
Genomics 98 (2011) 73–78

Contents lists available at ScienceDirect

Genomics

j ourna l homepage: www.e lsev ie r.com/ locate /ygeno
Predicting human microRNA precursors based on an optimized feature subset
generated by GA–SVM

Yanqiu Wang a,1, Xiaowen Chen a,1, Wei Jiang a,1, Li Li b, Wei Li a, Lei Yang a, Mingzhi Liao a, Baofeng Lian a,
Yingli Lv a, Shiyuan Wang a, Shuyuan Wang a, Xia Li a,⁎
a College of Bioinformatics Science and Technology and Bio-pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, PR China
b Key Laboratory of Arrhythmias, Ministry of Education, School of Medicine, Tongji University, Shanghai 200092, PR China
⁎ Corresponding author at: College of Bioinformatics
Bio-pharmaceutical Key Laboratory of Heilongjiang Pro
sity, Harbin 150081, PR China. Fax: +86 451 8661 5922

E-mail address: lixia@hrbmu.edu.cn (X. Li).
1 Equal contribution.

0888-7543/$ – see front matter © 2011 Elsevier Inc. Al
doi:10.1016/j.ygeno.2011.04.011
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 19 October 2010
Accepted 29 April 2011
Available online 7 May 2011

Keywords:
Human microRNA precursors
Classification
Feature selection
Support vector machine
Genetic algorithm
MicroRNAs (miRNAs) are non-coding RNAs that play important roles in post-transcriptional regulation.
Identification of miRNAs is crucial to understanding their biological mechanism. Recently, machine-learning
approaches have been employed to predict miRNA precursors (pre-miRNAs). However, features used are
divergent and consequently induce different performance. Thus, feature selection is critical for pre-miRNA
prediction. We generated an optimized feature subset including 13 features using a hybrid of genetic
algorithm and support vector machine (GA–SVM). Based on SVM, the classification performance of the
optimized feature subset is much higher than that of the two feature sets used in microPred and miPred by
five-fold cross-validation. Finally, we constructed the classifier miR-SF to predict the most recently identified
human pre-miRNAs in miRBase (version 16). Compared with microPred and miPred, miR-SF achieved much
higher classification performance. Accuracies were 93.97%, 86.21% and 64.66% for miR-SF, microPred and
miPred, respectively. Thus, miR-SF is effective for identifying pre-miRNAs.
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1. Introduction

MicroRNAs (miRNAs) are a family of ~22nt endogenous non-
coding RNAs involving in post-transcriptional regulation [1]. Mature
miRNAs are usually cleaved from ~90nt miRNA precursors (pre-
miRNAs), characterized by a stem-loop or stem-loop-like structure
that can be used as a characteristic for identifying novel miRNAs. The
first miRNA (lin-4) is discovered in 1993 [1,2]; currently 15,172
miRNAs in 142 species are in the latest version of miRBase (version
16), including 1048 humanmiRNAs [3]. Recent estimates suggest that
there is a large number of undiscoveredmiRNAs inmany species [4,5].

Currently, computational prediction and experimental approaches
have been used to discover novel miRNAs. A cDNA cloning technique
is frequently used in experimental approaches. Although the cDNA
cloning is direct and reliable, capturing miRNAs with low-expression
levels or miRNAs that are expressed in a time-specific or tissue-
specific manner is difficult. In recent years, computational prediction
has been used to identify potential pre-miRNAs, since it is not affected
by time or tissue specificity of miRNA expression. In particular,
machine learning approaches including support vector machine
(SVM) [6–9], random forest (RF) [10], hidden Markov model
(HMM) [11–13] and naive Bayes classifier (NBC) [14] have been
used. Sequence compositions and RNA folding measures of secondary
structure have been used as inputting features in these approaches.
The divergent features used in these approaches result in different
outcomes. Hence, selecting effective feature subset is very important
for identifying new pre-miRNAs.

