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Abstract Plants produce a large number of secondary metabo-
lites, such as alkaloids, terpenoids, polyphenols, quinones and
many further compounds having combined structures of those
groups. Physiological roles of those metabolites for plants are
still under investigation, but they play, at least in part, important
functions as protectants for plant bodies against herbivores and
pathogens, as well as from physical stresses like ultraviolet light
and heat. In order to accomplish these functions, biosyntheses
and accumulation of secondary metabolites are highly regulated
in a temporal and spatial manner in plant organs, where they can
appropriately accumulate. In this mini-review, I introduce the
mechanism of accumulation and membrane transport of these
metabolites, in particular, focusing on ATP-binding cassette
transporters involved.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Higher plants produce a vast number of secondary metabo-

lites, in addition to primary metabolites, via complex path-

ways, which are regulated in highly sophisticated manners

[1]. Many of them show strong biological activities, e.g., inhi-

bition of DNA and protein synthesis, inhibition of the nerve

system, cardiac activity, modulation of microtuble structure,

etc. Bioactive secondary metabolites have been, therefore, uti-

lized as natural medicines and often such plants containing

those compounds have been used as medicinal plants and pre-

scribed in many recipes as forms of crude drugs [2,3]. In most

cases these bioactive natural compounds are found in particu-

lar organs, which are called ‘‘medicinal part’’ in pharmacog-

nosy, and their contents in such organs are often seasonally

regulated [4]. The physiological roles of these secondary

metabolites for plants have not been completely elucidated,

but reasonable explanations have been made for some second-

ary metabolites, i.e., they may function as biological protec-

tants from herbivores, pathogen attacks and abiotic

environmental stresses such as UV irradiation [5,6]. For in-

stance, nicotine of tobacco or caffeine of coffee tree was re-

ported to act as strong insecticides [7,8]. Some secondary
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metabolites are known to function as mediators necessary

for the interaction with other organisms, as being allelopathic

substances or insect attractants to facilitate pollination [9]. To

achieve those functions, accumulation or secretion of those

compounds has to be highly regulated, for instance, flavonoids

acting as UV protectant are specifically accumulated in epider-

mal cells [10], and insect attractants are emitted from flower

petals [11]. Biosynthetic genes responsible for the formation

of those secondary metabolites may be highly expressed in

such tissues where the metabolites are mainly accumulated,

while translocation of natural compounds among plant organs

often occurs as well, e.g., biosynthetic genes for nicotine, a pyr-

rolidine alkaloid of Nicotiana species, are mostly expressed in

root tissues (source organ) whereas it is transported to the aer-

ial part and accumulated in leaves (sink organ) [12]. The mem-

brane transport of plant secondary metabolites is a newly

developing research area [13], and it has been found that

ATP-binding cassette (ABC) transporters are involved in some

plant systems. In this mini review, I overview the involvement

of ABC transporters for the membrane transport of endoge-

nous secondary metabolites in plants and also those mediating

the transport of plant products in heterologous systems as

well. The comparison of ABC transporters in both systems is

discussed.
2. Plant ABC transporters for endogenous secondary

metabolites

2.1. Alkaloids

Alkaloids are nitrogen-containing low molecular weight

compounds, which are found in about 20% of plant species.

This diverse group implies most bioactive metabolites, and

approximately 12000 compounds are elucidated to date [14].

Bioactive alkaloids, which influence for example the stability

of chromosome structures or inhibit the DNA duplication,

can be potentially toxic to plant cells but the producer plants

seem to be insensitive to their own metabolites. For instance,

when berberine was added to various plant cell cultures, it

showed strong cytotoxicity to berberine-non-producing plant

species like tobacco, while Thalictrum minus as well as Coptis

japonica, both berberine producers, exhibited clear tolerance

to this endogenous isoquinoline alkaloid [15,16]. Moreover,

C. japonica cells revealed an ability to take up berberine from

the medium against the concentration gradient when exoge-

nously added to the culture medium, and the absorbed ber-

berine was exclusively accumulated in the vacuoles [17]

