the vertex Vi+1 is positive and Vi+2 lies outside the circle Ci or if the vertex Vi+1 is
negative and Vi+2 lies inside the circle Ci.
By switching theword ‘‘inside’’ with theword ‘‘outside’’ in the above definition (and vice versa), we obtain that Vi ≺ Vi+1,

or that the curvature at Vi is less than the curvature at Vi+1. In the case that the vertex Vi is negative, simply switch the word
‘‘greater’’ with the word ‘‘less’’, and the word ‘‘outside’’ by the word ‘‘inside’’.

Definition 2.6. A vertex Vi of a polygonal line P is locally extremal if

Vi−1 ≺ Vi � Vi+1 or Vi−1 � Vi ≺ Vi+1.

Remark 2.1. If we assume convexity on our polygon and observe the definition of locally extremal vertices closely, we
simply are considering the position of the vertices Vi−2 and Vi+2 with respect to the circle Ci. Our vertex Vi will be locally
extremal if and only if both vertices Vi−1 and Vi+2 lie inside or outside the circle Ci.

When defining global extremality, we discussed empty and full extremal circles. If a circle Ci is empty, then we say that
the corresponding vertex Vi is maximal. If Ci is full, then we say Vi is minimal. Analogously for locally extremal vertices, we
call a vertex maximal if Vi−1 ≺ Vi � Vi+1 and minimal if Vi−1 � Vi ≺ Vi+1.
We denote the number of globally maximal-extremal vertices of a polygonal curve P by s−(P) and globally minimal-

extremal vertices by s+(P) to be consistent with [1]. For locally extremal vertices, we will attribute the notation l−(P) and
l+(P), respectively.

Proposition 2.1. Let P be a generic convex polygon. Then

l+(P) = l−(P).

Remark 2.2. The proof of this fact immediately follows by carefully observing the definition of locally extremal vertices.
Note that it was very important for us to include the assumption that our polygon is generic, since this eliminates the
possibility of having two extremal vertices adjacent to each other. Also, it is easy to see that the equality s+(P) = s−(P)
does not hold. In fact, we cannot form any relationship between globally maximal-extremal and globally minimal-extremal
vertices.

Proposition 2.2. Let P be a generic convex polygon. If Vi is a globally extremal vertex, then Vi is a locally extremal vertex.

This result follows immediately from the observation made in Remark 2.1.

Proposition 2.3. Let P be a generic convex quadrilateral. Then P has four globally extremal and locally extremal vertices.

Proof. For globally extremal vertices, we apply a Delaunay triangulation to P , which immediately yields two globally
maximal-extremal vertices.We then apply anAnti-Delaunay triangulation to P , which yields twominimal-extremal vertices.
Proposition 2.2 then yields the result for locally extremal vertices. �

While the following proposition is technical yet quite obvious, it will be a vital proposition that will be used frequently
to prove our main results.
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Proposition 2.4. Let A, B, C and X be four points in the plane in a generic arrangement, CB be the corresponding circle passing
through A, B and C, and let CA be the circle passing through the points X, A and B. We denote by C̃A and C̃B the open discs bounded
by CA and CB, respectively. Denote by H+AB the half-plane formed by the infinite line AB containing the point C and by H

−

AB the half-
plane formed by the infinite line AB not containing the point C. If X lies in C̃B

⋂
H+AB, then C lies in H

+

AB \ C̃A. If X lies in H
+

AB \ C̃B,
then C lies in C̃A. Analogously, if X lies in C̃B

⋂
H−AB, then C lies in C̃A. If X lies in H

−

AB \ C̃B, then C lies in H
+

AB \ C̃A.

Proof. The proof is a simple verification of the situation restricted around the origin and solving corresponding systems of
equations. �

3. Globally extremal vertices and decomposition of polygons

Definition 3.1. We say an edge or diagonal of a polygon is Delaunay if there exists an empty circle passing through the
corresponding vertices of that edge or diagonal. If there exists a full circle passing through the vertices of this edge or
diagonal, then we say the edge or diagonal is Anti-Delaunay.