In miRabela [15], 40 distinctive sequence and structural features
from the hairpins are employed to identify pre-miRNAs in the
genomic regions near the known mammalian miRNAs. This method
predicted about 50 to 100 novel pre-miRNAs for several species;
about 30% of potential pre-miRNAs predicted were experimentally
validated. miPred, which is an SVM-based classifier, was constructed
using 29 “global and intrinsic” features from hairpin folding
characteristics, and is used to predict human pre-miRNAs. Its accuracy
in test set reaches 93.50% for human [6]. A recent microPred approach
used 21 features related to sequence composition and thermody-
namic stability to distinguish human pre-miRNAs from pseudo
hairpins. MicroPred based on SVM achieves high classification results
for both sensitivity (SE) (90.02%) and specificity (SP) (97.28%) [8].

Although these approaches achieve satisfactory performance in
several species, they have limitations. MiRabela and miPred consider
the importance of the stem-loop structure characteristics for
identifying real pre-miRNAs, but do not filter out features in the
feature set that may lead to poor classification performance. For
microPred, only fine features from the initial feature set remain after a
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filter feature selection. However, the filtermodel requires no feedback
from the classifier and estimates the classification performance by
indirect assessments such as distance measures, which reflect how
well the classes separated from each other. Although feature selection
in microPred improves classification accuracy, feature selection using
the filter model does not provide much higher classification accuracy.
By contrast, the wrapper feature selection methods are classifier
dependent, in which the “goodness” of the selected feature subset is
evaluated directly by classification accuracy. Based on previous
studies, the classification accuracy of the wrapper model is higher
than the filter model in feature selection [16–19].

In this study, to find a more effective feature subset for
classification, we firstly extract as many characteristics of pre-miRNAs
as possible from the literatures [6,8,15]. Then, a wrapper feature
selection that evaluated if the features were useful or not, a hybrid of
genetic algorithm and support vector machine (GA–SVM), was
employed to identify an optimized feature subset. Based on SVM,
the classification performance of the optimized feature subset is much
higher than that of the initial features without feature selection and
the two feature sets used in microPred and miPred by using five-fold
cross-validation. The SVM-based classifier miR-SF is constructed for
predicting the most recently identified human pre-miRNAs in
miRBase (version 16) by using the optimized feature subset.
Compared with the two SVM-based microPred and miPred, miR-SF
(93.97%) achievesmuch higher classification accuracy thanmicroPred
(86.21%) and miPred (64.66%).

2. Materials and methods

2.1. Data set

The sequences of human miRNA precursors were downloaded
from release 15 of miRBase registry database, which included 940
human pre-miRNA entries. The secondary structure of all sequences
used in this study was predicted using the RNAfold procedure in the
Vienna RNA package version 1.8.1 [20]. After removing the pre-
miRNAs with multiple loops in the stem-loop structure, 906 pre-
miRNAs were obtained, which composed the positive samples. 657 of
those were contained in release 12 of miRBase and were used to
generate the optimized feature subset, while the remaining 249 pre-
miRNAs were used to evaluate the optimized feature subset.

As negative samples, 8494 pseudo hairpins were extracted from
protein coding regions according to the RefSeq and UCSC refGene
annotations. These were also used in microPred [8] andmiPred [6]. To
distinguish miRNAs from other small RNAs, 754 other small RNAs
used in microPred [8,21] were obtained, of which 129 small RNAs
without multiple loops were also taken as negative samples.
Fig. 1. The primary and secondary structure of the hsa-let-7e precursor and the locations of
hsa-let-7e and the lower one indicates the secondary structure and the relevant terms with
2.2. Feature set

Constructing an initial feature set was very important for
identifying the optimized feature subset. In order to extract an
effective classification feature subset, we selected as many features of
pre-miRNAs as possible based on the literatures. We obtained 185
features for the original feature set, characterized by sequence
composition and RNA folding measures of secondary structure.
Sequence features mainly included the frequency of single nucleo-
tides, dinucleotides and trinucleotides in the pre-miRNA sequences,
while secondary structure features included adjusted Shannon
entropy, distance between internal loops and the frequency of the
minimum free energy structure, etc. All features are described in
detail in the supplementary material.

All feature values were extracted by analyzing pre-miRNA primary
and secondary structures. Fig. 1 shows the primary and secondary
structure of the hsa-let-7e precursor and the locations of some terms
in the secondary structure. The secondary structure of all pre-miRNA
sequences was predicted using RNAfold under default parameters.
After extracting all feature values, we found that “the number of
symmetrical loops with each part exactly containing seven bases” and
“the number of asymmetrical loops with the longest part exactly
containing seven bases” were zero for all sequences used. These two
features were removed, and the remaining 183 features formed the
initial feature set.