(Fig. 1).
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Fig. 1. Berberine producing plant cell cultures. (A) T. minus cell cultures without benzyladenine (BA) (left), those with BA (middle), and C. japonica
cell cultures (right). Yielded cells (petri dishes) and their cultured media (conical flasks) are shown. Berberine is produced and secreted into the
medium by T. minus cell cultures, whereas this yellow alkaloid is accumulated inside the cells of C. japonica. (B–D) Fluorescent micrographs of these
cells. Large central vacuoles show blue fluorescence in T. minus (B,C) and the yellow fluorescence of berberine is observed at cell walls of the cultures
with BA (C). The secreted berberine is often crystallized in the medium. Berberine is exclusively accumulated in the vacuoles of C. japonica (D).
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In the cellular transport of berberine by C. japonica cells,

two transport events are involved, i.e., uptake of berberine at

the plasma membrane and efflux from the cytosol into vacuo-

lar lumen at the tonoplast. Inhibitor experiments suggested the

possible involvement of an ABC transporter in the cellular

transport of berberine by the cultured cells [18]. Then, a mul-

tidrug resistance (MDR, or ABCB)-type ABC transporter was

cloned from the C. japonica cell cultures via homology-based

RT-PCR as a candidate of berberine transporter [19]. Func-

tional analyses of the ABC transporter designated CjMDR1

was done with Xenopus oocytes, which showed that this

ABC transporter recognized berberine as its substrate and

transported it in an inward direction [20]. This was the first

example of an eukaryotic ABC transporter mediating the up-

take and not the efflux of a substance (Fig. 2).

CjMDR1 was localized to the plasma membrane of

C. japonica. Berberine is biosynthesized in root tissues, and

then translocated to the rhizome and trapped by the plasma

membrane-localized CjMDR1, resulting in its accumulation

in the rhizome. Since the rhizome is the sink organ also for

starch, this plant accumulates the alkaloid having strong anti-

microbial activity as a chemical defence against the soil-borne

microorganisms. Contrary to the plasma membrane, the vacu-

olar transport of berberine in this plant cell is not mediated by

an ABC transporter, but is dependent on the H+-gradient

across the tonoplast, suggesting that a H+-antiporter is respon-

sible for the berberine transport in vacuoles [21].
In another berberine producer, T. minus cell cultures, which

secreted berberine to the culture medium, the possible involve-

ment of an ABC transporter in berberine secretion was demon-

strated [16,22] (Fig. 1). Interestingly the identified ABC

transporter shared high similarity with CjMDR1 (our unpub-

lished data). The regulatory mechanism which determines the

direction of transportation is now under investigation.

For the transport of berberine, a vesicle-mediated mecha-

nism was also proposed in a different plant [23]. The terminal

steps of berberine biosynthesis takes place exclusively in spe-

cific intracellular vesicles in Berberis, which are probably de-

rived from the endoplasmic reticulum (ER) and later fuse

with the central vacuole. This scheme fits plants that produce

and accumulate berberine in the same cells, but the carrier-

mediated mechanism is appropriate for the plants whose sink

and source organs are distant like in C. japonica [20].

One of the most known examples of long-distance transport

is nicotine alkaloids in Nicotiana species. Nicotine is biosynthe-

sized in root tissues, where it is specifically increased in the re-

sponse to attacks by pathogens and herbivores, and the

produced nicotine is translocated to the aerial part for accu-

mulation [24]. Considering the translocation, this alkaloid

should be loaded into xylem tissue and unloaded at mesophyl

cells where nicotine is finally accumulated in the vacuoles [25].

This process implies transport of nicotine across at least three

different membranes, plasma membranes in the root and in the

leaf, and the vacuolar membrane of mesophyl cells, while no



Fig. 2. Scheme of membrane transport of secondary metabolites and involved ABC transporters in plant cell. Representative natural products, which
are proposed to be transported by plant ABC transporters, are drawn. Typical topologies of each ABC transporter subfamily are also drawn.
Transport processes of each secondary metabolite mediated by ABC transporters are described in the text.
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specific nicotine transporter is identified so far. ABC-type pro-

tein may take a role in a membrane transport event of this

alkaloid.