Remark 3.1. Note that a triangulation of a polygon where every edge and diagonal is Delaunay is a Delaunay Triangulation.
Similarly, if every edge and diagonal of a triangulation is Anti-Delaunay, then we have an Anti-Delaunay triangulation.

So what exactly does it mean to decompose a polygon? Here the notion of decomposing a polygon will simply be the
cutting of a polygon P by passing a line segment through any two vertices so that the line segment lies in the interior of the
polygon. We will call this line segment a diagonal. Also, we denote the two new polygons formed by a decomposition by P1
and P2 and require that they each have at least four vertices. By this last requirement it automatically follows that P must
have at least six vertices to successfully perform a decomposition.

Theorem 3.1. Let P be a generic convex polygon with six or more vertices and P1 and P2 be the resulting polygons of a
decomposition of P. Assume that the diagonal of this decomposition is Delaunay. Then

s−(P) ≥ s−(P1)+ s−(P2)− 2.

Analogously, if the diagonal is Anti-Delaunay, then

s+(P) ≥ s+(P1)+ s+(P2)− 2.

Proof. Webegin by applying a Delaunay triangulation to P , P1 and P2. Noticing that the diagonal is Delaunay for P1 and P2, as
well as P by assumption, we obtain our first inequality. For the second inequality wemimic this argument, instead applying
an Anti-Delaunay triangulation. �

It turns out that from the above result, we can derive a very nice geometric corollary. First, we need two small lemmas.

Lemma 3.1. Let P be a convex polygon with seven or more vertices and let T (P) be a triangulation of P. Then, there exists a
diagonal of our triangulation such that, if we apply a decomposition of P using this diagonal, then both P1 and P2 have four or
more vertices.

This result is clear, and follows immediately by an induction argument on the number of vertices.

Remark 3.2. It is obvious that this result does not hold if n = 6. In fact, it is easy to find a convex polygon whose Delaunay
Triangulation does not satisfy Lemma 3.1, hence the need for one more lemma.

Lemma 3.2. Let P be a generic convex polygon with six vertices and let P1 and P2 be the resulting polygons of a decomposition.
Then

s−(P) ≥ s−(P1)+ s−(P2)− 2

and

s+(P) ≥ s+(P1)+ s+(P2)− 2.

Proof. Since we have no guarantee that our diagonal is Delaunay, we cannot mimic the proof of Theorem 3.1. We observe
that, since P is generic, P1 and P2 are generic as well. Moreover, P1 and P2 are quadrilaterals. By applying Proposition 2.3 to
P1 and P2, we prove our assertion. �

Corollary 3.1 (The Global Four-Vertex Theorem). Let P be a generic convex polygon with six or more vertices. Then

s+(P)+ s−(P) ≥ 4.

Proof. Wewill prove the result by induction on the number of vertices of P . We first consider the base case n = 6, noticing
if we apply a decomposition to P , then P1 and P2 are both quadrilaterals. By Proposition 2.3, we obtain that P1 and P2 each
have four globally extremal vertices. It follows from Lemma 3.2 that P has four globally extremal vertices.
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Fig. 1.

Wenow consider the casewhere n ≥ 7.We begin by applying a Delaunay triangulation to P . By Lemma 3.1, it follows that
there exists a diagonal d such that when we decompose P by this diagonal, P1 and P2 each have four or more vertices. Since
our diagonal corresponds to a Delaunay triangulation, it follows that d is Delaunay. Since P1 and P2 have less vertices than P ,
we apply the inductive assumption to obtain s−(P1) ≥ 2 and s−(P2) ≥ 2. Applying this to Theorem 3.1, we obtain s−(P) ≥ 2.
An analogous argument using an Anti-Delaunay triangulation and Theorem 3.1 yields s+(P) ≥ 2. So s+(P) + s−(P) ≥ 4,
proving the assertion. �

4. Locally extremal vertices and decomposition of polygons

When considering locally extremal vertices, it is easy to see that the only vertices affected by a decomposition of a polygon
will be the vertices on the diagonal of decomposition and the neighboring vertices (see Fig. 1).
Thismeans thatwe have a total of six vertices impacted by a decomposition, leading us to a feasible case-by-case analysis.