2.3. Identification of an optimized feature subset

GA–SVM was proposed for selecting an optimal feature gene
subset for disease classification in our previous study [22]. This is a
hybrid of genetic algorithm (GA) and support vector machine (SVM)
that fully utilizes the unique merits of the two data-mining
approaches. Here, for each sample set, GA–SVM was employed to
extract an optimal feature subset for distinguishing real pre-miRNAs
from pseudo hairpins and other small RNAs. GA was used to extract
the optimal feature subset based on the process of nature selection, in
which the fitness value of an individual (feature subset) is given based
on the classification accuracy of the SVM classifiers. First, we
randomly generated N fixed-length individuals (the set of the feature
subsets) as an initial population, encoded as N binary strings for easier
operation. Based on the corresponding feature value submatrix for
each individual, SVM classifiers were constructed, and the average
classification accuracy based on five-fold cross-validation was
denoted as the fitness value of this individual. Individuals with higher
fitness values had a greater chance to be selected to generate new
feature subsets than thosewith low values by crossover andmutation.
Better individuals were retained by survival of the fittest, and finally
some terms in the secondary structure. The upper part shows the primary structure of
different colors.
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the optimal individual was obtained as an optimal feature subset
when the stop condition was met. In this study, for a certain sample
set, GA–SVM with default parameters was employed to extract an
optimal feature subset for distinguishing two classes, using the
following steps:

(1) Encoding. We constructed the feature value matrix MK and
the initial feature set with n features for a certain sample set.
MK consisted of the feature values of the n (n=183, when
K=0) features of all 1314 samples in this sample set. Next, N
fixed-length binary strings (individuals) were randomly
generated to form the initial population D0

K, which contained
N individuals (we set N=40). Each binary string represented
a feature subset, and the value of each position in the binary
string was encoded as either 1 or 0; with 1 representing
presence of the particular feature in the subset, and
0 representing absence. To avoid the loss of important
features, in the initial population, about half of the features
in each individual were retained, so the number of features in
the feature subsets was large in early generations. For
example, M0 had 183 features, while the number of features
in each individual of D0

0 is approximately 92.
(2) Evaluating feature subsets. We employed SVM to construct the

classifiers for each individual (feature subset) in the initial
population. For each individual, the feature value submatrix
SMK

j (j=1,2,…,N) including only the features in this individual
was obtained from the original matrix MK. Based on the
submatrix SMK

j, the adaptability of the individual j was
evaluated by the average accuracy of the classifiers based on
five-fold cross validation, which was denoted as evalj=eval
(SMj

K) for the individual j. Where the fitness value was

evalj = ∑
25

d=1
ACCd

 !
= 25, d was the number of sample sets

generated by one five-fold cross validation, ACCd was the
classification accuracy of the test samples Td in the dth sample
set setd (detailed description was shown in five-fold cross
validation in methods) using the SVM algorithm. Discriminant
function in SVM was given by

⌢y = f xð Þ = sgn ∑
L

i=1
aiyiK xi⋅xð Þ−b

( )
ð1Þ

where x was the test sample vector, xi was the training sample

vector, L was the number of test samples, yi was label of
samples, ai was the Lagrange multiplier related with xi. For
SVM, ai≠0, sgn{} was symbol function, and K(xi⋅x) was a
kernel function (linear kernel was used in this study). The
proportion of samples correctly classified in the test samples
was obtained as the classification accuracy (ACC).
(3) Producing new population by crossover and mutation. Since the
initial set of feature subsets (initial population) is not, in
general, the whole subsets of the feature set, but is randomly
generated, the new set of the feature subsets (new generation
population) was generated by crossover and mutation to
obtain the optimal feature subset. Based on the fitness value
of each individual in the initial population D0

K, the highest N/2
individuals were obtained to form the set of the feature subsets
denoted D01

K , which did not undergo crossover and mutation
and directly entered the next generation. Using the choice

probability Pj = evalj
� �

= ∑
N

j=1
evalj, we randomly selected in-

dividuals in the initial population D0
K to generate another N/2

new individuals denoted D02
K by crossover and mutation. Here

the higher the fitness value of an individual jwas, the more the
selected probability was for that individual. For the initial
population D0