Another isoquinoline alkaloid morphine, a major alkaloid in

the latex of opium poppy, is accumulated in the large membra-

nous vesicles of such latex. Immunofluorescence analyses using

antibodies specific for five enzymes of alkaloid formation in

opium poppy was recently reported [26]. In capsule and stem,

two O-methyltransferases and an O-acetyltransferase were

found predominantly in parenchyma cells within the vascular

bundle, while codeinone reductase was localized to laticifers.

Another group reported that three of those biosynthetic en-

zymes of morphine were localized in sieve elements of this

plant [27]. In either case, the transport of the intermediate

from specific cell-type of vascular tissue to laticifer was pro-

posed, where an involvement of ABC transporter might be

possible.

The early work by Zenk indicated that the vacuolar trans-

port of indole alkaloids was mediated by a H+-antiporter

[28], although no endogenous transporter gene for indole alka-

loids has been, to my knowledge, isolated thus far. Recent

studies demonstrated that indole-3-acetic acid transport is

mediated by some ABC transporters of MDR (ABCB)-type

[29–32]. Moreover, the inhibitory activity specific to auxin

was reported in indole alkaloids, such as brucine and yohim-
bine, as competitors [33]. These papers may suggest that an

ABC transporter is involved in the transport of indole alka-

loids in plants.

2.2. Terpenoids

Terpenoids are probably the most divergent secondary

metabolites in the chemical structure. To date more than

25000 compounds were isolated and their structures were elu-

cidated [14]. Terpenoids are biosynthesized by condensation of

the monomeric C5 unit, dimethylallyl diphosphate and isopen-

tenyl diphosphate, and they are classified according to the de-

gree of condensation as hemi-, mono-, sesqui-, di-, sester-, tri,

tetra- and polyterpenoids. Contrary to the phytochemical and

biosynthetic studies, membrane transport of terpenoids is still

largely unknown, except for the diterpene compound, sclareol.

This antifungal compound is a dicyclic natural metabolites

synthesized by Nicotiana species. As a study on the plasma

membrane proteins that are inducible by sclareolide an anti-

fungal analogue, a pleiotropic drug resistance (PDR)-type

ABC transporter was identified [34]. The gene expression of

this PDR member (NpABC1) was strongly induced in re-

sponse to both sclareol and sclareolide in the leaves of N.

plumbaginifolia, and the possible excretion of these diterpene

derivatives to leaf surface were suggested by inhibitor experi-

ments. An orthologue was isolated from tobacco [35], in which
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the ABC transporter also showed a close relevance to the path-

ogen response. The Arabidopsis genome has 15 members of

PDR subfamily, and one of them AtPDR12 was reported to

be strongly induced by elicitor treatment, suggesting its direct

involvement in the pathogen resistance processes by transport-

ing antimicrobial metabolites [36]. Similar inducibility of a

PDR orthologue was also reported in Spirodela polyrrhiza

and the resistance against sclareol was revealed in both Arabid-

opsis [36,37] and S. polyrrhiza PDRs by the germination assay

in which root elongation was evaluated [38]. These data are

indicative that PDR members of Arabidopsis and Spirodela

may recognize sclareol or other natural compounds of similar

structure as the substrate and transport it in outward direction.

However, it is yet unknown whether or not this diterpene is

actually biosynthesized in those plant species. Further infor-

mation about the PDR family in plants is available in a recent

review [39] (Fig. 2).

Accumulation of terpene compounds has been described in

many plants, for example, monoterpenes in Labiatae plants

are biosynthesized in secretory cells and accumulate in the epi-

cuticular cavity of glandular trichomes [40], while terpenoids

of woody plants are secreted into the resin duct [41]. For vol-

atile mono- and sesquiterpenenoids, their emission from flow-

ers of Arabidopsis [42], snapdragon [43], and from leaves of

woody plants [44] has been reported. Further, dramatical in-

crease in the emission of volatile terpenoids was demonstrated

by insect attacks in maize leaves [45] and cotton flower buds

[46], where biosynthetic genes were strongly induced under

these condition. Excretion of higher terpenoid is also known,

i.e., the hydrophobic triterpene bryonolic acid is highly accu-

mulated in the apoplastic space of some plant cell cultures of

Cucurbitaceae, and is probably attached to the cell wall [47].