Before proving our main result, we need a few lemmas.

Lemma 4.1. Let P be a generic convex polygon and P1 and P2 the resulting polygons of a decomposition. Denote the vertices
of the diagonal by B and D, the neighboring vertex of B in P1 by A, and the neighboring vertex of B in P2 by C. Assume that A
is locally maximal-extremal in P1 but not in P, and that C is locally maximal-extremal for P2 but not in P. Then, B is a locally
maximal-extremal vertex for P.

Proof. Let X be the neighbor of A in P1 and Y be the neighbor of C in P2. Denote the circle passing through vertices A, B and
C by CB, the circle passing through vertices X , A and B by CA, and the circle passing through vertices B, C and Y by CC . Since A
is not maximal-extremal in P , it follows that A lies inside the circle CC . By Proposition 2.4, it follows that Y lies outside of the
circle CB. Since C is not maximal-extremal in P , it follows that C lies inside the circle CA. By Proposition 2.4, it follows that X
lies outside of the circle CB. Fig. 2 illustrates the situation.
Since both X and Y lie outside of the circle CB, B is maximal-extremal in P . �

Lemma 4.2. Let P be a generic convex polygon and P1 and P2 the resulting polygons of a decomposition. Denote the vertices of
the diagonal by B and D, the neighboring vertex of B in P1 by A, and the neighboring vertex of B in P2 by C. Assume that A is locally
maximal-extremal in P1 but not in P, and that B is locally maximal-extremal in P2. Then, B is locally maximal-extremal in P.

Proof. For simplicity, consider Fig. 3, which will illustrate our configuration of points and circles.
Let X be the neighbor of A in P1 and Y be the neighbor of C in P2. Denote by CA the circle passing through vertices X , A,

and B. Since A is maximal-extremal in P1, it follows that D lies outside of the circle CA. Since A is not maximal-extremal in P ,
it follows that C must lie inside the circle CA. Now, denote the circle passing through vertices A, B, and C by CB. Our goal is to
show that vertices X and Y lie outside of the circle CB.
A quick application of Proposition 2.4 to points X , C , A and B yields that X lies outside of CB, so we need to show that Y

lies outside of the circle CB. Denote by C ′B the circle passing through the points C , B and D. We will show that if Y lies outside
of C ′B, then it lies outside of CB. To do this, we first must show that A lies inside the circle C

′

B.
Consider the circles CA and C ′B. These circles intersect at two points, point B and some other point, say Z . Since D lies

outside of the circle CA, it follows by an application of Proposition 2.4 to points A, D, B and Z that A lies inside the circle C ′B.
Lastly, consider the circles CB and C ′B. These two circles intersect at the points B and C . Since A lies inside the circle C

′

B, it
follows from applying Proposition 2.4 to points A, D, B and C that D lies outside of the circle CB.
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Fig. 2.

Fig. 3.

Now, since B is maximal-extremal in P2, it follows that Y lies outside of C ′B. By our above observation, it follows
immediately from Proposition 2.4 that Y lies outside of CB. Since points X and Y both lie outside of the circle CB, it follows
that B is maximal-extremal in P . �

Lemma 4.3. Let P be a generic convex polygon and P1 and P2 the resulting polygons of a decomposition. Denote the vertices of
the diagonal by B and D, the neighboring vertex of B in P1 by A, and the neighboring vertex of B in P2 by C. Assume that A is locally
maximal-extremal for P1 and D is locally maximal-extremal for both P1 and P2, but not for P. Then A is locally maximal-extremal
for P.