K, based on crossover probability 0.6, we extracted
two individuals at random to perform a single crossover four
times, generating eight individuals. Two individuals with the
highest fitness values of the eight individuals were extracted as
the members of D02

K . Mutation was employed to change the
values of some positions (adding and deleting features) in
randomly selected individuals in D0

K based on a mutation
probability of 0.05. Four individuals were selected in each
batch, and the individual with the highest fitness value was
added to D02

K . Finally, the new population D1
K was formed by

combining D01
K with D02

K .
(4) Extracting an optimal feature subset. The best individual (feature

subset) with the highest evalj in the current generation D1
K was

obtained by calculating the fitness value of all individuals.
When the classification accuracy difference of the two best
individuals in neighboring two generationswas less than 0.001,
or the maximum generation reached 100, iteration was
stopped, and the last best individual was extracted as the
best feature subset in the current set of feature subsets inwhich
each feature number was approximately n/2. To further select
the optimal feature subset, the initial feature set was replaced
with the above extracted best feature subset, the initial feature
value matrix MK was replaced with the corresponding
submatrix SMK (in which the column of the feature value
matrix was all features of the new feature subset) of this new
feature subset, and the above steps were repeated until the last
two feature subsets extracted were the same. This feature
subset was extracted as the optimal feature subset of this
sample set.

2.4. Measures of evaluating the optimized feature subsets

Based on the optimized feature subset, we constructed the SVM
classifier for evaluating the classification power of this feature subset.
Five-fold cross validation and the five indices including sensitivity
(SE), specificity (SP), accuracy (ACC), F-measure (Fm) and Matthews
correlation coefficient (MCC) were used to evaluate the classification
performance of the optimized feature subset. The formulas of these
indices were:

SE = TP = TP + FNð Þ × 100% ð2Þ

SP = TN = TN + FPð Þ × 100% ð3Þ

ACC = TP + TNð Þ= TN + FP + TP + FNð Þ × 100% ð4Þ

Fm = 2TP = 2TP + FP + FNð Þ × 100% ð5Þ

MCC = TP × TN−FP × FNð Þ
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FPð Þ TN + FNð Þ TP + FNð Þ TN + FPð Þ

p
ð6Þ

where TP was the number of real pre-miRNAs correctly identified, FN
was the number of real pre-miRNAs missed; TN was the number of
pseudo hairpins correctly identified, and FPwas the number of pseudo
hairpins incorrectly classified.

2.5. Five-fold cross validation

For the optimized feature subset, we used five-fold cross-
validation to evaluate its classification performance. First, positive
and negative samples in a sample set were randomly divided into
five non-overlapping parts of roughly equal size, denoted as Pi
(i=1, 2, …, 5) for positive samples (real pre-miRNAs) and Ni (i=1,
2, …, 5) for negative samples. A combination of Pi and Ni was used
as the test set, and the rest of the sample set was used as the
training set. Thus, all combinations produced 25 pairs of training
and test sets, setd={Ld, Td}(d=1, 2, …, 25). Here, Ld was training



Fig. 2. Frequency of 183 features in training sets. The x-axis is 183 features, and the y-axis is the frequency of features on training sets. The highest feature frequency on 1000 random
datasets of 0.09 is denoted with a dotted line. The frequencies of 13 features on training sets are denoted with red solid circles, and the frequencies of other features are denoted with
black solid circles. Meanwhile, 13 feature names are given by this figure.

Table 1
The optimized feature subset containing 13 features.

Feature Frequency Description

Diversity 1 The structural diversity
Freq 0.95 The frequency of the MFE structure
dD 0.35 Adjusted base pair distance
zD 0.28 Normalized variants of dD
zF 0.21 Normalized variants of dF, where dF is compactness of

the tree-graph representation of the sequence
D_interlp 0.16 Average distance between internal loops
|A-U|/L 0.15 The ratio of |A-U| to length of sequence, where |A-U| is

the number of (A-U) base pairs in secondary structure
L_rsym_rgn 0.13 Length of the longest relaxed symmetry region, where

the relaxed symmetry region is composed of consecutive
stems, symmetrical loops and asymmetrical loops, and
the maximally allowed asymmetrical base number in
asymmetrical loops is 4.