To my knowledge, however, the transporter molecules in-

volved in the secretion of those terpene compounds are not

identified yet. Besides, for isoprene, which is a highly volatile

hemiterpene (C5) emitted in a large amount from leaves of

some plant species like poplar, no transporter seemed to be re-

quired for the emission [48].

2.3. Phenol

Phenolic secondary metabolites involve simple phenylprop-

anoids including coumarins and lignans, flavonoids, and also

polyphenols of high molecular weight such as tannins. Many

of these phenolic secondary metabolites are involved in plant

pathogene interaction, protectants against abiotic stress, and

in the formation of structural components like lignins. Phe-

nylpropanoids and flavonoids are one of the most intensively

studied plant secondary metabolites, not only for the chemi-

cal structures but also for the biological activities and the

biosynthesis [49–51], in particular in the context of plant

defense.

Many phenolic compounds are detected in glycosylated

form in plants. Glucosidation plays a key role in detoxification

of endogenous secondary metabolites and also xenobiotics in

plants, and these glucosides often end up accumulated in the

vacuoles. Multidrug resistance-associated protein (MRP or

ABCC)-type ABC transporters are reported to be involved in

the vacuolar sequestration of such glucosides, in addition to

glucuronides and glutathione conjugates [52]. According to

studies by Martinoia�s group, there seemed to be an apportion-

ment of transporter types either for the endogenous or exoge-

nous substrates. For instance, a flavonoid glucoside, isovitexin,
a native C-glucoside in barley, was transported into the iso-

lated vacuoles of barley via electrochemical gradient-depen-

dent secondary transport, whereas a herbicide glucoside of

hydroxyprimisulfuron was taken up by directly energized pri-

mary transport mechanism [53]. They also reported that the

uptake of the main barley flavonoid saponarin, an apigenin

glucoside, into barley vacuoles occured via H+-antiport,

whereas the transport of saponarin into Arabidopsis vacuoles,

a heterologous plant that did not produce this metabolite, dis-

played typical characteristics of an ABC transporter [54]

(Fig. 2).

Studies on the transport mechanism of phenolic compounds

have been probably most actively done for anthocyanins due

to the fact that they play a central role in flower colour forma-

tion. Most anthocyanins are glycosylated and accumulated in

the vacuoles, except for some anthocyanins that were found

in apoplastic space, like riccionidin A in Rhus javanica [55].

The involvement of MRPs (ABCC) in the vacuolar transport

of such phenolic glucosides was suggested in the bronze-2

(bz2) muntant of maize [56]. This mutant, in which bz2 encodes

a glutathione S-transferase, was defective in the accumulation

of anthocyanin in the vacuole. Because MRPs have a substrate

preference for glutathione conjugates, and since their transport

activity was often stimulated in the presence of glutathione, the

involvement of MRPs in the vacuolar transport of anthocya-

nin was presumed. Similar results were also reported in dicots,

such as petunia [57] Arabidopsis [58] and carnation [59]. Fur-

ther strong evidence for the involvement of MRP proteins in

anthocyanin accumulation was provided via reverse-genetic

studies by Goodman et al. [60]. The maize ABC transporter,

ZmMRP3, was localized to the tonoplast, and is required for

the anthocyanin accumulation process in maize (Fig. 2).

Contrary to those reports, the possible involvement of pro-

ton gradient-dependent transport for anthocyanin accumula-

tion was also reported. The Arabidopsis gene tt12 showed

strong reduction in the proanthocyanidin deposition in vacu-

oles of endothelial cells [61]. The gene product of TT12 was

a secondary transporter-like protein belonging to the multi-

drug and toxic compound extrusion (MATE) family, suggest-

ing that this protein might be responsible for the vacuolar

transport of proanthocyanidin and anthocyanin via an anti-

port mechanism. A similar MATE-protein MTP77 was also re-

ported in tomato [62], whereas further biochemical evidences

are needed to prove the direct involvement of these antiporters

in the anthocyanin transport.