Proof. Let X be the neighbor of A in P1, E be the neighbor of D in P1, and F be the neighbor of D in P2. Denote by CD1 the
circle passing through vertices B, D and E, by CD2 the circle passing through vertices B, E and F , and by CA the circle passing
through vertices X , A and B. Fig. 4 illustrates our configuration.
Our goal is to show that vertex C lies outside of the circle CA. We will do this by showing that if C lies outside the circle

CD2, then it also lies outside of circle CA. Since A is maximal-extremal in P1, it follows that D lies outside of CA. Since D is
maximal-extremal in P1, it follows that A lies outside of circle CD1. By a similar argument used in the previous lemma, it
follows that if C lies outside of CD1 then it lies outside of CA. Fig. 5 illustrates this situation.
It remains to show that C lies outside of CD1. Consider the circles CD1 and CD2. SinceD is maximal-extremal in P2, it follows

that C lies outside of the circle CD2. If we show that C also lies outside of CD1, then we are done. To do this, we will heavily
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Fig. 4.

Fig. 5.

use the fact that D is not maximal-extremal in P . We will show that if E lies inside the circle CD2 or if F lies in CD1, then D is
maximal-extremal in P , contradicting our assumption.
It is enough just to check this for E. Denote the circle passing through vertices E, D and F by CD. If E lies inside the circle

CD2, then applying Proposition 2.4 to points E, D, F and B yields that B lies outside of the circle CD. Similarly, it follows by
Proposition 2.4 that F lies inside the circle CD1.
Now denote by E ′ the neighbor of E and by F ′ the neighbor of F . Fig. 6 illustrates the situation.
Since D is maximal-extremal in P1, it follows that E ′ lies outside of the circle CD1. Similarly, since D is maximal-extremal

in P2, it follows that F ′ lies outside the circle CD2. Now, recall that B lies outside of the circle CD. Proposition 2.4 applied to
points E ′, B, D and D tells us that E ′ lies outside of CD. A similar argument yields that F ′ also lies outside of CD. So, we obtain
that D is maximal-extremal in P , a contradiction.
So now we know that E must lie outside of the circle CD2. Proposition 2.4 applied to points F , E, B and D now tells us that

F lies outside of the circle CD1. So, if C were to lie outside of circle CD2, then it would also lie outside of the circle CD1. But
earlier we showed that if C would lie outside of circle CD1, then C would lie outside of the circle CA. Indeed, by assumption, C
lies outside of CD2 and hence outside of CA. Since A is maximal-extremal in P1, it also follows that X lies outside of the circle
CA. Therefore A is maximal-extremal in P . �
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Fig. 6.

Theorem 4.1. Let P be a generic convex polygon with at least 6 vertices and let P1 and P2 be the resulting polygons of a
decomposition. Then

l−(P) ≥ l−(P1)+ l−(P2)− 2.

Proof. We note that only six vertices are affected by a decomposition from the local point of view: the vertices of the
diagonal and the neighbors of those vertices. So, we eliminate the cases which violate our inequality. It is easy to check that
by the symmetry of our cases, we only need to check three:
Case 1:We gain two maximal-extremal vertices in P1, as well as P2, but none of the six vertices are maximal-extremal in P .
Case 2:Wegain twomaximal-extremal vertices in P1 and gain twomaximal-extremal vertex in P2, and one of the six vertices
is maximal-extremal in P .
Case 3: We gain two maximal-extremal vertices in P1 and gain one maximal-extremal vertex in P2, and none of the six
vertices is maximal-extremal in P .
By checking the possible configurations of vertices in each of the cases, we see that each case admits a configuration

which is deemed not feasible by one of the three preceding lemmas. �

Corollary 4.1 (The Local Four-Vertex Theorem). Let P be a generic convex polygon with at least six vertices. Then

l+(P)+ l−(P) ≥ 4.

Proof. We apply induction on the number of vertices of P . For the case where n = 6, we know that if we apply a
decomposition to P , then both P1 and P2 will be quadrilaterals. Proposition 2.3 yields that l−(P1) = l−(P2) = 2. Applying
this to Theorem 4.1 completes the proof for this case.
Now, assume that n ≥ 7. We now apply induction to the smaller polygons P1 and P2 to obtain that l−(P1) ≥ 2 and

l−(P2) ≥ 2. We now apply this to Theorem 4.1 to obtain that l−(P) ≥ 2. By Proposition 2.1, we obtain that l+(P) ≥ 2.
Therefore l+(P)+ l−(P) ≥ 4, proving the assertion. �
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