MFEI1 0.12 The ratio of MFE to %G+C content, where MFE is
minimum free energy

dQ 0.12 Adjusted Shannon entropy
zQ 0.12 Normalized variants of dQ
L_sym_rgn 0.11 Length of the longest symmetry region, where the

symmetry region is composed of consecutive stems and
symmetrical loops, but not bulges, asymmetrical loops
and hairpin loops

dH 0.11 Structure enthalpy
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set, while Td was test set. Then, a set of 25 classifiers was
constructed based on 25 different training sets Ld, and the values
of the five classification measures for the corresponding test set Td
were calculated. The average values of each of five measures were
considered as the final output.

3. Results

Using the GA–SVM algorithm we identified an optimized feature
subset for distinguishing real pre-miRNAs from non-pre-miRNAs.
Then, the classification performance of the optimized feature subset
was compared with the initial features and the two previous feature
sets by using five-fold cross-validation based on SVM. Finally, the
miR-SF classifier was constructed by using this optimized feature
subset. The classification performance of miR-SF was compared with
two previous approaches (microPred and miPred) by using the
identification power of the most recently identified miRNAs in
miRBase (version 16).

3.1. Optimized feature subset extracted

We extracted 657 pre-miRNAs (positive samples) from release 12
of miRBase after removing the pre-miRNAs with multiple loops in the
stem-loop structure. The number of the positive samples was
significantly less than the negative samples, so we established an
unbiased classifier by selecting 657 negative samples, including 129
other small RNAs and randomly selected 528 negative samples from
8494 extracted protein-coding sequences. This was repeated 100
times to form 100 different negative sample sets. Thus, 100 different
training sets were obtained by combining 657 positive samples with
one of the 100 random negative sample sets, 100 times. Each of the
100 training sets was composed of 657 real pre-miRNAs and 657 non-
pre-miRNAs. These training sets were employed to extract an
optimized feature subset.

The GA–SVM algorithm was used to select an optimal feature
subset for each training set. However, each optimal feature subset was
extracted based on only one training set. In order to improve the
classification power, we integrated the 100 optimal feature subsets.
First, the frequency of each feature in all 100 optimal feature subsets
was calculated, with a maximum value of 1 and minimum value of 0.
Feature frequencies are shown in Fig. 2, marked with solid circles. The
higher the feature frequency was, the more important that feature
was for pre-miRNA identification. Next, we employed the permuta-
tion technique to determine the threshold of feature frequency by
disturbing category labels 10 times randomly for each of the 100
training sets. Based on the 1000 random sets, the random feature
frequencies were calculated, with a highest frequency of 0.09 (dotted
line in Fig. 2). Here, 0.09 was set as the threshold of feature frequency.
Finally, 13 features were statistic significance, which had the feature
frequencies larger than 0.09. The 13 features composed the final
optimized feature subset. Feature name, detailed description and
frequency of each feature are listed in Table 1. The 13 features related
to RNA secondary structure folding measures are denoted with red
solid circles in Fig. 2. The result showed that structure features could
be more effective than sequence composition for classification of pre-
miRNAs, which was consistent with previous approaches such as
miPred, microPred and G2DE's [13]. Some features were found in

image of Fig.�2


Table 2
Performance comparison of four feature sets using five-fold cross validation.

Features SE SP ACC Fm MCC

13 optimized features 100% 97.98% 98.99% 99.01% 98.02%
21 microPred features 99.98% 97.06% 98.52% 98.55% 97.10%
29 miPred features 87.10% 92.63% 89.87% 89.55% 80.02%
All 183 initial features 97.93% 97.13% 97.53% 97.55% 95.11%

The best performance in each index is highlighted with bold front.
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many approaches [6,8,13,15] andmight be crucial for the prediction of
pre-miRNAs, such as MFEI1, dQ, zQ, dD and zD.