The preference for a certain conjugated hydrophilic moiety

for vacuolar transport of phenolic compounds, either glucose

or glutathione, was analyzed using vacuolar membrane vesicles

purified from red beet (Beta vulgaris) [52]. Whereas two phenol

glucosides of p-hydroxycinnamic acid and p-hydroxybenzoic

acid, were transported apparently by a H+-gradient-dependent

mechanism, the glutathione conjugate of a herbicide chlorsul-

furon analogue appeared to be transported by an ABC trans-

porter. Another experiment with phenylpropanoid derivatives

showed that a glutathione conjugate of cinnamic acid was

transported into the tonoplast vesicles via a GS-X pump,

i.e., MRP-type ABC transporter [63]. These data suggested

that the sugar moiety was a �tag� to be recognized by the sec-

ondary transporters, while a glutathione moiety was a pre-

ferred �tag� for MRP proteins functioning as primary

transporters [64–66], although some glucosides seemed to be

recognized by MRP-type ABC transporters. This indicates
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that the combination between substrates and preferred trans-

porter-types may fairly depend on plant species.

2.4. Wax

The plant body is covered by the cuticle, which is composed

of cutin, polysaccharide and wax. The wax component is made

of very long chain fatty acids and their derivatives. Recent

finding showed that a half-size ABC transporter AtWBC12

(ABCG-type) in Arabidopsis was involved in wax secretion

on the stem surface [67]. This member is in the reverse oriented

subfamily of ABC transporter, and in the mutant plant (cer5)

the wax components on the epidermal surface decreased to

half compared to the wild type. Its localization at the plasma

membrane was also revealed with GFP fusion protein. Since

the substrates were very lipophilic, vesicle-mediated transport

mechanism was also proposed for the wax secretion (Fig. 2).

The putative interaction between the vesicle transport and

ABC transporter will be a hot topic in near future.
3. Transport of secondary metabolites by non-plant ABC

transporters

Several members of mammalian ABC transporters are

known as efflux carriers of plant secondary metabolites espe-

cially those showing cytotoxicities, like alkaloids. Such trans-

port studies have been intensively done in the field of cancer

research, e.g., frequently used anticancer drugs, vincristine of

Catharanthus species and paclitaxel (taxol) produced by Taxus

species are preferred substrates of some human ABC trans-

porters. Among many multispecific mammalian ABC trans-

porters, the overlapping substrate specificities are observed,

e.g., vincristine and vinblastine (indole alkaloids) are effluxed

by human MDR1 (ABCB1) [68], MRP1 (ABCC1), and

MRP2 (ABCC2) [69], but not by BCRP (breast cancer resis-

tance protein, ABCG2) [70]; epi-podophyllotoxin and etopo-

side (lignans) are transported by human MDR1, MRP1 and

MRP3 but not by MRP2; camptothecin derivatives (quinoline

alkaloids) are preferred substrates of human MRP2 and BCRP

but not of MDR1 or MRP1; taxol (diterpene derivative) is rec-

ognized by human MDR1 and BCEP (ABCB11) but not by

MRP1 [68]; cardiac glycoside digitoxin (sterol glycoside) [71]

and colchicin are also known substrates of MDR1 [72]. A sim-

ilar substrate preference was also reported for the mouse

mdr1a and mdr1b [73].

In humans, ABC transporters responsible for phytosterol ef-

flux were identified. Two half-size ABC transporters ABCG5

[74] and ABCG8 [75], which were highly expressed in epithelial

cells of intestine, were cloned via the analysis of the sterol stor-

age disease sitosterolemia [76]. They were involved in the excre-

tion of plant sterols derived from vegetables at the brush border

of enterocytes as a heterodimer, resulting in decreased uptake

of phytosterols. Their substrate specificity was described in a re-

view [77]. While 29 genes are known to group in this subfamily

in Arabidopsis, no member has been identified, which shows the

function corresponding to ABCG5/ABCG8.