3.2. Performance evaluation using five-fold cross validation

In order to evaluate the classification performance of the identified
optimized feature subset, it was compared with the initial feature set
used here and the feature subsets used in microPred and miPred.
Firstly, the remaining 249 pre-miRNAs in release 15 of miRBase and
the re-extracted 249 negative samples were combined as the
reference sample set. Next, by using the reference sample set, five-
fold cross validation based on SVMwas performed on the four feature
sets (the identified optimized feature subset, the feature subset
identified in microPred, the feature subset used in miPred and the
initial feature set used here). Finally, the classification performance
was evaluated by five indices: SE, SP, ACC, Fm andMCC. As a result, our
optimized feature subset achieved the higher SE (100%), SP (97.98%),
ACC (98.99%), Fm (99.01%) and MCC (98.02%) than that of the other
two feature subsets and the initial total features (Table 2). Thus, the
identified optimized feature subset was effective for distinguishing
real pre-miRNAs from non-pre-miRNAs.

3.3. Accuracy evaluation using the most recently confirmed pre-miRNAs
in miRBase

Based on release 15 of miRBase, the optimized feature subset was
used to distinguish the pre-miRNAs from non-pre-miRNAs, and
achieved better performance than the initial features and the two
other feature subsets (in microPred and miPred). To evaluate the
power of identification for new miRNA sequences, 119 newly
discovered human pre-miRNAs in release 16 of miRBase were
extracted, of which 116 pre-miRNAs had no multiple loops. These
pre-miRNAswere predicted usingmiR-SF, microPred andmiPred. As a
result, miR-SF achieved the highest prediction accuracy, at 93.97%
(109/116), while microPred was 86.21% (100/116) and miPred was
64.66% (75/116). These results indicated that miR-SF is a powerful
approach for predicting novel pre-miRNAs.

4. Conclusion

Identification of miRNAs is the first step in understanding their
biological characteristics. In recent years, many approaches have been
proposed to predict pre-miRNAs, using different feature sets and
yielding different performances. However, these did not consider the
effect of feature selection on classification. Selection of the feature
subset is important for distinguishing pre-miRNAs from non-pre-
miRNAs. In this study, the GA–SVM algorithm proposed in our
previous work was applied to identify the optimized feature subset
including 13 features. Based on this subset, miR-SF was constructed
for predicting novel pre-miRNAs.

Firstly, using the reference sample set, the classification perfor-
mance of the optimized feature subset was compared with the initial
183 features without feature selection and the two existing feature
subsets used in previous methods. Based on SVM, we evaluated the
performances of the four feature sets by using five-fold cross-
validation, which showed that the identified optimized feature set
achieved the highest classification power. This demonstrated that
feature selection is crucial for identifying pre-miRNAs. Secondly, we
constructed the SVM classifier (miR-SF) based on the optimized
feature subset. In the prediction of the most recently identified pre-
miRNAs in release 16 of miRBase, the accuracy of miR-SF was much
higher than that of the two other methods (microPred and miPred).
These results demonstrated that miR-SF was effective for predicting
novel pre-miRNAs.

Moreover, very significantly, all 13 features extracted in this
study were RNA folding measures of secondary structure. This
showed that structural features might be more effective than
sequence composition for identifying pre-miRNAs. The frequency of
the two features “the structural diversity” and “the frequency of
MFE structure” were significantly higher than other features. These
were important for predicting RNA secondary structure [20,23].
Furthermore, stem-loop secondary structure was important for
predicting the pre-miRNAs [7,24]. Thus, the two features we
proposed might be promising characteristics for distinguishing the
pre-miRNAs from non-pre-miRNAs.

Finally, the classifier based on the optimized feature subset should
have the ability to predict novel miRNAs in human genome. However,
~11 million hairpins are identified by scanning the entire human
genome [25]. For the huge number of candidate hairpins, enormous
false positives can be produced in genome-wide prediction of pre-
miRNAs, even if the specificity is 97.98%. How to reduce the false
positive rate would be the next problem that needs to be thought
deeply. Andwithmore andmoremiRNAs identified, the false-positive
predictions should also be reconsidered [4,5]. Furthermore, although
the classification performance of miR-SF was satisfactory, the initial
feature set extracted from the known literature did not contain all
possible features describing pre-miRNAs. Thus, some effective
features might be omitted. With further research on pre-miRNA
characteristics, we might find more effective features using GA–SVM,
and miR-SF might identify many more potential pre-miRNAs.
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