Fungal pathogenes are exposed to a variety of fungitoxic

secondary metabolites produced by plants during pathogenesis

[78]. ABC transporters can play an essential role in protection

against those plant defense compounds during invasion. In the

fungal pathogen Magnaporthe grisea, which caused rice blast

disease, an ABC transporter similar to yeast multidrug resis-
tance pump was identified [79]. The insertional mutant of this

gene arrested the growth and the hypha died shortly after pe-

netrating in epidermal cells of rice or barley, indicative that

this ABC transporter was a pathogenicity factor. Its expression

was indeed inducible by drugs and rice phytoalexin. Another

ABC transporter gene acting as a virulence factor MgAtr4

was identified in a wheat pathogen Mycosphaerella graminicola

out of five similar genes of this fungi [80]. Disruption strain of

MgAtr4 displayed reduced intercellular growth in wheat leaves

and less efficient colonization of substomatal cavities. The na-

tive substrate was not identified in both transporters yet, but

the response of gene expression of fungal ABC transporter

to plant metabolites might offer clues to find substrates. When

gene expression was analyzed, two other membersMgAtr1 and

MgAtr2 responded to a phenylpropanoid eugenol and an alka-

loid reserpine in their gene expression in a similar way as to the

azole fungicides, suggesting that they were broad substrate

drug efflux pumps [81].

Multispecific ABC transporters are particularly relevant to

plant pathogens that have a broad host range since they are ex-

posed to many plant defense compounds. Botrytis cinerea is an

example of such a pathogen. A PDR-type ABC transporter

BcatrB was isolated as a candidate drug efflux pump of broad

substrate specificity [82]. BcatrB expression was upregulated by

the grapevine phytoalexin resveratrol, a stilbene, as well as

fungicides, and the gene replacement mutant became more sen-

sitive to resveratrol. In gene expression analyses, some other

fungal ABC transporters were also shown to respond to plant

secondary metabolites [83,84].

A herbivor tobacco hornworm possesses a detoxification

mechanism for nicotine. Transport activity similar to MDR1

(ABCB1) was reported in the Malpighian tubles of this insect,

which excreted the alkaloid from the tissues [85]. The nicotine

transport was inhibited by atropine, while vinblastine trans-

port was suppressed by nicotine, indicative that the alkaloid

transporter at the excretory Malpighian tubles recognized

other alkaloids of different type. By immunostaining, the exis-

tence of a similar ABC transporter at the blood-brain barrier

of insect for nicotine excretion was also suggested [86].
4. Modulation of ABC transporter by plant secondary

metabolites

Secondary metabolites may play as endogenous modulators

of plant ABC transporters. Some MDR (PGP or ABCB) mem-

bers were reported as being auxin transporters [29–32], while

flavonoid aglycones, such as kaempferol and quercetin, ap-

peared to act as negative regulators of the auxin transport in

Arabidopsis [31,87,88]. Possible function of flavonoids as

endogenous modulators of plant MDRs are suggested.

Many compounds that modulate transport activity of mam-

malian drug efflux pumps are found among plant secondary

metabolites. Camptothecin and its derivatives show strong

inhibitory effect on topoisomerase I and are used as anticancer

drugs of broad spectrum. BCRP (ABCG2) conferred resis-

tance to these drugs by effluxing them, but the transport activ-

ity was inhibited by isoflavonoids like genistein and

naringenin. The inhibitory effect by isoflavonoids seemed to

be specific for BCRP since they did not influence the

MDR1-mediated vincristine resistance or MRP1-mediated

VP-16 resistance [89].
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Inhibitor studies on ABC transporter function suggested

that human MDR1 might also recognize carotenoid deriva-

tives of paprica, such as capsaithin and capsorubin in lym-

phoma cells [90], as well as quinone compounds like

hyperforin (prenylated phlorogucinol derivative) and hypericin

(naphthodianthrone derivative) of Hypericum (St. John�s wort)
[91]. These compounds might not be direct transport substrates

of MDR1 but were capable of modulating the transport of

substrates as suggested for curcumin I [92] and sesquiterpenes

from Celastraceae [93]. These modulators seemed to bind the

ABC transporter molecule [93,94]. Further modulating activi-

ties of MDR1 transport by many secondary metabolites from

medicinal plants were reviewed by Zhou et al. [95], e.g., curcu-

min and ginsenosides acted as inhibitors while quercetin and

some catechin derivatives stimulated the transport activity by

interacting directly with the MDR1 polypeptide. The complex-

ity of the modulatory action was demonstrated for flavonoids,

e.g., (�)epicatechin inhibited rhodamine transport while it en-

hanced the transport of another marker LDS [96]. Moreover,

these effects of flavonoids were ABC transporter species-

specific, for instance chrysin inhibited BCRP-mediated topo-

tecan transport in rats, but no influence was observed on its

pharmacokinetics in mdr1a/1b (�/�) mice [97].

The binding affinity of flavonoid with ABC transporters var-

ies among transporter members. One of the intensive works

was done with BCRP, in which the most probable binding site

with flavonoid inhibitors, e.g., quercetin, was the nucleotide-

binding domain (NBD) [98]. In contrast, flavonoid binding

to the MDR1 polypeptide appeared to involve the ATP-bind-

ing site, sterold-binding site and substrate-binding site [95,99].

Multiple binding sites for flavonoid were also reported for hu-

man MRP1 [100]. Furthermore, prenylation of the flavonoid

molecule tends to increase the binding affinity [100,101]. It is,

however, an open question whether or not flavonoids can be

substrates of those mammalian ABC transporters, except for

genistein, which was shown to be transported in its native form

by BCRP (ABCG2) in transcellular transport assay using

LLC-PK1 [89]. If plant secondary metabolites are conjugated

either with glucuronic acid or glutathione in the cells, they

may be more likely recognized by some ABC members to be

effluxed in a similar manner as quercetin, which was trans-

ported as glucuronide by rat BCRP1 [102].
5. Substrate recognition

Due to the intensive studies on the roles of some mammalian

ABC transporters in multidrug resistance in cancer cells, the

simple assumption that ABC transporters could generally exhi-

bit broad substrate specificity was widely accepted. However,

recent studies have demonstrated that their functions are not

only restricted to detoxification processes [103], but also in-

volved in many specific biological activities, such as transloca-

tion of endogenous metabolites and cell signaling, in which

they show narrow substrate specificity [20,30,31,38], and other

divergent physiological functions [67,104]. It has recently been

suggested that the ABC transporter family has evolved because

of the necessity of transporting the specific substrates in each

organism, and not as drug efflux pumps [105].

The molecular mechanism of substrate recognition is still

largely unknown. The amino acid sequence identity between

human MDR1 (ABCB1) and MRP1 (ABCC1) is only 17%,
although they show overlapping in the substrates to large ex-

tent. On the other hand, MDR1 and MDR2 share 75% amino

acid identity but they show very different functions, i.e., the

former is a multiple drug efflux pump whereas the latter is a

flippase for phosphatidyl choline while MDR1 cannot trans-

port this phospholipid [106]. Comparing CjMDR1, a fairly

specific alkaloid transporter for endogenous berberine, to hu-

man MDR1 recognizing many plant alkaloids, there is 35%

amino acid identity with strong similarity in the hydropathy

profile, whereas no significant feature is found to explain their

difference in the substrate specificity and the transport direc-

tion. To argue these points, three dimensional structure analy-

ses of ABC transporters will be necessary.
6. Conclusions

The large number of ABC transporter genes in Arabidopsis

and the involvement of mammalian ABC transporters in the ef-

flux of plant-derived products, led to the hypothesis that plant

ABC transporters largely contribute to membrane transport of

endogenous secondary metabolites in the plant body. However,

there are still only limited examples of transport studies on sec-

ondarymetabolites in plant cells to date. One reason is thatAra-

bidopsis is a model plant suitable for genetics while it is not

absolutely ideal for secondary metabolite studies, because phy-

tochemical analysis of this plant has been still very limited and

the amount of those natural products in Arabidopsis is usually

low. More active phytochemical analyses in Arabidopsis is ex-

pected, and also other plant model systems appropriate for sec-

ondarymetabolism researchwill provide important information

for those transport mechanism in plants.
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